
TBN: Convolutional Neural Network with

Ternary Inputs and Binary Weights

Diwen Wan1,2, Fumin Shen1⋆, Li Liu2, Fan Zhu2, Jie Qin3, Ling Shao2, and
Heng Tao Shen1

1 Center for Future Media and School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

2 Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
3 Computer Vision Lab, ETH Zurich, Switzerland

Abstract. Despite the remarkable success of Convolutional Neural Net-
works (CNNs) on generalized visual tasks, high computational and mem-
ory costs restrict their comprehensive applications on consumer electron-
ics (e.g., portable or smart wearable devices). Recent advancements in
binarized networks have demonstrated progress on reducing computa-
tional and memory costs, however, they suffer from significant perfor-
mance degradation comparing to their full-precision counterparts. Thus,
a highly-economical yet effective CNN that is authentically applicable
to consumer electronics is at urgent need. In this work, we propose a
Ternary-Binary Network (TBN), which provides an efficient approxima-
tion to standard CNNs. Based on an accelerated ternary-binary ma-
trix multiplication, TBN replaces the arithmetical operations in stan-
dard CNNs with efficient XOR, AND and bitcount operations, and
thus provides an optimal tradeoff between memory, efficiency and per-
formance. TBN demonstrates its consistent effectiveness when applied
to various CNN architectures (e.g., AlexNet and ResNet) on multiple
datasets of different scales, and provides ∼ 32× memory savings and
40× faster convolutional operations. Meanwhile, TBN can outperform
XNOR-Network by up to 5.5% (top-1 accuracy) on the ImageNet classi-
fication task, and up to 4.4% (mAP score) on the PASCAL VOC object
detection task.

Keywords: CNN, TBN, Acceleration, Compression, Binary operation

1 Introduction

Along with the overwhelming success of deep learning, convolutional neural net-
works (CNNs) have demonstrated their capabilities in various computer vision
tasks [8,13,14,18,29,31,37–39,41,43,45–47,50]. Effective CNNs normally contain
millions of weight parameters, and require billions of high precision operations
to be performed for a single classification task. Consequently, either training
a CNN model with large-scale data or deploying a CNN model for real-time

⋆ Corresponding author: Fumin Shen

2 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

1.1, 2.2, …,3.3
-0.5,0.6, …,1.3

Full-precision input

3.1 4.1 5.9...

Full-precision weights

2.6

-1, 0, 1,…,1,0,-1
1,-1,0,…,1,-1,0

Ternary input

+α -α +α...

Binary weights with scaling factors

-α

1, 0, -1, …, 1, -1
0, 1, -1, …, -1, 0
1, 1, -1, …, 0, 1
-1, -1, 0, …, 1, -1

-α,+α,-α,…,+α,-α
+α,-α,-α,…,-α,+α
+α,-α,+α,..,+α,-α
-α,+α,-α,…,-α,+α

Ternary matrix

im2col

im2col

Binary matrix

1.2, 3.4,…,5.6
-1, 0.4,…,-2.9

1.7, -2,…, 0.6
3.1, 1.5,…,2.7

Matrix
multiplication

AND,XOR,bitcount

Full-precision result

5,2.0,…,1.3
1.4,-4,…,1.3
1.0,2.5,…,-1

The product of
convolution layer
 (full-precision)

col2im

f ternary

sign

-1, 0, 1, -1, …,0, -1, 0, 1

-α,+α,-α,+α,…,+α,-α,+α

Ternary vector

Binary vector with scaling factor

1.2
Dot product

Accelerate dot product by binary operations

result

Proposed TBN

TBConvolution

+ +

+

+

⋰⋰ ⋰⋰
⋰ ⋰

⋰ ⋰

⋰⋮ ⋮ ⋮ ⋰
⋰

Fig. 1. The illustration of TBN, which is an efficient variation of convolutional neural
networks. The weight filters of TBN have binary values and its inputs contain ternary
values. The binary operations is used to accelerate the convolution operation. Our
TBN is not only efficient in terms of memory and computation but also has good
performance. This helps to use CNNs on resource-limited portable devices.

prediction task has rigid hardware demands (such as GPUs and TPUs) for the
overheads in both storage and computing. However, such rigid hardware de-
mands restrict CNNs’ comprehensive applications on consumer electronics, such
as virtual reality (VR), augmented reality (AR), smart wearable devices and
self-driving cars. Significant research efforts have been paid on how to reduce
the computational and memory costs of CNNs. Existing CNN lightweighting
techniques include pruning [16, 17, 54], quantization [5, 15, 35, 36, 48, 55, 58], fac-
torization [2, 21,23,26,30,52,57], network binarization [7, 42], distilling [19] and
others [10, 56]. Since network binarization can lower 32-bit full-precision values
down to 1-bit binary values and allow efficient convolution operations, it has the
most potentials in lightweighting the network for practical usages on portable
devices. Recent progresses in binarized CNNs [7, 42] have provided evidences of
successfully reducing the computational and memory costs with the binary re-
placement. In CNNs, two types of values can be binarized: 1) network weights
in the convolutional layers and the fully-connected layers, and 2) input signals
to the convolutional layers and the fully-connected layers. Binarizing the net-
work weights can directly result in ∼ 32× memory saving over the real-valued
counterparts, and meanwhile bring ∼ 2× computational efficiency by avoiding
the multiplication operation in convolutions. On the other hand, simultaneously
binarizing both weights and the input signals can result in 58× computational
efficiency by replacing the arithmetical operations in convolutions with XNOR
and bitcount operations. Despite the significant cost reduction, noticeable ac-
curacy degradation of the binarized CNNs introduced new performance issues
for practical usages. Undoubtedly, such performance degradation is due to the

TBN 3

quantization errors when brutally binarizing real-values in both network weights
and layer-wise inputs.

