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Abstract. This paper addresses the problem of robustly autocalibrating a mov-

ing camera with constant intrinsics. The proposed calibration method uses the

Branch-and-Bound (BnB) search paradigm to maximize the consensus of the

polynomials. These polynomials are parameterized by the entries of, either the

Dual Image of Absolute Conic (DIAC) or the Plane-at-Infinity (PaI). During the

BnB search, we exploit the theory of sampling algebraic varieties, to test the pos-

itivity of any polynomial within a parameter’s interval, i.e. outliers with certainty.

The search process explores the space of exact parameters (i.e the entries of DIAC

or PaI), benefits from the solution of a local method, and converges to the solu-

tion satisfied by the largest number of polynomials. Given many polynomials on

the sought parameters (with possibly overwhelmingly many from outlier mea-

surements), their consensus for calibration is searched for two cases: simplified

Kruppa’s equations and Modulus constraints, expressed in DIAC and PaI, resp.

Our approach yields outstanding results in terms of robustness and optimality.

1 Introduction

Estimating the intrinsics of a moving camera is difficult mainly due the non-linear na-

ture of the problem. Furthermore, it also demands the camera motion to be rich and

diverse (with sufficiently large translations and rotations), such that the degenerate mo-

tions for autocalibration – so-called Critical Motion Sequences (CMS) – are avoided.

Yet, when the camera undergoes a large motion, establishing a good set of correspon-

dences across multiple views becomes very challenging mainly due to the change in

viewpoints or occlusions. Failure to establish such correspondences leads to an inaccu-

rate estimation of camera motion, thus demanding a robust method for camera autocal-

ibration. Although the problem of accurate motion estimation may be partially handled

by carefully capturing the image sets, such solutions are not always possible especially

when the image acquisitions cannot be controlled as desired (e.g. remote cameras, hol-

idays pictures). Furthermore, camera motion estimation is expected to be riddled with

inaccuracies and outliers, mainly due to the presence of repetitive patterns, changes in

illumination, and partial/no scene overlaps.

Camera autocalibration has obtained significant attention since the seminal work by

Maybank et Faugeras [1]. Existing approaches can be broadly divided into three cate-

gories: (i) direct estimation of a ubiquitous conic which encodes the camera intrinsics:

the so-called Dual Image of the Absolute Conic (DIAC) [2–4], (ii) stratified estimation
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of the Plane-at-Infinity (PaI) followed by a linear retrieval of the DIAC [5–9], (iii) joint

estimation of both PaI and DIAC in the form of the so-called Dual Image of the Abso-

lute Quadric (DIAQ) [10–12]. On the one hand, most of these methods are only locally

optimal (requiring a good initialization of the sought intrinsics) and susceptible to even

a small number of outliers. On the other hand, globally optimal methods [9, 11, 12] only

focus on the optimality while discarding the criteria for robustness towards ouliers.

A relatively robust and globally optimal method [13] performs the interval analy-

sis within the framework of Branch-and-Bound (BnB) to solve the modified robust cost

function proposed in [14], which was originally derived in [2]. Unfortunately, due to the

inefficiency of the interval analysis technique, the method has proved computationally

very expensive and applicable only to rather short image sequences. Furthermore, this

method also suffers from the same problem as [14] for high numbers of ourliers. To the

best of our knowledge, there exist no efficient minimal solver for full camera calibra-

tion that offers a practical way of conducting robust estimation within the framework of

RANSAC. Furthermore, RANSAC-based methods would still be non-deterministic and

fail to provide meaningful solutions in the presence of many outliers. Existing minimal

solvers such as [15–17] make strong assumptions on an unknown focal length with

known aspect ratio. A detailed study on Minimal Conditions for camera autocalibration

is provided in [18]. Note that a variety of methods for solving systems of nonlinear

polynomial equations exist. While some are based on Gröbner bases or homotopy con-

tinuation [19], others use Sum-of-Squares (SoS) polynomial optimization [20–22]. Yet,

such methods are dedicated to solving outlier-free nonlinear systems and dealing with

outliers is carried out through RANSAC.

In this work, we address the problem of robustly autocalibrating a moving camera

with constant intrinsics. The proposed method uses the BnB search paradigm to solve

both direct and stratified calibrations, namely simplified Kruppa’s equations [4] and

Modulus constraints [7], parameterized by DIAC and PaI, respectively. Although, Gur-

djos et al. [23] suggest that the solutions to Kruppa’s equations or Modulus constraints

may suffer from artificial CMS (due to the failure of enforcing the Absolute Conic to lie

on the PaI), we argue that the artificial CMS are unlikely to happen for cameras under

large motion. In such cases, robustness towards outliers is rather more important to deal

with. In fact, the joint estimation of the DIAC and PaI, in the form of rank-3 DAQ, not

only makes the problem more challenging but also demands a high quality projective

reconstruction, thus making it less suitable for robust camera calibration.

