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Abstract. We propose a general formulation, called Multi-X, for multi-class

multi-instance model fitting – the problem of interpreting the input data as a mix-

ture of noisy observations originating from multiple instances of multiple classes.

We extend the commonly used α-expansion-based technique with a new move in

the label space. The move replaces a set of labels with the corresponding density

mode in the model parameter domain, thus achieving fast and robust optimiza-

tion. Key optimization parameters like the bandwidth of the mode seeking are

set automatically within the algorithm. Considering that a group of outliers may

form spatially coherent structures in the data, we propose a cross-validation-based

technique removing statistically insignificant instances. Multi-X outperforms sig-

nificantly the state-of-the-art on publicly available datasets for diverse problems:

multiple plane and rigid motion detection; motion segmentation; simultaneous

plane and cylinder fitting; circle and line fitting.
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1 Introduction

In multi-class fitting, the input data is interpreted as a mixture of noisy observations

originating from multiple instances of multiple model classes, e.g. k lines and l circles

in 2D edge maps, k planes and l cylinders in 3D data, multiple homographies or funda-

mental matrices from correspondences from a non-rigid scene (see Fig. 1). Robustness

is achieved by considering assignment to an outlier class.

Fig. 1: Multi-class multi-instance fitting examples. Results on simultaneous plane and

cylinder (1st), line and circle fitting (2nd), motion (3rd) and plane segmentation (4th).
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Multi-model fitting has been studied since the early sixties, the Hough-transform [1,

2] being the first popular method for extracting multiple instances of a single class [3–

6]. A widely used approach for finding a single instance is RANSAC [7] which alter-

nates two steps: the generation of instance hypotheses and their validation. However,

extending RANSAC to the multi-instance case has had limited success. Sequential

RANSAC detects instance one after another in a greedy manner, removing their in-

liers [8, 9]. In this approach, data points are assigned to the first instance, typically the

one with the largest support for which they cannot be deemed outliers, rather than to

the best instance. MultiRANSAC [10] forms compound hypothesis about n instances.

Besides requiring the number n of the instances to be known a priori, the approach in-

creases the size of the minimum sample and thus the number of hypotheses that have to

be validated.

Most recent approaches [11–15] focus on the single class case: finding multiple

instances of the same model class. A popular group of methods [16, 11, 17–19] adopts

a two step process: initialization by RANSAC-like instance generation followed by a

point-to-instance assignment optimization by energy minimization using graph labeling

techniques [20]. Another group of methods uses preference analysis, introduced by

RHA [21], which is based on the distribution of residuals of individual data points with

respect to the instances [12, 13, 15].

The multiple instance multiple class case considers fitting of instances that are

not necessarily of the same class. This generalization has received much less attention

than the single-class case. To our knowledge, the last significant contribution is that of

Stricker and Leonardis [22] who search for multiple parametric models simultaneously

by minimizing description length using Tabu search. Preference-based methods [12–14]

are not directly applicable to the problem since after calculating the preference vectors

(or sets), using class-specific distances (or preferences) is not addressed, the type of the

distance is thus not maintained. Consequently, instances with ”fuzzy” classes, e.g. half

line half circle, may emerge.

The proposed Multi-X method finds multiple instances of multiple model classes

drawing on progress in energy minimization extended with a new move in the label

space: replacement of a set of labels with the corresponding density mode in the model

parameter domain. Mode seeking significantly reduces the label space, thus speeding

up the energy minimization, and it overcomes the problem of multiple instances with

similar parameters, a weakness of state-of-the-art single-class approaches. The assign-

ment of data to instances of different model classes is handled by the introduction of

class-specific distance functions. Multi-X can also be seen as an extension or general-

ization of the Hough transform: (i) it finds modes of the parameter space density without

creating an accumulator and locating local maxima there, which is prohibitive in high

dimensional spaces, (ii) it handles multiple classes – running Hough transform for each

model type in parallel or sequentially cannot easily handle competition for data points,

and (iii) the ability to model spatial coherence of inliers and to consider higher-order

geometric priors is added.

Most recent papers [12, 14, 23] report results tuned for each test case separately. The

results are impressive, but input-specific tuning, i.e. semi-automatic operation with mul-

tiple passes, severely restricts possible applications. We propose an adaptive parameter
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setting strategy within the algorithm, allowing the user to run Multi-X as a black box

on a range of problems with no need to set any parameters. Considering that outliers

may form structures in the input, as a post-processing step, a cross-validation-based

technique removes insignificant instances.