In this work, we aim to improve the performance of binarized CNNs with
ternary inputs to the convolutional and fully-connected layers. The ternary in-
puts constrain input signal values into −1, 0, and 1, and can essentially reduce
the quantization error when binarizing full-precision input signals. By incor-
porating ternary layer-wise inputs with binary network weights, we propose a
Ternary-Binary Network (TBN) that provides an optimal tradeoff between the
performance and computational efficiency. The illustration of the pipeline of pro-
posed TBN approach can be found in Fig. 1. In addition, an efficient threshold-
based approximated solution is introduced to minimize the quantization error
between the full-precision network weights and the binary weights along with a
scaling factor, and an accelerated ternary-binary dot product method is intro-
duced using simple bitwise operations (i.e., XOR and AND) and the bitcount
operation. Specifically, TBN can provide∼ 32×memory saving and 40× speedup
over its real-valued CNN counterparts. Comparing to XNOR-Network [42], with
an identical memory cost and slightly sacrificed efficiency, TBN can outperform
XNOR-Network on both image classification task and object detection task. The
main contributions of this paper can be summarized as follows:

– We propose a Ternary-Binary Network, which for the first time elegantly
incorporates the ternary layer-wise inputs with binary weights and provides
an optimal tradeoff between the performance and computational efficiency.

– We introduce an accelerated ternary-binary dot product method that em-
ploys simple XOR, AND and bitcount operations. As a result, TBN can
provide ∼ 32× memory saving and 40× speedup over its real-valued CNN
counterparts.

– By incorporating with various CNN architectures (including LeNet-5, VGG-

7, AlexNet, ResNet-18 and ResNet-34), TBN can achieve the promising
image classification and object detection performance on multiple datasets
among quantized neural networks. Particularly, TBN outperforms XNOR-
Network [42] by up to 5.5% (top-1 accuracy) on the ImageNet classification
task, and up to 4.4% (mAP score) on the PASCAL VOC object detection
task.

2 Related Work

Abundant research efforts have been paid on how to lightweight standard full-
precision CNNs through quantization. In this section, we list some recent rele-
vant work along such a research line, and discuss how they relate to the proposed
TBN. We roughly divide these work into the following two categories: 1) quan-
tized weights with real-value inputs and 2) quantized weights and inputs.

Quantized Weights with Real-Value Inputs: Networks with quantized
weights can result in a direct reduction in network sizes, however, the efficiency

4 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

Table 1. Comparisons between TBN and its closely related methods in terms of input
and weight types, numbers of multiply-accumulate operations (MACs) and binary op-
erations required by matrix multiplication, speedup ratios and operation types. More
detailed statistical analysis can be found in Section 4.3.

Methods Inputs Weights MACs Binary operations Speedup Operations

Full-precision R R n×m× q 0 1× +, x

Q
u
a
n
ti
ze

W
ei
g
h
ts

TTQ [60] R {−αn, 0 + αp} n×m× q 0 ∼ 2× +,-
TWN [33] R {−α, 0,−α} n×m× q 0 ∼ 2× +,-
BWN [42] R {−α,+α} n×m× q 0 ∼ 2× +,-
BC [6] R {−1,+1} n×m× q 0 ∼ 2× +,-

Q
u
a
n
ti
ze

In
p
u
ts

a
n
d
W
ei
g
h
ts

TNN [1] {−1, 0, 1} {−1, 0, 1} 0 8× n×m× q 15× AND, bitcount
GXNOR [9] {−1, 0, 1} {−1, 0, 1} 0 5× n×m× q 15× AND, bitcount
BNN [7] {−1,+1} {−1,+1} 0 2× n×m× q 64× XOR, bitcount

XNOR [42] {−β,+β} {−α,+α} 2× n×m 2× n×m× q 58× XOR, bitcount
HORQ [34] {−β,+β} × 2 {−α,+α} 4× n×m 4× n×m× q 29× XOR, bitcount
DoReFa∗ [59] {0, 1} × 2 {0, 1} 0 4× n×m× q 30× AND, bitcount

TBN {−1, 0,+1} {−α,+α} n×m 3× n×m× q 40× AND, XOR, bitcount

*We adopt DoReFa Network with 1-bit weight, 2-bit activation.

improvement, which is achieved by avoiding the multiplication operation, is lim-
ited if the input signals remain real-valued. The most basic forms of weight
quantization either directly constrains the weight values into the binary space
{−1, 1}, e.g., BinaryConnect (BC [6]), or constrain the weight values along with
a scaling factor {−α, α}, e.g., Binary-Weight-Networks(BWNs [42]). Beyond the
binary weights, ternary weights are introduced to reduce the quantization error.
Ternary Weight Networks (TWNs [33]) quantize the weights into {−α, 0, α},
while Trained Ternary Quantization (TTQ [60]) achieves better performance by
constraining the weights to asymmetric ternary values {−αn, 0, αp}.

Quantized Weights and Inputs: Comparing to the storage, the computa-
tional efficiency is a more critical demand for real-time predictions in resource-
constrained environments. Since quantizing input signals can potentially replace
arithmetical operations with XNOR and bitcount operations and improve the
efficiency, networks that attempted to quantize both network weights and layer-
wise input signals are proposed. Expectation BackPropagation (EBP [49]), Bi-
narized Neural Networks (BNNs [7]), Bitwise Neural Networks [25] and XNOR-
Networks [42] have explored to brutally binarize input signals in addition to the
binary weights. Targeting at lessening the quantization errors, high-order quanti-
zation methods, e.g., High-Order Residual Quantization (HORQ [34]), multi-bit
quantization methods, e.g., DoReFa-Net [59] and ternary quantization methods,
e.g., Gated XNOR Networks (GXNOR [9]).