During the BnB search, we explore the DIAC or PaI parameter space. As in [24, 25],

we rely on establishing optimistic and pessimistic sets of inlier assignments for pruning

branches whose most optimistic sets are worse than the best pessimistic one. For any

branch, we obtain the pessimistic inlier set using a local refinement method that guar-

antees the solution to lie within the sought interval. To estimate the optimistic inlier set,

we exploit the theory of sampling algebraic varieties for testing the positivity/negativity

of polynomials on the given varieties. In this regard, polynomials to be tested, say inter-

val polynomials, are derived from the parameters’ current intervals, whereas varieties

are represented by the polynomials from either the Kruppa’s equations or Modulus con-

straints. The interval polynomials are quadratic in nature and designed such that they

are always negative within the considered interval while being positive elsewhere. If the
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interval polynomial is positive/negative on any variety, the measurement corresponding

to that variety is an outlier, with certainty, for that particular interval. The optimistic

inliers are then estimated by discarding such outliers for the total measurements.

The major contributions of this paper can be summarized as: (i) For the first time,

we introduce the theory of sampling algebraic varieties to detect the outlier polynomials

with certainty, within the considered parameters’ intervals. (ii) Based on the rigorous

theory of algebraic geometry, we devise an efficient and optimal BnB-based search

method to maximize the consensus of the polynomials sharing common real roots. Fur-

thermore, we also provide the common root as the solution to the given polynomial

system with many outliers. (iii) The proposed method has been tested on two chal-

lenging autocalibration problems, demonstrating outstanding results both in terms of

robustness and optimality.

2 Sampling Varieties Theory

Consider the ring R[x] := R[x1, ..., xn] of multivariate polynomials and an algebraic

variety V ⊆ C
n defined such that V := {x ∈ C

n : hi(x) = 0, for i = 1, . . . ,m}. For a

given polynomial p(x) ∈ R[x], we are interested to know whether,

p(x) ≥ 0, for all x ∈ V ∩ R
n. (1)

The decision problem in (1) is NP-hard. However, there are some relaxation meth-

ods based on sum of squares (SoS) [26, 25]. Recall that a polynomial f(x) ∈ R[x] is

SoS, if there exist polynomials fi(x) ∈ R[x] such that f(x) =
∑

i (fi(x))
2. Given a

bound d ∈ N, it is straightforward to observe that (1) must hold true, if there exists a

SoS polynomial f(x) of degree ≤ 2d such that,

p(z) = f(z), for all z ∈ V. (2)

We refer to such f(x) as a d-SoS certificate. Now, we are interested to know the

answer to the following problem.

Problem 1. Given a bound d ∈ N, a polynomial p(x) and a variety V , does there exist

a d-SoS certificate?

An affirmative answer to Problem 1 is a sufficient condition for (1) to be true. To

answer the Problem 1, we rely on the theory of sampling varieties, originally developed

in [27]. This theory uses a generic set of samples Z = {z1, . . . , zS} ⊆ V , while spe-

cializing the condition in (2) to Z . Intuitively, if (2) is satisfied for a sufficiently large

sample set Z ⊆ V , it must also be true for all z ∈ V , as long as both the number of

variables and the degree of p(x) are bounded. Then one may be interested to know what

is the smallest size of Z required to conclude that (2) is indeed true.

Unfortunately, there is not an easy way to find the minimal size of Z . But the good

news is that, for a given Z , one can test whether it is sufficient to find a d-SoS certificate.

Using the method proposed in [27], such certificate can be obtained in two steps; (i) pre-

certificate computation, (ii) poisedness test.
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Definition 1 (Pre-certificate). For a variety V ⊆ C
n, a non negative polynomial p(x) ∈

R[x] on V∩Rn, and a bound d ∈ N, a sampling d-SoS pre-certificate is a pair (f(x),Z),
where f(x) is a SoS polynomial of degree ≤ 2d and Z = {z1, . . . , zS} ⊆ V a sample

set, such that,

p(zs) = f(zs), for s = 1, . . . , S. (3)

If f(x) is a d-SoS certificate, the pre-certificate is correct.

Finding a pre-certificate with (3), is a Semi-Definite Programming (SDP) problem.

find Q ∈ SN , Q � 0,

s.t. p(zs) = u(zs)
⊺Qu(zs) for, s = 1, . . . S.

(4)

Where, u(x) ∈ R[x]N is the vector of all monomials of degree at most d, and SN de-

notes the space of N × N real symmetric matrices. Recall that, a polynomial f(x) ∈
R[x] is d-SoS if and only if, f(x) = u(x)⊺Qu(x) for a positive definite matrix Q (de-

noted by Q � 0). Therefore, if there exists any matrix Q � 0 that satisfies (4), the

pre-certificate (defined in Definition 1) is correct. Although the per-certificate obtained

in this manner does not necessarily guarantee that (2) is satisfied, it can be used for the

certainty, if the set Z is poised.