The contributions of the paper are: (i) A general formulation is proposed for multi-

class multi-instance model fitting which, to the best of our knowledge, has not been

investigated before. (ii) The commonly used energy minimizing technique, introduced

by PEARL [11], is extended with a new move in the label space: replacing a set of

labels with the corresponding density mode in the model parameter domain. Benefiting

from this move, the minimization is speeded up, terminates with lower energy and the

estimated model parameters are more accurate. (iii) The proposed pipeline combines

state-of-the-art techniques, such as energy-minimization, median-based mode-seeking,

cross-validation, to achieve results superior to the recent multi-model fitting algorithms

both in terms of accuracy and processing time. Proposing automatic setting for the key

optimization parameters, the method is applicable to various real world problems.

2 Multi-Class Formulation

Before presenting the general definition, let us consider a few examples of multi-instance

fitting: to find a pair of line instances h1, h2 ∈ Hl interpreting a set of 2D points

P ⊆ R
2. Line class Hl is the space of lines Hl = {(θl, φl, τl), θl = [α c]T} equipped

with a distance function φl(θl, p) = | cos(α)x + sin(α)y + c| (p = [x y]T ∈ P)

and a function τl(p1, ..., pml
) = θl for estimating θl from ml ∈ N data points. An-

other simple example is the fitting n circle instances h1, h2, · · · , hn ∈ Hc to the same

data. The circle class Hc = {(θc, φc, τc), θc = [cx cy r]T} is the space of circles,

φc(θc, p) = |r−
√

(cx − x)2 + (cy − y)2| is a distance function and τc(p1, ..., pmc
) =

θc is an estimator. Multi-line fitting is the problem of finding multiple line instances

{h1, h2, ...} ⊆ Hl, while the multi-class case is extracting a subset H ⊆ H∀, where

H∀ = Hl ∪ Hc ∪ H. ∪ · · · . The set H∀ is the space of all classes, e.g. line and circle.

The formulation includes the outlier class Ho = {(θo, φo, τo), θo = ∅} where each in-

stance has constant but possibly different distance to all points φo(θo, p) = k, k ∈ R
+

and τo(p1, ..., pmo
) = ∅. Note that considering multiple outlier classes allows interpre-

tation of outliers originating from different sources.

Definition 1 (Multi-Class Model) The multi-class model is a space H∀ =
⋃
Hi, where

Hi = {(θi, φi, τi) | di ∈ N, θi ∈ R
di , φi ∈ P × R

di → R, τi : P
∗ → R

di} is a single

class, P is the set of data points, di is the dimension of parameter vector θi, φi is the

distance function and τi is the estimator of the ith class.

The objective of multi-instance multi-class model fitting is to determine a set of

instances H ⊆ H∀ and labeling L ∈ P → H assigning each point p ∈ P to an instance

h ∈ H minimizing energy E. We adopt energy

E(L) = Ed(L) + wgEg(L) + wcEc(L) (1)
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to measure the quality of the fitting, wherewg andwc are weights balancing the different

terms described bellow, and Ed, Ec and Eg are the data, complexity terms, and the one

considering geometric priors, e.g. spatial coherence or perpendicularity, respectively.

Data term Ed : (P → H) → R is defined in most energy minimization approaches as

Ed(L) =
∑

p∈P

φL(p)(θL(p), p), (2)

penalizing inaccuracies induced by the point-to-instance assignment, where φL(p) is the

distance function of hL(p).

Geometric prior term Eg considers spatial coherence of the data points, adopted

from [11], and possibly higher order geometric terms [17], e.g. perpendicularity of in-

stances. The term favoring spatial coherence, i.e. close points more likely belong to the

same instance, is defined as

Eg(L) : (P → H) → R =
∑

(p,q)∈N

wpqJL(p) 6= L(q)K, (3)

where N are the edges of a predefined neighborhood-graph, the Iverson bracket J.K
equals to one if the condition inside holds and zero otherwise, and wpq is a pairwise

weighting term. In this paper, wpq equals to one. For problems, where it is required to

consider higher-order geometric terms, e.g. to find three perpendicular planes, Eg can

be replaced with the energy term proposed in [17].

A regularization of the number of instances is proposed by Delong et al. [24] as a

label count penaltyEc(L) : (P → H) → R = |L(P)|,where L(P) is the set of distinct

labels of labeling function L. To handle multi-class models which might have different

costs on the basis of the model class, we thus propose the following definition:

Definition 2 (Weighted Multi-Class Model) The weighted multi-class model is a space

Ĥ∀ =
⋃
Ĥi, where Ĥi = {(θi, φi, τi, ψi) | di ∈ N, θi ∈ R

di , φi ∈ P × R
di → R, τi :

P∗ → R
di , ψi ∈ R} is a weighted class, P is the set of data points, di is the dimension

of parameter vector θi, φi is the distance function, τi is the estimator, and ψi is the

weight of the ith class.