The proposed TBN also falls in the type of networks that quantize both
weights and inputs. Comparing to aforementioned work that aim to compensate
the effectiveness of binarized networks with degraded efficiency, TBN for the first
time provides an elegant integration between the binary weights and ternary
inputs, so as to provide an optimal tradeoff between memory, efficiency and

TBN 5

performance. We illustrate comparisons of these measurements between TBN
and aforementioned method in Table 1.

There are other kinds of methods to compress and accelerate CNNs, e.g .
pretrained based methods, distillation and so on. Fixed-point Factorized Net-
works (FFN [53]) decomposed the weight matrix of pretrained models into two
ternary matrices and a non-negative diagonal matrix so that both the computa-
tional complexity and the storage requirement of networks are reduced. Ternary
neural networks (TNNs [1]) used the teacher networks containing high-precision
weights and ternary inputs, to teach the student networks which both weights
and inputs are ternary-valued. LBCNN [24] used pre-defined binary convolu-
tional filters to reduce the number of learnable parameters.

3 Ternary-Binary Networks

In this section, we introduce our proposed TBN in detail. Firstly, we present
some notations and show how to implement the convolutional operation by ma-
trix multiplication. Secondly, we explain how to obtain the binary weights and
ternary inputs by approximating their full-precision counterparts. Given the bi-
nary weights and ternary inputs, we further illustrate the multiplication between
them. Finally, the whole training procedure of our TBN is elaborated.

3.1 Convolution with Matrix Multiplication

A convolutional layer can be represented by a triplet ⟨I,W, ∗⟩. I ∈ R
c×hin×win

is the input tensor, where (c, hin, win) represents channels, heights and widths,
respectively. W ∈ R

c×h×w = Wi(i=1,...,n) is the i
th weight filter in W, where n is

the number of weight filters, and (h,w) represents the filter size. ∗ represents the
convolution operation between I and W and the product is C ∈ R

n×hout×wout ,
where hout = (hin + 2 · p − w)/s + 1 and wout = (win + 2 · p − w)/s + 1, and
(p, s) represent the pad and stride parameter respectively. We refer to the inner
product layer as the convolution layer, which is same to XNOR-Network [42].

As adopted in the popular Caffe package [22], we use matrix multiplication to
implement the convolution layer ⟨I,W, ∗⟩. Specifically, by flattening each filter
W to a row vector of shape 1 × q (q = c × h × w), the set of weight filters W

can be reshaped to a matrix W̃ ∈ R
n×q. We use function ten2mat to represent

this step, i.e. W̃ = ten2mat(W). Similarly, transforming each sub-tensor in
the input tensor I with the same size as the filter to a column vector, we get
the matrix Ĩ ∈ R

q×m(m = hout × wout) after accumulating these vectors, i.e.

Ĩ = ten2mat(I). Let we denote the product of the matrix multiplication with

Ĩ and W̃ as its operands as C̃ ∈ R
n×m, i.e. C̃ = W̃Ĩ. Finally, we reshape the

matrix C̃ back to output tensor C. This step is the the inverse operation of
ten2mat, denoted it by mat2ten. This is the entire process of implementing a
convolutional layer using matrix multiplication, which can be summarized as:

C = mat2ten(W̃Ĩ),W̃ = ten2mat(W), Ĩ = ten2mat(I) (1)

6 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

3.2 Binary Weights

Following XNOR-Networks [42], we adopt the similar paradigm to estimate the
binary weights. Concretely, we use a binary filter B ∈ {−1,+1}c×h×w and a
scaling factor α ∈ R

+ to approximate a full-precision weight filter W ∈ W
such that W ≈ αB. The optimal approximation is obtained by solving the
optimization problem of minimizing the ℓ2 distance between full-precision and
binary weight filters, i.e. α,B = argmin

α,B

∥W − αB∥22. The optimal solution is

B = sign(W), α =
1

c× h× w
∥W∥1. (2)

The binary weight filters obtained by this simple strategy can reduce the storage
of a convolutional layer by ∼ 32× compared to single-precision filters.

3.3 Ternary Inputs

In XNOR-Networks, the strategy to quantize the inputs of a convolutional layer
to binary become quite complex. They taken the sign of input values to get binary
input and calculated a matrix A by averaging the absolute values of elements in

the input I across the channels, i.e., A =
∑

∥I:,:,i∥
c

. Then the scaling matrix K
for the input was obtained by convolving the matrix A by a kernel k ∈ R

h×w

with kij = 1
h×w

. However, the scaling factors of the binary inputs does not
affect the performance of XNOR-Networks. Indicated by this, we abandon the
scaling factors for the inputs to reduce unnecessary computation. On the other
hand, TWN [33] with ternary weights has better performance than BWN [42]
with binary weights. In order to improve the performance of binarized CNNs, we
quantize each element of input tensor I into a ternary value {−1, 0, 1} without
the scaling factor.

We propose following threshold-based ternary function fternary to obtain
ternary input tensor T ∈ {−1, 0,+1}c×hin×win :

Ti = fternary(Ii, ∆) =





+1, Ii > ∆;
0, |Ii| ≤ ∆;

−1, Ii < −∆;
(3)

where ∆ ∈ R
+ is an positive threshold parameter. The value of ∆ controls the

numbers of -1, 0 and 1 in T, which will highly affect the final accuracy. When
∆ is equal to 0, the function fternary degenerates to the sign function. So that,
a same performance as XNOR-Network will be obtained. However, when ∆ is
too big, each element in T will be zero according to Equation (3), and we will
get the worst result. Thus, an appropriate value of ∆ is necessary. However, it
is hard to obtain optimal ∆. Similar to TWN [33], we use following formula to
calculate ∆:

∆ = δ × E(|I|) ≈
δ

c× hin × win

∥I∥1 (4)

where δ is a constant factor for all layers. We set δ = 0.4 in the experiments.
By this means, it is fast and easy to quantize a real-valued input tensor into a
ternary architecture.