Definition 2 (Poisedness). Let L ⊆ R[V] be a linear subspace. For a given set of

samples Z ⊆ V , (L,Z) is called poised if the only polynomial p(x) ∈ L with p(z) = 0
for all z ∈ Z , is the zero polynomial. Furthermore, for any finite dimensional L there

is a finite set Z such that (L,Z) is poised [27].

Let Ld ⊆ R[V] and L2d ⊆ R[V] are the linear spaces spanned by the entries of u(x)
and u(x)u(x)⊺, respectively. The polynomial f(x) = u(x)⊺Qu(x) ∈ L2d. There exist a

simple strategy to test if the given pair (L,Z) is poised or not. The test is summarized

in Algorithm 1. Please, refer [27] for the details about the poisedness test. Now, the fol-

Algorithm 1 [testF lag] = poisednessTest(u(x),Z)

1. Form vector u2(x) = vec(u(x)u(x)⊺) spanning L2d.

2. Build a matrix Û2 with columns u2(z) for z ∈ Z ∪ Z .

3. If Û2 has full column rank, return “false”. Else, return “true”.

lowing theorem guarantees the correctness of pre-certificate for a good set of samples,

i.e. when (L2d,Z) is poised.

Theorem 1 (Poisedness implies correctness [27]). For any given set of samples Z , its

pre-certificate (f(x),Z) is correct, if (L2d,Z) is poised.

To summarize, the decision Problem of (1) can be answered with the help of a

generic sample set Z . For a general variety V , one can use numerical algebraic geom-

etry tools (such as Bertini [28] and PHCpack [29]) to compute such sample sets. The

answer to the Problem (1) is affirmative, if there exists Q � 0 satisfying (3) and Z
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passes the poisedness test of Algorithm 1. In case of failure, the poisedness test of Z
can be ensured by adding more samples. Recall from Definition 2, for any finite dimen-

sional L there is a finite set Z that passes the poisedness test. Needless to say that if

p(zs) is negative for any zs, the test for Problem of (1) is not really necessary. More

importantly, if the pre-certificate cannot be obtained even for the smallest Z that passes

the poisedness test, the answer to the Problem (1) is undetermined.

3 Consensus within a System of Polynomials

Consider a set of measurements {Mi}mi=1 such that each Mi can be expressed as a

set polynomials Pi = {hij(x)}lj=1, on the unknown parameter x ∈ R
n. Let the variety

Vi := {x ∈ R
n : hij(x) = 0, for j = 1, . . . , l}, where hij(x) = 0, for j = 1, . . . , l are

the polynomials obtained from the measurement Mi. Ideally, we are interested to find

an x ∈ ∩m
i=1Vi. However, in the presence of noise and outliers, such x may not even

exist. Therefore, we wish to solve the following Problem.

Problem 2. Given a set S = {Pi}mi=1 and a threshold ǫ,

max
x,ζ⊆S

|ζ|,

subject to d(x,Vi) ≤ ǫ, ∀Pi ∈ ζ,
(5)

for a sample x to variety V distance defined by,

d(x,V) = min
y∈V

‖x− y‖. (6)

This problem, however, is difficult to solve due to its non-convex and NP-hard

combinatorial nature. In this work, we approach this problem using the BnB algorith-

mic paradigm. Our BnB search is performed by branching on the space of parameters

x ∈ R
n. Every branch is represented by an interval of parameters x in the form of two

vectors [x, x] such that x ≤ x, for the entry-wise inequality.

3.1 Polynomials within an Interval

The key idea of this paper is an effective way of estimating the optimistic number of

inliers/outliers measurements, represented by a set of polynomials, for each branch by

answering the following problem.

Problem 3. For any given measurement Mi and a parameter’s interval [x, x], does there

exist a vector x ∈ [x, x] such that d(x,Vi) ≤ ǫ?

In other words, we would like to know whether all the polynomials hij ∈ Pi share

at least one common root within the given interval representing a branch, with an ǫ

tolerance. If this question is answered affirmatively, then the measurement Mi is a po-

tential inlier within the considered interval. This problem however, is difficult to answer

unless the following proposition is considered.
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Proposition 1. For the given threshold ǫ and parameter’s interval [x, x], let us define a

polynomial pb(x) representing the interval bounds:

pb(x) =

∥

∥

∥

∥

x− x+ x

2

∥

∥

∥

∥

2

−
(
∥

∥

∥

∥

x− x

2

∥

∥

∥

∥

+ ǫ

)2

. (7)

For any measurement Mi, there exists no x ∈ [x, x] such that d(x,Vi) ≤ ǫ, if pb(x) ≥ 0
for all x ∈ Vi ∩ R

n.