The term controlling the number of instances is

Êc(L) =
∑

l∈L(P)

ψl, (4)

instead of Ec, where ψl is the weight of the weighted multi-class model referred by

label l. Eqs. 2, 3, 4 lead to overall energy Ê(L) = Ed(L) + wgEg(L) + wcÊc(L).

3 Replacing Label Sets

For the optimization of the previously described energy, we build on and extend the

PEARL algorithm [11]. PEARL generates a set of initial instances applying a RANSAC-

like randomized sampling technique, then alternates two steps until convergence:
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(1) Application of α-expansion [25] to obtain labeling L minimizing overall energy Ê
w.r.t. the current instance set.

(2) Re-estimation of the parameter vector θ of each model instance in H w.r.t. L.

In the PEARL formulation, the only way to remove a label, i.e. to discard an instance,

is to assign it to no data points. Experiments show that (i) this removal process is of-

ten unable to delete instances having similar parameters, (ii) and makes the estimation

sensitive to the choice of label cost wc. We thus propose a new move in the label space:

replacing a set of labels with the density mode in the model parameter domain.

Multi-model fitting techniques based on energy-minimization usually generate a

high number of instances H ⊆ H∀ randomly as a first step [11, 17] (|H| ≫ |Hreal|,
where Hreal is the ground truth instance set). Therefore, the presence of many similar

instances is typical. We assume, and experimentally validate, that many points support-

ing the sought instances in Hreal are often assigned in the initialization to a number of

instances in H with similar parameters. The cluster around the ground truth instances in

the model parameter domain can be replaced with the modes of the density (see Fig. 2).
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Fig. 2: (Left) Three lines each generating 100 points with zero-mean Gaussian noise

added, plus 50 outliers. (Right) 1000 lines generated from random point pairs, the

ground truth instance parameters (red dots) and the modes (green) provided by Mean-

Shift shown in the model parameter domain: α angle – vertical, offset – horizontal axis.

Given a mode-seeking function Θ : H∗
∀
→ H∗

∀
, e.g. Mean-Shift [26], which obtains

the density modes of input instance set Hi in the ith iteration. The proposed move is as

Hi+1 :=

{
Θ(Hi) if E(LΘ(Hi)) ≤ E(Li),

Hi otherwise,
(5)

where Li is the labeling in the ith iteration and LΘ(Hi) is the optimal labeling which

minimizes the energy w.r.t. to instance set Θ(Hi). It can be easily seen, that Eq. 5 does

not break the convergence since it replaces the instances, i.e. the labels, if and only if

the energy does not increase. Note that clusters with cardinality one – modes supported

by a single instance – can be considered as outliers and removed. This step reduces the

label space and speeds up the process.
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4 Multi-X

The proposed approach, called Multi-X, combining PEARL, multi-class models and the

proposed label replacement move, is summarized in Alg. 1. Next, each step is described.

Algorithm 1 Multi-X

Input: P – data points

Output: H∗ – model instances, L∗ – labeling

1: H0 := InstanceGeneration(P ); i := 1;

2: repeat

3: Hi := ModeSeeking(Hi−1); ⊲ by Median-Shift

4: Li := Labeling(Hi, P ); ⊲ by α-expansion

5: Hi := ModelFitting(Hi, Li, P ); ⊲ by Weiszfeld

6: i := i+ 1;

7: until !Convergence(Hi, Li)

8: H∗ := Hi−1, L∗ := Li−1;

9: H∗, L∗ := ModelValidation(H∗, L∗) ⊲ Alg. 2

1. Instance generation step generates a set of initial instances before the alternating

optimization is applied. Reflecting the assumption that the data points are spatially co-

herent, we use the guided sampling of NAPSAC [27]. This approach first selects a

random point, then the remaining ones are chosen from the neighborhood of the se-

lected point. The same neighborhood is used as for the spatial coherence term in the

α-expansion. Note that this step can easily be replaced by e.g. PROSAC [28] for prob-

lems where the spatial coherence does not hold or favors degenerate estimates, e.g. in

fundamental matrix estimation.