TBN 7

Algorithm 1 TBConvolution(W, I)

Input: A set of weight filters W ∈ R
n×c×h×w, the input tensor I ∈ R

c×hin×win and
convolutional parameters including the stride s and pad p

Output: The convolutional result C ∈ R
n×hout×wout

1: for ith filter W in W do
2: α = 1

c×h×w
∥W∥1 // calculate the scaling factor w.r.t. Eq. (2)

3: B = sign(W) // get the binary filter w.r.t. Eq. (2)

4: W ≈ αB
5: end for
6: ∆ = δ

c×hin×win
∥I∥1 // calculate the threshold parameter w.r.t. Eq. (4)

7: T = fternary(I, ∆) // get the ternary input w.r.t. Eq. (3)

8: W̃ = ten2mat(W) and Ĩ = ten2mat(T) // covert weights and input tensors

to matrices w.r.t. Eq. (1)

9: C̃ = W̃Ĩ // accelerate matrix multiplication w.r.t. Eq. (5)

10: C = mat2ten(C̃) // convert the product to the tensor w.r.t. Eq. (1)

3.4 Ternary-Binary Dot Product

Once we obtain the binary weights and ternary inputs, how to achieve effec-
tive ternary-binary multiplication is our next target. As we know, the matrix
multiplication is based on the dot product. That is to say, the entry Cij ∈ C̃

is the result of dot product between the ith row of weight matrix W̃ and the

jth column of input matrix Ĩ. I.e., Cij = W̃i · Ĩj where · is the dot prod-

uct, W̃i = [W̃i1, . . . , W̃iq] and Ĩj = [Ĩ1j , . . . , Ĩqj]. We can use binary operations
to accelerate the dot product with a binary vector and a ternary vector as its

operands. Let us use αb to denote the binary filterB corresponding to W̃i, where

W̃i ≈ αb, b = ten2mat(B) ∈ {−1, 1}q and α is the scaling factor. Similarly, the

ternary vector t ∈ {−1, 0,+1}q corresponds to Ĩj . So we can implement this
special dot product efficiently with the following formula:

Cij = α(ct − 2× bitcount((b XOR t
′) AND t

′′)), (5)

where we decompose vector t into two vector t
′ ∈ {−1, 1}q and t

′′ ∈ {0, 1}q as
follows:

t
′
i =

{
1, ti = 1
−1, otherwise

, t
′′
i =

{
0, ti = 0
1, otherwise

, i = 1, . . . , q (6)

so that ti = t′i× t′′i . ct = bitcount(t′′) = ∥t∥1 is a constant which is independent
of b. In Equation (5), the operation bitcount return the count of number of
bits set to 1 and XOR,AND are the logic operations. It should be noted that
1 in b, t′, t′′ is considered to be logic true, and the others (i.e. 0, -1) are regard
as logic false. So we can implement the efficient matrix multiplication.

3.5 Training TBN

With above strategies, we can get an very fast convolutional layer with ternary
inputs and binary weights (TBConvolution), and Algorithm 1 demonstrates how

8 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

Algorithm 2 Training an L-layer TBN

Input: A minibatch of inputs and targets (X0,Y), cost function C(Y, Ŷ), current

weights Ŵ(t) = {Wl(t)}
L
l=1, and current learning rate η(t)

Output: updated weight Ŵ(t+ 1) and updated learning rate η(t+ 1)
1: for l = 1 to L do
2: Il = BatchNormalization(Xl−1)
3: Xl = TBConvolution(Wl(t), Il)
4: end for
5: ∂C

∂W
= Backward(∂C

∂XL
, Ŵ(t)) // standard backward propagation with Eq. (7)

6: Ŵ(t+ 1) = UpdateParameters(Ŵ(t), ∂C
∂W

, η(t)) // Any optimizer (e.g . ADAM)

7: η(t + 1) = UpdateLearningRate(η(t), t) // Any learning rate scheduling

function

Note: Wl here is identical to the lth layer TBN weights W (mentioned in Section 3.1)

TBConvolution works. In the TBN, there is a batch normalization layer [20]
to normalize the inputs before each TBConvolution, so that the number of -
1, 0, 1 for ternary inputs is more balanced. A non-linear activation layer (e.g .
ReLU) after each TBConvolution is optional because ternary quantization can
play the role of the non-linear activation function. Other layers (e.g . pooling and
dropout) can be inserted after TBConvolution (or before the batch normalization
layer). To train TBN, the full-precision gradient is adopted and we use straight-
through estimator [4] to compute the gradient of binary and ternary quantization
function, i.e.

∂sign

∂r
=

∂fternary
∂r

= 1|r|<1 =

{
1, |r| < 1
0, otherwise

(7)

Similar to the strategy used in BNN [7], XNOR-Networks [42] and HORQ [34],
we do not apply our approach on the first or last layer. Algorithm 2 demonstrates
the procedure for training an L-layer Ternary-Binary Network. We can use any
optimizer (e.g . ADAM [27]) to train TBNs.

4 Experiments

As the proposed TBN uses ternary inputs with binary weights to simultane-
ously reduce the approximation error caused by quantization but maintain the
reasonable performance to some extend, the goal of our experiments is mainly
to answer the following three research questions:

– Q1: How does TBN perform compared to other quantized/squeezed deep
networks (i.e., XNOR-Networks, HORQ) in different tasks (i.e., image recog-
nition and object detection)?