Proof. Observe that pb(x) ≥ 0 is the interior of a sphere with center
x+x

2 and radius
∥

∥

∥

x−x

2

∥

∥

∥
+ ǫ, which includes all x ∈ [x, x] with ǫ tolerance. Therefore, if pb(x) ≥ 0 for all

x ∈ Vi ∩ R
n, there exists no x ∈ [x, x] such that d(x,Vi) ≤ ǫ. ⊓⊔

Proposition 1 allows us to answer the Problem 3 similar to the decision problem of (1).

The ability to answer the Problem 3 allows us to reason about whether the measurement

Mi is an inlier or outlier. Recall that a measurement Mi is an inlier if d(x,Vi) ≤ ǫ.

Alternatively, there exists no x ∈ [x, x] such that d(x,Vi) ≤ ǫ, then the measurement

Mi is definitely an outlier within the considered bounds. Otherwise, it is a potential

inlier. For interval bounds [x, x] and a threshold ǫ, we summarize the method to test

whether the given measurement Mi is an outlier, in Algorithm 2.

Algorithm 2 [testF lag] = OutlierTest([x, x],Mi, ǫ)

1. Construct pb(x) using (7), for bounds [x, x] and threshold ǫ.

2. For givenMi, construct Pi to define its variety Vi.
3. Test if pb(x) ≥ 0, for all x ∈ Vi ∩ R

n, as in (1) in two steps:

→ (i) Compute the pre-certificate using (4).

→ (ii) Verify the pre-certificate using Algorithm 1.

4. If the test holds true, return “true”. Else, return “false”.

Now we are interested to know whether Algorithm 2 often misses the outliers. In

other words, even if there exists no x ∈ [x, x] with d(x,Vi) ≤ ǫ, could it be possible

that Algorithm 2 fails to provide the outlier certificate for the measurement Mi? In fact,

this may often happen, especially when the interval gap is large. However, when the gap

shrinks towards zero during the BnB search, such occurrences are less and less likely

to happen. This can be inferred from the extreme condition of ǫ = 0 and x̂ = x = x. In

such case, the polynomial pb(x) becomes an SoS, of the form pb(x) = ‖x− x̂‖2. The

d-SoS certificate f(x) of pb(x) , in (2), is pb(x) itself.

3.2 The BnB Algorithm

The goal of the BnB algorithm is to estimate parameters x ∈ R
n that yield the largest

number of inlier measurements. We start with a set S = {Pi}mi=1, where the set of

polynomials Pi defines a variety Vi for each measurement Mi. During BnB search, a

dynamic search tree, whose nodes are parameter intervals, is built to explore the space
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of parameters. Given measurements and intervals, the BnB algorithm (see Algorithm 3)

requires the estimation of both optimistic and pessimistic numbers of inliers.

Optimistic number of inliers: We estimate the optimistic number of inliers by exploit-

ing the outlier test method of the Algorithm 2. Since any measurement that passes the

test is definetely an outlier for the considered interval, the optimistic inliers are obtained

by simply discarding such outliers from the total measurements.

Pessimistic number of inliers: A local refinement method is used to obtain a pes-

simistic number of inliers for each node. The local method iteratively refines x while

starting from the mid-values of the parameter intervals. To ensure that the final solution

still represents the same node, it searches the optimal solution within the investigated

intervals. Given a set of potential inliers I ⊆ S , the algorithm iteratively updates the

parameters to:

x∗ = argmin
x∈[x,x]

∑

hij(x)∈Pi,
Pi∈I

||hij(x)||2. (8)

The pessimistic set of inliers are only those measurements which satisfy the condition

d(x∗,V) ≤ ǫ. For the given measurement Mi, following two steps are performed:

(i) If there exists z ∈ Zi (sample set Zi of Vi) such that d(x∗, z) ≤ ǫ, Mi is an inlier.

(ii) The entries of x∗ are used to solve the polynomial system Pi = {hij(x)}lj=1 on l

variables (by replacing the others). If the solution is ǫ close to x∗, Mi is an inlier.

This step is carried out only if |hij(x)| < η for all hij(x) ∈ Pi and threshold η.

At any instant of the BnB search, we keep track of the biggest set of inliers obtained

so far. Let us call nOpti and nPess the number of optimistic and pessimistic inliers,

respectively. Similarly, bPess for the maximum of nPess among all nodes. Any node

whose nOpti is worse than bPess is rejected. Otherwise, the node is further branched

for its parameter with the largest interval, resulting in two new nodes to be processed.

The node corresponding to the bPess is processed first. The algorithm terminates when

no node has an nOpti that is better than bPess.