2. Mode-Seeking is applied in the model parameter domain. Suppose that a set of in-

stances H is given. Since the number of instances in the solution – the modes in the

parameter domain – is unknown, a suitable choice for mode-seeking is the Mean-Shift

algorithm [26] or one of its variants. In preliminary experiments, the most robust choice

was the Median-Shift [29] using Weiszfeld- [30] or Tukey-medians [31]. There was no

significant difference, but Tukey-median was slightly faster to compute. In contrast to

Mean-Shift, it does not generate new elements in the vector space since it always re-

turn an element of the input set. With the Tukey-medians as modes, it is more robust

than Mean-Shift [29]. However, we replaced Locality Sensitive Hashing [32] with Fast

Approximated Nearest Neighbors [33] to achieve higher speed.

Reflecting the fact that a general instance-to-instance distance is needed, we repre-

sent instances by point sets, e.g. a line by two points and a homography by four corre-

spondences, and define the instance-to-instance distance as the Hausdorff distance [34]

of the point sets. Even though it yields slightly more parameters than the minimal rep-

resentation, thus making Median-Shift a bit slower, it is always available as it is used to

define spatial neighborhood of points. Another motivation for representing by points is

the fact that having a non-homogeneous representation, e.g. a line described by angle
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and offset, leads to anisotropic distance functions along the axes, thus complicating the

distance calculation in the mode-seeking.

There are many point sets defining an instance and a canonical point set representa-

tion is needed. For lines, the nearest point to the origin is used and a point on the line at a

fixed distance from it. For a homography H, the four points are H[0, 0, 1]T, H[1, 0, 1]T,

H[0, 1, 1]T, and H[1, 1, 1]T. The matching step is excluded from the Hausdorff distance,

thus speeding up the distance calculation significantly.1

The application of Median-ShiftΘmed never increases the number of instances |Hi|:
|Θmed(Hi)| ≤ |Hi|. The equality is achieved if and only if the distance between every

instance pair is greater than the bandwidth. Note that for each distinct model class,

Median-Shift has to be applied separately. According to our experience, applying this

label replacement move in the first iteration does not make the estimation less accurate

but speeds it up significantly even if the energy slightly increases.

3. Labeling assigns points to model instances obtained in the previous step. A suitable

choice for such task is α-expansion [25], since it handles an arbitrary number of labels.

Given Hi and an initial labeling Li−1 in the ith iteration, labeling Li is estimated using

α-expansion minimizing energy Ê. Note that L0 is determined by α-expansion in the

first step. The number of the model instances |Hi| is fixed during this step and the

energy must decreases: Ê(Li,Hi) ≤ Ê(Li−1,Hi). To reduce the sensitivity on the

outlier threshold (as it was shown for the single-instance case in [35]), the distance

function of each class is included into a Gaussian-kernel.

4. Model Fitting re-estimates the instance parameters w.r.t. the assigned points. The

obtained instance set Hi is re-fitted using the labeling provided by α-expansion. The

number of the model instances |Hi| is constant.L2 fitting is an appropriate choice, since

combined with the labeling step, it can be considered as truncated L2 norm.

The overall energy Ê can only decrease or stay constant during this step since it

consists of three terms: (1) Ed – the sum of the assignment costs minimized, (2) Eg – a

function of the labeling Li, fixed in this step and (3) Êc – which depends on |Hi| so Êc

remains the same. Thus

Ê(Li,Hi+1) ≤ Ê(Li,Hi). (6)

5. Model Validation considers that a group of outliers may form spatially coherent

structures in the data. We propose a post-processing step to remove statistically in-

significant models using cross-validation. The algorithm, summarized in Alg. 2, selects

a minimal subset t times from the inlier points I . In each iteration, an instance is esti-

mated from the selected points and its distance to each point is computed. The original

instance is considered stable if the mean of the distances is lower than threshold γ. Note

that γ is the outlier threshold used in the previous sections. Automatic parameter set-

ting is crucial for Multi-X to be applicable to various real world tasks without requiring

the user to set most of the parameters manually. To avoid manual bandwidth selection

for mode-seeking, we adopted the automatic procedure proposed in [36] which sets the

bandwidth ǫi of the ith instance to the distance of the instance and its kth neighbor.

Thus each instance has its own bandwidth set automatically on the basis of the input.

1 Details on the choice of model representation are submitted in the supplementary material.
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Algorithm 2 Model Validation.