– Q2: How fast can TBN accelerate compared to other quantized networks?
– Q3: How is the performance of TBN influenced by different components

(e.g . the sparsity of ternary inputs, the usage of activation functions)?

TBN 9

Table 2. The classification accuracies of different CNNs trained with various models
on the four datasets. Both “top-1/top-5” accuracies are presented for the ImageNet
dataset. “-” indicates that the results are not provided in their original papers.

Dataset MNIST CIFAR-10 SVHN ImageNet ImageNet ImageNet
Models LeNet-5 VGG-7 VGG-7 AlexNet ResNet-18 ResNet-34

Full-precision 99.48 92.88 97.68 57.2/80.2 69.3/89.2 73.3/91.4

Q
u
a
n
ti
ze

W
ei
g
h
ts

BC [6] 98.82 91.73 97.85 35.5/61.0 - -
BWN [42] 99.38 92.58 97.46 56.8/79.4 60.8/83.0 -
TWN [33] 99.38 92.56 - 54.5/76.8 65.3/86.2 -
TTQ [60] - - - 57.5/79.7 66.6/87.2 -

O
th
er

M
et
h
o
d
s FFN [53] - - - 55.5/79.0 - -

LCNN-fast [3] - - - 44.3/68.7 51.8/76.8 -
LCNN-accurate [3] - - - 55.1/78.1 62.2/84.6 -

LBCNN [24] 99.51 92.66 94.50 54.9/- - -

Q
u
a
n
ti
ze

In
p
u
ts

a
n
d
W
ei
g
h
ts

TNN [1] 98.33 87.89 97.27 - - -
GXNOR [9] 99.32 92.50 97.37 - - -
BNN [7] 98.60 89.85 97.47 27.9/50.42 - -

DoReFa-Net∗ [59] - - 97.6 47.7/- - -
BinaryNet [51] - - - 46.6/71.1 - -
HORQ [34] 99.38 91.18 97.41 - 55.9/78.9 -

XNOR-Network [42] 99.21 90.02 96.96 44.2/69.2 51.2/73.2 55.9/79.1
TBN 99.38 90.85 97.27 49.7/74.2 55.6/79.0 58.2/81.0

*We adopt DoReFa-Net with 1-bit weight, 2-bit activation and 32-bit gradient for fair comparison.

4.1 Image Classification

Datasets and Configurations: We evaluate the performance of our proposed
approach on four different datasets, i.e. MNIST [32] , CIFAR-10 [28], SVHN [40],
ImageNet (ILSVRC2012) [44], and compare it with other methods. As previ-
ously mentioned, our TBN can accommodate any network architectures. Hence,
we performance the following evaluations with different networks on the above
datasets. Note that we adopt the Adam optimizer with Batch Normalization to
speed up the training, and ReLU is adopted as the activation function in all the
following experiments. In addition, all the deep networks used in this section are
training from the scratch.

Results on MNIST with LeNet-5: The LeNet-5 [32] architecture we used is
“32-C5 + MP2 + 64-C5 + MP2 + 512-FC + 10-FC + SVM”. It is composed of
two convolutional layers with size 5×5, a fully connected layer and a SVM classi-
fier with 10 labels. Specifically, there is no pre-processing, data-augmentation or
pre-training skills to remain the challenge. The learning rate starts at 0.001 and
is divided by 10 at epoch 15, 30, 45 with the mini-batch size 200. We report the
best accuracy on the testing set. From the results shown in Table 2, we observe
that our TBN has the same performance as HORQ but outperforms XNOR-

10 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

Fig. 2. (a) and (b) compare the top-1 and top-5 accuracies between TBN and XNOR-
Networks on AlexNet; (c) and (d) compare the top-1 and top-5 accuracies between
TBN, HORQ and XNOR-Networks on ResNet-18; (e) and (f) compare the top-1 and
top-5 accuracies between TBN and XNOR-Networks on ResNet-34.

Network by 0.17%. In fact, on the MNIST dataset, there are subtle difference
between those methods (less than 1%).

Results on CIFAR-10 with VGG-7: To train the networks on CIFAR-10
dataset, we follow the same data augmentation scheme in ResNet [18]. In de-
tail, we use the VGG inspired architecture, denoted as VGG-7, by: “2×(128-
C3)+MP2+2×(256-C3)+MP2+2×(512-C3)+MP2+1024-FC+10-FC+Softmax”,
where C3 is a 3× 3 convolutional block, MP2 is a max-pooling layer with kernel
size 2 and stride 2, and Softmax is a softmax loss layer. We train this model for
200 epochs with a mini-batch of 200. The learning rate also starts at 0.001 and
is scaled by 0.5 every 50 epochs. The results are given in Table 2. The accuracy
of our TBN on CIFAR-10 is higher than XNOR-Network’s and BNNs. However,
compared with HORQ, and GXNOR, the performance of TBN is slightly worse
since more quantization for both inputs and weights are adopted in our methods.

Results on SVHN with VGG-7: We also use VGG-7 networks for SVHN.
Because SVHN is a much larger dataset than CIFAR-10, we only train VGG-7
for 60 epochs. From, results presented in Table 2, it is easily discovered that
the performances between TBN, HORQ, XNOR-Networks, BNN, GXNOR and
TNN is almost at the same level.

Results on ImageNet with AlexNet: In this experiment, we report our
classification performance in terms of top-1 and top-5 accuracies using AlexNet.