Algorithm 3 [flag,bPess] = processNode([x, x],S, ǫ, bPess)

1. Count nOpti using Algorithm 2 for each Pi ∈ S ofMi.

2. If nOpti ≤ bPess, set flag = “false” (for pruning), return.

3. Count nPess using local method (8) followed by steps (i) and (ii).

4. If bPess < nPess, then bPess← nPess, flag = “true”.

4 Polynomials for Camera Autocalibration

We consider that a set of m image pairs {Ii, I ′
i}mi=1 are captured by uncalibrated cam-

eras. For each pair, both 3D scene points and cameras are reconstructed up to a projec-

tive ambiguity, from the point correspondences between images [30]. Without loss of

generality, we choose the world frame such that it coincides with the camera coordinate
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frame of the first image. In this case, the projection matrix of the first image becomes

[I3×3|03×1]. Let the projection matrix of the second image be Mi = [Hi|ei]3×4. Given

a set of measurements S = {Mi}mi=1, with possibly many outliers, we wish to cali-

brate cameras by using the method presented in Section 3. To do so, we exploit the

formulations of the following two classical camera autocalibration methods.

4.1 Simplified Kruppa’s Equations on DIAC

The Kruppa’s equations for camera autocalibration rely on an omnipresent line conic

lying on the PaI – the so-called the Dual Absolute Conic (DAC). The projection of DAC

on the image I ′
i, known as Dual Image of Absolute Conic (DIAC), can be expressed

in the form of the camera intrinsics Ki of the camera capturing I ′
i, as,

ωi = KiK
⊺

i . (9)

In this work, we assume that the camera intrinsics are constant across all images

such that K = Ki, thus leading to a unique DIAC ω for all image pairs. The simplified

Kruppa’s equations [4] allow us to express such ω in the form of polynomials, with the

help of Fundamental matrices Fi = [ei]×Hi.

Let Fi = UiDiVi be the singular value decomposition, with D = diag([ri, si, 0]).
For Ui = [ui1|ui2|ui3] and Vi = [vi1|vi2|vi3], two independent polynomials of simpli-

fied Kruppa’s equations are of the form:

hi1(ω) = (risiv
⊺

i1ωvi2)(u
⊺

i2ωui2) + (r2i v
⊺

i1ωvi1)(u
⊺

i1ωui2),

hi2(ω) = (risiv
⊺

i1ωvi2)(u
⊺

i1ωui1) + (s2i v
⊺

i2ωvi2)(u
⊺

i1ωui2). (10)

Given a set of projection matrices S = {Mi}mi=1 as measurements, the task of robust

camera autoclibration is to estimate ω that maximizes the consensus of these measure-

ments. Note that ω is a 3 × 3 matrix with ω = ω⊺ and ω(3,3) = 1. Therefore, one

can linearly parameterize ω using only a vector x ∈ R
5. Let hi1(x) and hi2(x) be the

equivalent representations of hi1(ω) and hi1(ω) of (10), respectively. For each mea-

surement Mi ∈ S , we derive two polynomials Pi = {hi1(x), hi2(x)} defining a variety

Vi := {x ∈ R
5 : hi1(x) = 0, hi2(x) = 0}. Now, we cast the task of autocalibration

as Problem 2, for a set S = {Pi}mi=1 and a threshold ǫ, to estimate ω parameterized by

x ∈ R
5. This problem is solved by using our solution proposed in Section 3 for both

ω and the largest inlier set ζ, simultaneously. The intrinsics K are then recovered by

performing the Cholesky decomposition on ω.

4.2 Modulus Constraints on PaI

Modulus constraints [7] allow us to derive polynomials parameterized by the coordi-

nates of the Plane-at-Infinity (PaI) – the plane supporting the Absolute Conic – with

the help of the homography between two images induced by any arbitrary plane. The

estimation of the PaI is a necessary condition to upgrade projective reconstructions to
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affine. Once the upgrade is performed, the task of camera calibration boils down to a

linear problem [30]. Such methods fall into the category of stratified autocalibration.

In this work, we assume that all the projection matrices Mi are registered to a com-

mon coordinate frame. In practice, this can be achieved in several ways: by joint projec-

tive factorization [31, 32]; by registering projection matrices using projective homogra-

phies [30]; or simply by choosing a fixed image as the reference for all others. Without

loss of generality, we assume that Mi are obtained using the latter. Under such circum-

stances, there exists a unique Plane-at-Infinity, say Π∞, common to all the views [5].

Let Π∞ = (π⊺

∞, 1)⊺ ∈ R
4 be the coordinate vector of Π∞. For Mi = [Hi|ei], the

homography between pairs Ii and I ′
i via Π∞ can be expressed as,

Hi∞ = Hi − eiπ
⊺

∞. (11)

Given Mi, the theory of Modulus constraints relies on the fact that the homography

Hi∞ must have all three eigenvalues with the same moduli, to recover the unknown

π∞. In [7], Pollefeys et Van Gool have shown that the moduli constraint can indeed

be expressed as quartic polynomials, parameterize by π∞ ∈ R
3. At this point, we

borrow four linear functions l0(π∞), . . . , l3(π∞), from [7] (please, refer [7] for their

definitions). Now, the modulus constraints are of the form:

hi(π∞) = li3(π∞)(li1(π∞))3 − li0(π∞)(li2(π∞))3. (12)

While searching for Π∞, we make use of projection matrices S = {Mi}mi=1 as

measurements, such that the sought solution maximizes the consensus within S . For

each Mi ∈ S , we derive a polynomial Pi = {hi(π∞)} defining a variety Vi := {π∞ ∈
R

3 : hi(π∞) = 0}. Now, we cast the task of finding Π∞ as Problem 2, for a set

S = {Pi}mi=1 and a threshold ǫ, to estimate π∞ ∈ R
3. This problem can be solved by

using our solution of Section 3 for both π∞ and the largest inlier set ζ, simultaneously.