Input: I – inlier points, t – trial number,

γ – outlier threshold ⊲ default t = 100
Output: R ∈ {true, false} – response

1: D̂ := 0
2: for i := 1 to t do

3: MSS := SelectMinimalSubset(I)

4: H := ModelEstimation(MSS)

5: D̂ := D̂+ MeanDistanceFromPoints(H , I) /t

6: R := D̂ < γ

Label cost wc is set automatically using the approach proposed in [17] as follows:

wc = m log(|P|)/hmax, where m is the size of the minimal sample to estimate the

current model, |P| is the point number and hmax is the maximum expected number of

instances in the data. Note that this cost is not required to be high since mode-seeking

successfully suppresses instances having similar parameters. The objective of introduc-

ing a label cost is to remove model instances with weak supports. In practice, this means

that the choice of hmax is not restrictive.

Experiments show that the choice of the number of initial instances does not af-

fect the outcome of Multi-X significantly. In our experiments, the number of instances

generated was twice the number of the input points.

Spatial coherence weightwg value 0.3 performed well in the experiments. The com-

mon problem-specific outlier thresholds which led to the most accurate results was:

homographies (2.4 pixels), fundamental matrices (2.0 pixels), lines and circles (2.0
pixels), rigid motions (2.5), planes and cylinders (10 cm).

5 Experimental Results

First we compare Multi-X with PEARL [11] combined with the label cost of [24].

Then the performance of Multi-X applied to the following Computer Vision problems

is reported: 2D geometric primitive fitting, 3D plane and cylinder fitting to LIDAR point

clouds, multiple homography fitting, two-view and video motion segmentation.

Comparison of PEARL and Multi-X. In a test designed to show the effect of the

proposed label move, model validation was not applied and both methods used the same

algorithmic components described in the previous section. A synthetic environment

consisting of three 2D lines, each sampled at 100 random locations, was created. Then

200 outliers, i.e. random points, were generated. Finally, zero-mean Gaussian noise was

added to the point coordinates with 3.0 pixel standard deviation.

The left column of Fig. 3a shows the probability of returning an instance number for

Multi-X (top-left) and PEARL (bottom-left) as the function of the initial instance num-

ber (horizontal axis; ratio w.r.t. to the input point number; calculated from 1000 runs on

each). The numbers next to the vertical axis are the numbers of returned instances. The

curve on their right shows the probability (∈ [0, 1]) of returning them. For example, the
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red curve of PEARL (top-left) on the right of number 3 is close to the 0.1 probability,

while for Multi-X (bottom-left), it is approximately 0.6. Therefore, Multi-X returns the

desired number of instances (remember that the ground truth number is 3) in ≈60% of

the cases if as many instances are given as points. PEARL achieved ≈10%. The pro-

cessing times (top-right), and convergence energies (bottom-right) are also reported.

The standard deviation of the zero-mean Gaussian-noise added to the point coordinates

is 20 pixels. Reflecting the fact that the noise σ is usually not known in real applications,

we set the outlier threshold to 6.0 pixels. The maximum model number of the label cost

was set to the ground truth value, hmax = 3, to demonstrate that suppressing instances

only with label cost penalties is not sufficient even with the proper parameters. It can

be seen that Multi-X more likely returns the ground truth number of models, both its

processing time and convergence energy are superior to that of PEARL.
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(a) Increasing instance number. Zero-mean

Gaussian noise with σ = 20 pixels added to

the point coordinates. (Left) the probability of

returning 0, ..., 7 instances (vertical axis) for

PEARL (top) and Multi-X (bottom) plotted as

the function of the ratio of the initial instance

number and the point number (horizonal axis).

(Right): the processing time in seconds and

convergence energy.
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(b) Increasing noise. The number of initial in-

stances generated is twice the point number.

(Left): the probability of returning instance

numbers 0, ..., 7 (vertical axis) for PEARL (top)

and Multi-X (bottom) plotted as the function of

the noise σ (horizonal axis). (Right): the pro-

cessing time in seconds and convergence en-

ergy.

Fig. 3: Comparison of PEARL and Multi-X. Three random lines sampled at 100 lo-

cations, plus 200 outliers. Parameters of both methods are: hmax = 3, and the outlier

threshold is (a) 6 and (b) 3 pixels.

For Fig. 3b, the number of the generated instances was set to twice the point number

and the threshold to 3 pixels. Each reported property is plotted as the function of the

noise σ added to the point coordinates. The same trend can be seen as in Fig. 3a: Multi-

X is less sensitive to the noise than PEARL. It more often returns the desired number

of instances, its processing time and convergence energy are lower.