TBN 11

Table 3. The performance (in mAP) comparison of TBN, XNOR-Networks and full-
precision CNN models for object detection. All methods are trained on the combination
of VOC2007 and VOC2012 trainval sets and tested on the VOC2007 test set.

method full-precision full-precision XNOR-Networks TBN
base network VGG-16 ResNet-34 ResNet-34 ResNet-34

Faster R-CNN 73.2 75.6 54.7 59.0
SSD 300 74.3 75.5 55.1 59.5

Specifically, AlexNet is with 5 convolutional layers and two fully-connected lay-
ers. We train the network for 100 epochs. The learning rate starts at 0.001 and
is divided by 0.1 every 25 epochs. Figures 2(a) and 2(b) demonstrate the classi-
fication accuracy for training and inference along with the training epochs. The
solid lines represent training and validation accuracy of TBN, and dashed lines
show the accuracy of XNOR-Network. The final accuracy of AlexNet is showed
in Table 2, which illustrates our TBN outperforms XNOR-Network by the large
margin (5.5% on top-1 accuracy and 5.0% on top-5 accuracy).
Results on ImageNet with ResNet: In addition to the AlexNet, we also train
two Ternary-Binary Networks for both ResNet-18 and ResNet-34 [18] architec-
tures on the ImageNet dataset.We run the training algorithm for 60 epochs with
a mini-batch size of 128. The learning rate starts at 0.001 and is scaled by 0.1 ev-
ery 20 epochs. ResNet-34 adopts the same training strategy, but is only trained
with 30 epochs in total and the learning rate is decayed every 10 epochs. Figures
2(c) and (d), and Figures 2(e) and (f) demonstrate the classification accura-
cies (top-1 and top-5) of ResNet-18 and ResNet-34 respectively, along with the
epochs for training and inference. The final results are reported in Table 2, which
show that Ternary-Binary Network is better than XNOR-Networks (ResNet-18:
by 4.4%/4.8% on top-1/top-5, ResNet-34: by 2.3%/1.9% on top-1/top-5). Mean-
while, the performance of our TBN is competitive to that of HORQ (top1: 55.6%
vs. 55.9%; top-5 79.0% vs. 78.9% on ResNet-18).

4.2 Object Detection

We also evaluate the performance of TBN on the object detection task. Vari-
ous modified network architectures are used, including Faster-RCNN [43], and
Single Shot Detector (SSD [38]). We change the base network of these architec-
tures to the TBN with ResNet-34. We compare the performance with XNOR-
Networks and full-precision networks. We evaluate all methods on the PASCAL
VOC dataset [11,12], which is a standard recognition benchmark with detection
and semantic segmentation challenges. We train our models on the combination
of VOC2007 trainval and VOC2012 trainval (16,551 images) and test on
VOC2007 test (4,952 images).

The comparison results for object detection are illustrated in Table 3. As
can be seen from the table, the models based on ResNet-34 can achieve better

12 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

performance both on Faster R-CNN and SSD. Our TBN with ResNet achieves
up to 4.4% higher than XNOR-Networks in terms of mAP, although there is a
large margin compared to full-precision networks.

4.3 Efficiency

In this section, we will illustrate the efficiency comparison between different

methods. Suppose matrix multiplication C̃ = W̃Ĩ, where W̃ ∈ R
n×q, Ĩ ∈ R

q×m

and C̃ ∈ R
n×m. To calculate C̃, there are n×m× q multiply-accumulate oper-

ations (MACs) required. If the matrix Ĩ is quantized to ternary values and the

matrix W̃ is binary-valued, matrix multiplication requires n×m multiplications
and n×m× q AND, XOR and bitcount operations respectively, according to
Equation (5). We provide a comparison between our approach and the related
works using quantized inputs and weights in Table 1. Compared with XNOR-
Networks, our approach increases n×m× q binary operations and saves n×m
MACs, while HORQ needs twice the number of MACs and binary operations as
XNOR networks.

The general computation platform (i.e., CPU, GPU, ARM) can perform an
L-bits binary operation in one clock cycle (L = 64 typical 1). Assume the ratio
between the speed of performing an L-bits binary operation and a multiply-
accumulate operation is γ, i.e.

γ =
average time required by MAC

average time required by L-bits binary operation
(8)

Therefore, the speedup ratio of Ternary-Binary Networks is:

S =
γnmq

γnm+ 3nm⌈ q

L
⌉
=

γq

γ + 3⌈ q

L
⌉

(9)

It shows that speedup ratio depends on q, L, while γ is determined by machine.
For a convolutional layer, q = c× h× w, that is to say, S is independent of the
input size. According to the speedup ratio achieved by XNOR-Network, we can
safely assume γ = 1.91. To maximize the speedup, q should be several times of
L. In Figure 3(a), we illustrate the relationship between the speedup ratio and
q, L. It shows that we can obtain higher speedup ratio by increasing q or L.

Table 1 compares the speedup ratio achieved by different methods, in which
parameters are fixed as: γ = 1.91, L = 64 and q = c × h × w = 23042. When
real-valued inputs with either binary or ternary weight, the MAC operation can
be replaced by only addition and subtraction, and achieving ∼ 2× speedup [42].
While, the methods which both weights and inputs are quantized achieve high
speedup (≥ 15×) by using binary operation. Specifically, more bits used by
weights or inputs, the lower speedup ratio is but getting the lower the approxi-
mation error. Using our approach, we gain 40× theoretical speedup ratio, which
is 11× higher than HORQ. See Supplementary Material for more details.

1
An Intel SSE(, AVX, AVX-512) instruction can perform 128(, 256, 512) bits binary operation.

2
For the majority of convolutional layer in ResNet [18] architecture, it’s kernel size is 3 × 3 and
input channel size is 256, so we fix q = 256 × 32 = 2304.