5 Discussion

Although we focus on the autocalibration for cameras with constant intrinsics, the solu-

tion proposed for estimating PaI does not require this assumption. Note that, a projective

reconstruction obtained from cameras with different intrinsics still share a common PaI.

Therefore, once the PaI is estimated, one may exploit this information for calibrating

cameras with variable focal lengths similar to [33].

The main concern of this paper is finding good initial bounds on the sought param-

eters (see Algo. 3). Fortunately, in the context of camera calibration, one can safely

assume that a vague guess on camera intrinsics can be known, except for close to affine

cameras. For affine (or close to affine) cameras, the task of autocalibration is considered

to be rather a simpler problem [34], hence can be attempted accordingly.

In our experiments, we consider that the focal length lies within [1 10] interval rel-

ative to the image size, aspect ratio lies between 0.7-1.25, principal points lie around

image center within a radius of ( 14 )
th of the image size, and the skew is close to zero.

With these assumptions, we derive bounds on DAIC using the interval analysis arith-

metics [35]. While deriving the bounds on PaI, we assume that the distance of PaI is
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smaller than 5 units from the reference camera frame, in the normalized projective re-

construction. The projective reconstruction is obtained by normalizing the reference

image to 1× 1. Note that, the coordinate of PaI, π∞ is the product of its distance d and

the normal n̂. Since ‖n̂‖ = 1, the coordinates π∞ can also be bounded.

6 Experiments

We conducted several experiments with nine different real datasets to test the robust-

ness and optimality of our method. These datasets are, Fountain [36], Herz-Jesu [36],

Dino4983 [37], DinoColmap [37], House [37], Courtyard [38], CherubColmap [39],

Vercingetorix [32], and Watertower [32]. All reported experiments were conducted on

real datasets. The projective reconstruction required for our method was obtained us-

ing [40] for Fountain and Herz-Jesu, after piece-wise factorization and registration with

projective homography. The projective reconstructions for all other datasets were ob-

tained using [32]. For the experiments with quantitative evaluations, only the outliers

were synthetically generated. These synthetic outliers were added either on Fountain or

Herz-jesu dataset, by arbitrarily selecting them for any set of experiments, since these

two are also the datasets with known ground truth DIAC and PaI. Our algorithm is

implemented in MATLAB2015a and all the optimization problems are solved using

MOSEK [41]. All experiments were carried out on a 16GB RAM Pentium i7/3.40GHz.

To evaluate the calibration quality, five different error measurement metrics were

defined: the RMS error on 3D reconstruction, errors in focal length ∆f , principal point

∆uv, skew ∆s and PaI ∆π∞, similarly as in [12] . The 3D reconstruction error is com-

puted on the normalized pointsets (with mean radius of
√
3), error for camera intrinsics

are computed for 1× 1 image size, and error for PaI is computed for its normal vector.

6.1 Simplified Kruppa’s Equations

To observe the behavior of proposed algorithm with simplified Kruppa’s equations, we

generated multiple image pairs with dominating number of outliers. Then, we tracked

the number of pessimistic and optimistic inliers for increasing BnB iterations, along

with the number of nodes remaining to be processed and the volume of the parameter

space yet to be explored. For almost all our experiments, it has been observed that the

algorithm converges before 1000 iteration, while limiting itself to a reasonable number

of nodes across search iterations (showing only a small memory usage). One of these

observations is shown in Fig. 1. Note from Fig. 1(left) that our outlier detection method

of Algorithm 2 comes into play, to help punning, soon after the algorithm starts. Our

algorithm also finds the optimal solution only in a few iterations, while most of the

search is performed to obtain the optimality certificate. In Fig. 1 (middle), we show the

number of nodes and search volume remaining for the same experiment.

We report the computation time of our method in Fig 1 (right), for two different sets

of inlier pairs with increasing percentage of outliers. Note that these experiments are

conducted with as high as 90% of outliers. Even in such extreme cases, our algorithm

successfully results the optimal solution, with optimality certificate, within a reasonable

amount of time. Here, 10 inliers with 90% outliers refers to the total of 100 image pairs.
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Fig. 1. Convergence graph (left) and remaining nodes/volume during BnB search (middle). Time

taken for increasing % outliers with two different cases of fixed inliers (right). Experiments with

Kruppa’s equations.