Synthetic multi-class fitting. In this paragraph, Multi-X is compared with state-of-the-

art multi-model fitting techniques on synthetically generated scenes (see Fig. 4) consist-
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ing of 2D geometric entities, i.e. lines, parabolas and circles. Each entity was sampled

at 100 points and the outlier ratio was 0.33 in all scenes, i.e. 50 outliers were gener-

ated for every 100 inliers. For plots (a-c), the task was to find the generated parabolas,

lines and circles. For (d), three types of circles were generated: r1 = 200, r2 = 100
and r3 = 50. Different radii were considered as different class. The objective of (d)

was slightly different than that of (a-c): to find circles with r = 200 and r = 100 (±5
pixels), without applying a post-processing step to remove circles with different radii.

Therefore, other circles were considered degenerate, and thus dropped, in the initial in-

stance generation step of all compared methods. Those methods are PEARL [16, 11],

(a) (b) (c) (d)

Fig. 4: Estimating 2D geometric classes: lines, parabolas, and circles with radii in given

range (a-c) and with fixed radii of 100 and 200 (d); in (d) the small circles are thus struc-

tured outliers. Data: 100 points, plus 50 outliers per instance. The Multi-X assignment

to instances is color-coded. Multi-X produces zero false negatives (FN) and a single

false positive (FP), in (c) (purple points). See Table 1 for results – competing methods

have higher FP and FN rates.

PEARL [11] T-Linkage [12] RPA [13] Multi-X

Fig. 4 Point # Inst. # ME FP FN T ME FP FN T ME FP FN T ME FP FN T

(a) 450 926 10.6 0 0 88.2 9.9 0 0 19.5 23.6 0 1 61.1 9.8 0 0 4.1

(b) 450 926 2.3 0 0 283.5 6.4 0 0 24.5 4.2 0 0 221.7 2.3 0 0 4.6

(c) 750 8 275 16.4 2 0 1186.5 33.2 2 3 172.4 27.2 1 2 460.8 9.7 1 0 7.1

(d) 750 7 792 28.4 4 0 5.3 16.1 1 1 45.3 27.3 0 2 100.4 8.7 0 0 2.4

Table 1: Estimating 2D geometric classes: lines, parabolas, and circles. Misclassifica-

tion errors (ME, in %), number of false positive (FP), false negative (FN) instances, and

the processing time (T, in seconds) on the scenes of Fig. 4. Point (#) and initial instance

(Inst. #) numbers are shown in the 2nd and 3rd columns. PEARL, Multi-X used fixed,

and T-Linkage, RPA per-problem tuned parameters.

T-Linkage [12]2 and RPA [13]3 since they can be considered as the state-of-the-art and

2 http://www.diegm.uniud.it/fusiello/demo/jlk/
3 http://www.diegm.uniud.it/fusiello/demo/rpa/
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their implementations are available. PEARL and Multi-X used a fixed setting. Since

neither RPA nor T-Linkage are applicable to the multi-class problem, we applied each

of them sequentially in all possible ways (e.g. lines first, then circles and parabolas) and

selected the best solution. In contrast to PEARL and Multi-X, we tuned the thresholds

of RPA and T-Linkage for each problem separately to achieve the best results.

The number of points (Point #), the initial instance number (Inst. #) and fitting

results on the problems of Fig. 4, i.e. misclassification error (ME), number false positive

(FP) and false negative (FN) instances, are reported in Table 1. The initial instance

numbers were calculated by the well-known formula, proposed for RANSAC, from the

ground truth inlier ratios requiring 99% confidence. It can be seen that even though the

per-problem tuning of RPA and T-Linkage, both PEARL and Multi-X outperformed

them for this multi-class problem. Also, Multi-X results are superior to that of PEARL

with significant improvement in processing time.

(a) AdelaideRMF (1-2) and Multi-H (3-4) ex-

amples. Colors indicate the planes Multi-X as-

signed points to.

(b) AdelaideRMF (1-2) and Hopkins (3-4) ex-

amples. Color indicates the motion Multi-X as-

signed a point to.

Fig. 5: Two-view geometry fitting. First images of the pairs.

Multiple homography fitting is evaluated on the AdelaideRMF homography dataset [37]

used in most recent publications (see Fig.5a for examples). AdelaideRMF consists of 19
image pairs of different resolutions with ground truth point correspondences assigned

to planes (homographies). To generate initial model instances the technique proposed

by Barath et al. [19] is applied: a single homography is estimated for each correspon-

dence using the point locations together with the related local affine transformations.