TBN 13

(a) (b) (c)

Fig. 3. (a) The relationship between speedup ratio and q under different L; (b) The
classification accuracy with varying δ in Eq. (4), i.e. sparsity of ternary inputs. The
percentage stacked histogram shows the percentage of the average number of -1, 0, 1
w.r.t. the inputs of the second convolutional layer; (c) The classification accuracy and
percentage stacked histogram w.r.t. the inputs of the third convolutional layer.

Remark. Why not use ternary weights with binary inputs: Actually,
a ternary (2-bit) weights network with binary inputs uses the same scheme as
TBN to accelerate CNN, but requires twice as much storage space as TBN. Since
TBN has higher compression rate, we choose the TBN from these two equivalent
approaches.

4.4 Analysis of TBN Components

Sparsity of Ternary Inputs: To explore the relationship between sparsity
and accuracy, we vary δ in Eq. (4) and train a Simple Network structure on
CIFAR-10: “32-C5 + MP3 + 32-C5 +MP3 + 64-C5 + AP3 + 10FC + Softmax”.
We adopt this kind of structure because of its simplicity and flexibility for the
performance comparison. The learning strategy is the same as VGG-7 in Section
4.1. The classification accuracies with different degrees of sparsities are shown in
Figure 3(b) and 3(c). As can been seen from the two figures, when δ grows from
0 (which is the case of XNOR-Networks) to 0.4, both the number of zeros and
accuracy increase accordingly. However, when δ further increases, the model
capacity is reduced and the error rate is increased quickly. Therefore, we set
δ = 0.4 in our experiments.

Effect of Activation Function: Here, we explore the influence of different ac-
tivation functions on our TBN framework. Specifically, we incorporate three non-
linear activation functions, i.e. ReLU, Sigmoind and PReLU. ‘Simple Network’
in the table indicates the simple base network architecture used in the above
paragraph. As shown in Table 4(a), the accuracy can be improved when using
the non-linear activation functions, and using PReLU could achieve the best
performance. However, the improvement is subtle, mainly because the ternary
quantization function in our TBN already plays the role of activation function.

14 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

Table 4. (a) The classification performance of TBN while using non-linear layers
with different activation functions (on the CIFAR-10 dataset). “None” denotes that we
don’t use non-linear layer; (b) The comparison of accuracies (%) on CIFAR-10 after
quantizing the inputs of first/last convolutional layers. ✓ indicates that we quantize
the first/last layers, and ✗ indicates that we use full-precision inputs and weights.

(a)

Base Networks
Non-Linear Layers

None ReLU Sigmoid PReLU

ResNet-20 81.36 82.15 79.12 84.34
VGG-7 89.49 90.85 89.78 90.10

Simple Network 75.92 81.21 78.67 81.14

(b)

First Last XNOR TBN BWN HORQ

✗ ✗ 79.11 81.21 82.66 81.12
✗ ✓ 71.64 76.88 81.86 76.64
✓ ✗ 62.85 65.57 76.61 68.69
✓ ✓ 52.41 58.86 73.66 62.55

Full-Precision 85.51

Quantizing the First/Last Layer? As shown in our framework, we avoid
the quantization step on the first and last layers of the networks. The reasons
are two-fold: Firstly, the inputs of the first layer have much fewer channels (i.e.
c = 3), thus the speedup ratio in efficiency is not considerably high. Secondly,
if the inputs of the first or last layer are quantized, the performance will drop
significantly, which can be seen from Table 4(b). Note that all the results here
are obtained based on the previously mentioned Simple Network. As we can see
from the table, the accuracies of the four networks decrease consistently by a
large margin after quantizing their first/last layers, and the performance drop is
especially obvious when the first layer is quantized.

5 Conclusion

In this paper, we for the first time incorporated binary network weights and
ternary layer-wise inputs as a lightweighted approximation to standard CNNs.
We claim the ternary inputs along with the binary weights can provide an
optimal tradeoff between memory, efficiency and performance. An accelerated
ternary-binary matrix multiplication that employs highly efficient XOR, AND
and bitcount operations was introduced in TBN, which achieved∼ 32×memory
saving and 40× speedup over its full-precision CNN counterparts. TBN demon-
strated its consistent effectiveness when applied to various CNN architectures
on multiple datasets of different scales, and it also outperformed the XNOR-
Network by up to 5.5% (top-1 accuracy) on the ImageNet classification task,
and up to 4.4% (mAP score) on the PASCAL VOC object detection task.

6 Acknowledgments

This work was supported in part by the National Natural Science Foundation of
China under Project 61502081 and Project 61632007, the Fundamental Research
Funds for the Central Universities under Project ZYGX2014Z007.

TBN 15

References

1. Alemdar, H., Leroy, V., Prost-Boucle, A., Pétrot, F.: Ternary neural networks for
resource-efficient ai applications. In: Neural Networks (IJCNN), 2017 International
Joint Conference on. pp. 2547–2554. IEEE (2017) 4, 5, 9

2. Ambai, M., Matsumoto, T., Yamashita, T., Fujiyoshi, H.: Ternary weight decom-
position and binary activation encoding for fast and compact neural network. In:
Proc. Int. Conf. Learn. Represent. (2017) 2

3. Bagherinezhad, H., Rastegari, M., Farhadi, A.: Lcnn: Lookup-based convolutional
neural network. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (2017) 9

4. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013) 8

5. Courbariaux, M., Bengio, Y., David, J.: Low precision arithmetic for deep learning.
CoRR, abs/1412.7024 4 (2014) 2

6. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural net-
works with binary weights during propagations. In: Proc. Adv. Neural Inf. Process.
Syst. pp. 3123–3131 (2015) 4, 9

7. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. In: Proc. Adv. Neural Inf. Process. Syst. pp. 4107–4115 (2016) 2, 4, 8,
9

8. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully con-
volutional networks. In: Proc. Adv. Neural Inf. Process. Syst. pp. 379–387 (2016)
1

9. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: Gated xnor networks: Deep neural net-
works with ternary weights and activations under a unified discretization frame-
work. arXiv preprint arXiv:1705.09283 (2017) 4, 9

10. Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al.: Predicting parameters in
deep learning. In: Proc. Adv. Neural Inf. Process. Syst. pp. 2148–2156 (2013) 2

11. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
11

12. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
11

13. Girshick, R.: Fast r-cnn. In: Proc. IEEE Conf. Comp. Vis. pp. 1440–1448 (2015) 1
14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-

curate object detection and semantic segmentation. In: Proc. IEEE Conf. Comp.
Vis. Patt. Recogn. pp. 580–587 (2014) 1

15. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Proc. Int. Conf. Mach. Learn. pp. 1737–1746 (2015)
2

16. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: Proc. Int. Conf.
Learn. Represent. (2016) 2

17. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Proc. Adv. Neural Inf. Process. Syst. pp. 1135–1143
(2015) 2

16 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. pp. 770–778 (2016) 1, 10, 11, 12

19. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS 2014 Deep Learning and Representation Learning Workshop (2014) 2

20. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proc. Int. Conf. Mach. Learn. pp. 448–456
(2015) 8

21. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: BMVC (2014) 2

22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014) 5

23. Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for
feedforward acceleration. arXiv preprint arXiv:1412.5474 (2014) 2

24. Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural net-
works. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (2017) 5, 9

25. Kim, M., Smaragdis, P.: Bitwise neural networks. CoRR abs/1601.06071 (2015)
4

26. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530 (2015) 2

27. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: Proc. Int.
Conf. Learn. Represent. (2015) 8

28. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009) 9

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proc. Adv. Neural Inf. Process. Syst. pp. 1097–1105
(2012) 1

30. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. In: Proc. Int.
Conf. Learn. Represent. (2015) 2

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015) 1

32. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) 9

33. Li, F., Zhang, B., Liu, B.: Ternary weight networks. In: The 1st International
Workshop on Efficient Methods for Deep Neural Networks (2016) 4, 6, 9

34. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network
acceleration via high-order residual quantization. In: Proc. IEEE Conf. Comp.
Vis. (2017) 4, 8, 9

35. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: Proc. Int. Conf. Mach. Learn. pp. 2849–2858 (2016) 2

36. Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with few
multiplications. In: Proc. Int. Conf. Learn. Represent. (2016) 2

37. Liu, L., Shao, L., Shen, F., Yu, M.: Discretely coding semantic rank orders for
image hashing. In: Proceeding of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 2862–2871 (2017) 1

38. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: Proc. Eur. Conf. Comp. Vis. pp. 21–37 (2016)
1, 11

TBN 17

39. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. pp. 3431–3440 (2015)
1

40. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS workshop on deep
learning and unsupervised feature learning. vol. 2011, p. 5 (2011) 9

41. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates.
In: Proc. Adv. Neural Inf. Process. Syst. pp. 1990–1998 (2015) 1

42. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: Proc. Eur. Conf. Comp.
Vis. (2016) 2, 3, 4, 5, 6, 8, 9, 12

43. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: Proc. Adv. Neural Inf. Process. Syst.
pp. 91–99 (2015) 1, 11

44. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. Int. J. Comp. Vis. 115(3), 211–252 (2015) 9

45. Shen, F., Gao, X., Liu, L., Yang, Y., Shen, H.T.: Deep asymmetric pairwise hashing.
In: Proceedings of the 2017 ACM on Multimedia Conference. pp. 1522–1530. ACM
(2017) 1

46. Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep
hashing with similarity-adaptive and discrete optimization. IEEE transactions on
pattern analysis and machine intelligence (2018) 1

47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Proc. Int. Conf. Learn. Represent. (2015) 1

48. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: Parameter-free
training of multilayer neural networks with continuous or discrete weights. In:
Proc. Adv. Neural Inf. Process. Syst. pp. 963–971 (2014) 2

49. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: Parameter-free
training of multilayer neural networks with continuous or discrete weights. In:
Proc. Adv. Neural Inf. Process. Syst. pp. 963–971 (2014) 4

50. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc. IEEE
Conf. Comp. Vis. Patt. Recogn. pp. 1–9 (2015) 1

51. Tang, W., Hua, G., Wang, L.: How to train a compact binary neural network with
high accuracy? In: Proc. AAAI Conf. Artif. Intell. pp. 2625–2631 (2017) 9

52. Wang, P., Cheng, J.: Accelerating convolutional neural networks for mobile appli-
cations. In: Proceedings of the 2016 ACM on Multimedia Conference. pp. 541–545.
ACM (2016) 2

53. Wang, P., Cheng, J.: Fixed-point factorized networks. In: Proc. IEEE Conf. Comp.
Vis. Patt. Recogn. (2017) 5, 9

54. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Proc. Adv. Neural Inf. Process. Syst. pp. 2074–2082 (2016) 2

55. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. pp.
4820–4828 (2016) 2

56. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. pp.
4820–4828 (2016) 2

18 D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, H. Shen

57. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks
for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10),
1943–1955 (2016) 2

58. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
Towards lossless cnns with low-precision weights. In: Proc. Int. Conf. Learn. Rep-
resent. (2017) 2

59. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. In: Proc. IEEE
Conf. Comp. Vis. Patt. Recogn. (2016) 4, 9

60. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: Proc.
Int. Conf. Learn. Represent. (2017) 4, 9