In Fig. 2, we report the results obtained by our method and a randomly started

local method for 100 independent experiments. We use the well known Mendonça-

Cipolla [14] for local method as it was designed to be robust towards noise. In each ex-

periment, the Mendonça-Cipolla method was started at randomly picked camera intrin-

sics lying within the initial intervals. The results show that, unlike Mendonça-Cipolla

which generates a very low number of inliers and provides very large 3D errors, our

method consistently detects the same number of inliers with the same 3D error.
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Fig. 2. Left-middle: global vs. local method for 100 experiments with 10 inliers and 20 outliers.

Number of detected inliers (left) and 3D reconstruction error (middle). Right: reconstruction of

Dino, obtained using our estimated camera intrinsics. One of the input images with two views of

the reconstruction. Experiments with Kruppa’s equations.

We further compared the results of our method against that of one local and three

global methods for autocalibration: a local and practical method from [8], a DAQ rank-

3 constrained direct method from [11], a LMI-based direct method from [12] and a

stratified method from [9]. All of these methods assume that the input projective recon-

struction is free of outliers. Therefore, we conducted experiments with datasets with no

outliers. In Tab. 1, we provide the quantitative results for calibration accuracy, by com-

puting errors in intrinsics and PaI. For the DIAC obtained from Kruppa’s equations, we

extract camera intrinsics using Choleskey decomposition, whereas the PaI is obtained

linearly using the DAQ projection equation. Tab. 1 shows that our method is very com-

petitive in terms of accuracy and generally faster in terms of speed when compared

to global methods without outliers. Note that there exists no method which is globally

optimal as well as robust to outliers for the task at hand.

In Tab. 2, more experiments with real data in the presence of outliers is provided.

Here, we report the number of image pairs processed, and the number inlier pairs de-
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tected by our method. In the same table, inliers detected by Mendonça-Cipolla method,

for the same inlier threshold, is also provide for comparison, along with two other meth-

ods discussed later in this paper. For all four methods, their run time is also reported.

Although the compared methods of Tab. 2 are faster, they are only locally optimal and

thus do not always provide the globally optimal solutions. As expected, our method

consistently detects more (or equal) number of inliers than Mendonça-Cipolla method.

To qualitatively evaluate our calibration results, we provided our estimated intrinsics to

the calibrated reconstruction framework of [42], whose dense reconstruction is shown

in Fig 2 (right). The reconstructions for two more datasets obtained via projective-to-

metric upgrade using our method are shown in Fig. 3. Figs. 2 and 3 demonstrate that

our estimated inlier set provides meaningful metric reconstruction. This also ensures

that the obtained inliers are indeed true inliers. Unfortunately, 3D models for all dataset

of Tab. 2 are not available to compute the 3D RMS error.

Dataset Method ∆f ∆uv ∆s ∆π∞ Time(s) 3D err.

Practical [8] 0.0117 0.0149 0.0037 0.0080 0.36 0.0003
Stratified [9] 0.0777 0.0969 0.0125 0.0455 388.24 0.0083

Fountain Rank-3 Direct [11] 0.0100 0.0147 0.0044 0.0075 5.75 0.0003
(11-views) LMI Direct [12] 0.0506 0.0269 0.0024 0.0199 156.88 0.0018

Kruppa (ours) 2.93e-05 0.0069 3.23e-05 0.0009 1.88 0.0001
Modulus (ours) 0.0368 0.0085 0.0033 0.0033 13.71 0.0012

Practical [8] 0.0017 0.0113 0.0068 0.0006 0.36 0.0004
Stratified [9] 0.7231 0.4462 0.3232 0.0960 380.72 0.0432

Herz-jesu Rank-3 Direct [11] 0.0026 0.0096 0.0069 0.0008 1 6.54 0.0003
(8-views) LMI Direct [12] 0.0138 0.0086 0.005 0.005 115.61 0.0008

Kruppa (ours) 4.46e-05 0.0069 3.40e-05 0.0003 0.53 0.0004
Modulus (ours) 0.0103 0.0070 0.0047 0.0009 52.12 0.0003

Table 1. Our method vs. one local [8] and three global [9, 11, 12] autocalibration methods. Two

real datasets without outliers. Outlier-free data is necessary for [8], [9], [11] and [12].

Fig. 3. Sample image and two views of 3D reconstruction of Cherubim (left) and Vercingetorix

(right) obtained via projective-to-metric upgrade using our method with Kruppa’s equations.