Table 2 reports the results of PEARL [25], FLOSS [38], T-Linkage [12], ARJMC [39],

RCMSA [18], J-Linkage [15], and Multi-X. To allow comparison with the state-of-the-

art, all methods, including Multi-X, are tuned separately for each test and only the same

6 image pairs are used as in [12].

Results using a fixed parameter setting are reported in Table 3 (results, except that of

Multi-X, copied from [13]). Multi-X achieves the lowest errors. Compared to results in

Table 2 for parameters hand-tuned for each problem, the errors are significantly higher,
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but automatic parameter setting is the only possibility in many applications. Moreover,

per-image-tuning leads to overfitting.

Plane # PEARL [11] FLOSS [38] T-Lnkg [12] ARJMC [39] RCMSA [18] J-Lnkg [15] Multi-X

(1) 4 4.02 4.16 4.02 6.48 5.90 5.07 3.75

(2) 6 18.18 18.18 18.17 21.49 17.95 18.33 4.46

(3) 2 5.49 5.91 5.06 5.91 7.17 9.25 0.00

(4) 3 5.39 5.39 3.73 8.81 5.81 3.73 0.00

(5) 2 1.58 1.85 0.26 1.85 2.11 0.27 0.00

(6) 2 0.80 0.80 0.40 0.80 0.80 0.84 0.00

Avg. 5.91 6.05 5.30 7.56 6.62 6.25 1.37

Med. 4.71 4.78 3.87 6.20 5.86 4.40 0.00

Table 2: Misclassification error (%) for the two-view plane segmentation on Ade-

laideRMF test pairs: (1) johnsonna, (2) johnsonnb, (3) ladysymon, (4) neem, (5)

oldclassicswing, (6) sene.

Two-view motion segmentation is evaluated on the AdelaideRMF motion dataset con-

sisting of 21 image pairs of different sizes and the ground truth – correspondences as-

signed to their motion clusters.

Fig. 5b presents example image pairs from the AdelaideRMF motion datasets parti-

tioned by Multi-X. Different motion clusters are denoted by color. Table 4 shows com-

parison with state-of-the-art methods when all methods are tuned separately for each

test case. Results are the average and minimum misclassification errors (in percentage)

of ten runs. All results except that of Multi-X are copied from [23]. For Table 5, all

methods use fixed parameters. For both test types, Multi-X achieved higher accuracy

than the other methods.

T-Lnkg [12] RCMSA [18] RPA [13] Multi-H [19] Multi-X

Avg. 44.68 23.17 15.71 14.35 9.72

Med. 44.49 24.53 15.89 9.56 2.49

Table 3: Misclassification errors (%, average and median) for two-view plane segmen-

tation on all the 19 pairs from AdelaideRMF test pairs using fixed parameters.

Simultaneous plane and cylinder fitting is evaluated on LIDAR point cloud data (see

Fig. 6). The annotated database consists of traffic signs, balusters and the neighboring

point clouds truncated by a 3-meter-radius cylinder parallel to the vertical axis. Points

were manually assigned to signs (planes) and balusters (cylinders). Multi-X is compared

with the same methods as in the line and circle fitting section. PEARL and Multi-X fit

cylinders and planes simultaneously while T-Linkage and RPA sequentially. Table 6

reports that Multi-X is the most accurate in all test cases except one.

Video motion segmentation is evaluated on 51 videos of the Hopkins dataset [43].

Motion segmentation in video sequences is the retrieval of sets of points undergoing

rigid motions contained in a dynamic scene captured by a moving camera. It can be
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KF [40] RCG [41] T-Lnkg [12] AKSWH [42] MSH [23] Multi-X

Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min.

(1) 8.42 4.23 13.43 9.52 5.63 2.46 4.72 2.11 3.80 2.11 3.45 1.41

(2) 12.53 2.81 13.35 10.92 5.62 4.82 7.23 4.02 3.21 1.61 2.27 0.40

(3) 14.83 4.13 12.60 8.07 4.96 1.32 5.45 1.42 2.69 0.83 1.45 0.41

(4) 13.78 5.10 9.94 3.96 7.32 3.54 7.01 5.18 3.72 1.22 0.61 0.30

(5) 16.87 14.55 26.51 19.54 4.42 4.00 9.04 8.43 6.63 4.55 5.24 1.80

(6) 16.06 14.29 16.87 14.36 1.93 1.16 8.54 4.99 1.54 1.16 0.62 0.00

(7) 33.43 21.30 26.39 20.43 1.06 0.86 7.39 3.41 1.74 0.43 5.32 0.00

(8) 31.07 22.94 37.95 20.80 3.11 3.00 14.95 13.15 4.28 3.57 2.63 1.52

Table 4: Misclassification errors (%) for two-view motion segmentation on the Ade-

laideRMF dataset. All the methods were tuned separately for each video by the

authors. Tested image pairs: (1) cubechips, (2) cubetoy, (3) breadcube, (4)

gamebiscuit, (5) breadtoycar, (6) biscuitbookbox, (7) breadcubechips, (8)

cubebreadtoychips.