6.2 Modulus Constraints

Similar to the case of Kruppa’s equations, we also monitored the optimistic/pessimistic

inliers as well as the remaining volume/node with the evolution of the BnB search. As

expected, we observed that the Algorithm 2 starts rejecting outliers efficiently only after
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a few iterations of BnB. This is attributed to the weaker initial bounds on PaI, and the

higher degree of polynomials of Modulus constraints. For an example experiment, the

convergence graph and node/volume information is shown in Fig 4.
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Fig. 4. Convergence graph (left) and remaining nodes/volume during BnB search (middle). Time

taken for increasing % of outliers and fixed inliers (right). Our method with Modulus constraints.

In Fig 4, we also show the time taken for our method for Modulus constraints, for

a fixed number of inlier image pairs and increasing number of outliers. To test the ro-

bustness, we varied the number of outliers up to 90% and compared the results against

an in-house RANSAC method. Every iteration of the RANSAC, (i) randomly generates

a PaI hypothesis within the initial interval of consideration; (ii) selects best three mod-

ulus constraint polynomials for given hypothesis (based on their residuals) and locally

refines the hypothesis similarly for (8); (iii) collects the consensus among all the poly-

nomials using the refined hypothesis. The maximum number of iterations for RANSAC

is chosen such that it takes about the same time as our method. Fig. 5 (left) shows that

our method consistently detects 8 inliers for all the experiments, while RANSAC fails

to detect number of correct inliers, starting from 40% of outliers. The numbers of in-

liers reported are true-positive inliers. Our method does not detect any false positive

inlier. In rest of the plots of Fig. 5, we show errors in focal length (second from left),

PaI (third from left), and 3D reconstruction (right). Using the estimated PaI, we linearly

solve the DAQ projection equation for DIAC, under the assumption of constant intrin-

sics. If the obtained DIAC is far from being a positive definite matrix, the intrinsics

cannot be recovered. We consider such cases as calibration failure. The Missing entries

for RANSAC in Fig. 5 refer to such failures.

Our results for Modulus constraints are also compared to a direct method from [12]

and a stratified method from [9], in Tab. 1 alongside with our results for Kruppa’s equa-

tions. Note that both of our methods perform better than [12] and [9], in terms of time

as well as accuracy. In Tab. 2, time and inliers detected by our method with Modulus

constraints are provided. In the same table, inliers detected by RANSAC, for the same

inlier threshold, is also provide for comparison.

From our experiments, we observed that the reconstruction obtained form [32] pre-

serves a unique PaI valid for most of the views. However, the projection matrices do

not really respect the constraint of constant intrinsics. This is not really surprising since

cameras are allowed (or even expected) to have different intrinsics, during reconstruc-

tion. This makes the camera calibration with constant intrinsics assumption a difficult

problem, since many polynomials derived from Kruppa’s equations are not satisfied

anymore. This can be observed in Table 2, from the difference between detected inliers

for Kruppa and Modulus methods.



14 Danda P. Paudel and Luc V. Gool

Kruppa (ours) Mendonça-Cipolla Modulus (ours) Modulus-RANSAC
Dataset N Inliers Time(s) Inliers Time(s) Inliers Time(s) Inliers Time(s)

CherubColmap 20 9 28.76 3 0.49 20 118.51 7 76.92

Courtyard 43 11 81.51 11 0.36 43 29.06 43 0.92

Dino4983 11 8 104.55 6 1.02 11 65.98 11 3.09

DinoColmap 11 8 135.65 4 0.32 11 21.97 11 3.33

House 8 7 22.73 2 0.35 8 387.59 8 7.61

Vercingetorix 22 11 50.02 7 0.79 21 262.43 18 75.34

Watertower 36 22 70.81 22 0.28 36 342.44 36 25.80

Table 2. Real data with ourliers. Total number of image pairs processed (N), number of inliers

detected, and time take for our method with Kruppa’s equations, Mendonça-Cipolla [14], our

method with Modulus constraints, and a in-house RANSAC on Modulus constraints.
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Fig. 5. Global vs. RANSAC with outliers. Left to right: number of detected inliers; focal length

error; plane-at-infinity error; 3D reconstruction error. Experiments with Modulus constraints.

Our experiments highlight the robustness of our method, which is also the main

focus of this paper. The scaling of our method with image pairs and outliers can be seen

in Fig. 1 and Fig. 4. Since the algorithm explores the parameters space, the performance

depends upon dimensionality of the problem, number of measurements, outlier ratio,

and the initial bound gap of the parameters. Therefore, a trade-off between them is

necessary for a better scaling.

7 Conclusion

In this paper, we presented a generic framework of consensus maximization for poly-

nomials. The proposed framework was applied to obtain the consensus among polyno-

mials parameterized by DIAC or PaI, which appear during camera autocalibration. We

showed with several experiments that our algorithm can calibrate cameras even when an

overwhelmingly high number of camera motions are incorrectly estimated. Moreover,

the proposed method not only detects the inlier/outlier camera motions correctly, but

also results accurate estimation of DIAC and PaI, when searched with the polynomials

derived from Kruppa’s equations or Modulus constraints. Our framework has potential

to be applied in may other Computer Vision problems.
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