RPA [13] RCMSA [18] T-Lnkg [12] AKSWH [42] Multi-X

Avg. 5.62 9.71 43.83 12.59 2.97

Med. 4.58 8.48 39.42 11.57 0.00

Table 5: Misclassification errors (%, average and median) for two-view motion segmen-

tation on all the 21 pairs from the AdelaideRMF dataset using fixed parameters.

considered as a subspace segmentation under the assumption of affine cameras. For

affine cameras, all feature trajectories associated with a single moving object lie in a

4D linear subspace in R
2F , where F is the number of frames [43].

Table 7 shows that Multi-X outperforms the state-of-the-art: SSC [44], T-Linkage [12],

RPA [13], Grdy-RansaCov [14], ILP-RansaCov [14], and J-Linkage [15]. Results, ex-

cept for Multi-X, are copied from [14]. Fig. 5b shows two frames of the tested videos.

Fig. 6: Results of simultaneous plane and cylinder fitting to LIDAR point cloud in two

scenes. Segmented scenes visualized from different viewpoints. There is only one cylin-

der on the two scenes: the pole of the traffic sign on the top. Color indicates the instance

Multi-X assigned a point to.
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(1) (2) (3) (4) (5) (6) (7)

PEARL [11] 10.63 10.88 37.34 38.13 17.20 17.35 6.12

T-Lnkg [12] 57.46 41.79 52.97 38.91 51.83 61.77 12.49

RPA [13] 46.83 53.39 61.64 41.41 53.34 51.21 80.45

Multi-X 8.89 4.72 2.84 19.38 16.83 21.72 5.72

Table 6: Misclassification error (%) of simultaneous plane and cylinder fitting to LIDAR

data. See Fig. 6 for examples.

SSC [44] T-Lnkg [12] RPA [13] Grdy-RC [14] ILP-RC [14] J-Lnkg [15] Multi-X

Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

(1) 0.06 0.00 1.31 0.00 7.48 0.00 7.48 0.00 0.54 0.00 1.75 0.00 0.09 0.00

(2) 0.76 0.00 0.48 0.19 28.65 0.00 28.65 1.53 0.35 0.19 1.58 0.34 0.32 0.00

(3) 3.95 0.00 6.47 2.38 8.75 2.44 8.75 0.20 2.40 1.30 5.32 1.30 1.06 0.00

(4) 2.13 2.13 5.32 5.32 14.89 9.11 14.89 14.89 2.13 2.13 6.91 6.91 1.06 0.16

(5) 1.08 0.00 2.47 0.00 10.91 0.00 10.91 0.00 0.98 0.00 2.70 0.00 0.16 0.00

Table 7: Misclassification errors (%, average and median) for multi-motion detection

on 51 videos of Hopkins dataset: (1) Traffic2 – 2 motions, 31 videos, (2) Traffic3

– 3 motions, 7 videos, (3) Others2 – 2 motions, 11 videos, (4) Others3 – 3 motions,

2 videos, (5) All – 51 videos.

6 Conclusion

A novel multi-class multi-instance model fitting method has been proposed. It extends

an energy minimization approach with a new move in the label space: replacing a set

of labels corresponding to model instances by the mode of the density in the model

parameter domain. Most of its key parameters are set adaptively making it applicable

as a black box on a range of problems. Multi-X outperforms the state-of-the-art in

multiple homography, rigid motion, simultaneous plane and cylinder fitting; motion

segmentation; and 2D edge interpretation (circle and line fitting). Multi-X runs in time

approximately linear in the number of data points, it is an order of magnitude faster

than available implementations of commonly used methods.4

Limitations. The proposed formulation assumes “non-overlapping” instances, i.e.

no shared support, a point can be assigned to a single instance only. Thus, for exam-

ple, the problem of simultaneously finding a fundamental matrix F and homographies

consistent with it is not covered by the formulation. The problem of fitting hierarchical

models is complex, an instance can be supported by different classes, e.g. F by k planes

or 7 points; or a rectangle may be supported by line segments as well as points. Defini-

tion of all the cost functions and the optimization procedure is beyond the scope of this

work.
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