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Abstract. We consider the problem of inferring a layered representa-
tion, its depth ordering and motion segmentation from video in which
objects may undergo 3D non-planar motion relative to the camera. We
generalize layered inference to that case and corresponding self-occlusion
phenomena. We accomplish this by introducing a flattened 3D object rep-
resentation, which is a compact representation of an object that contains
all visible portions of the object seen in the video, including parts of an
object that are self-occluded (as well as occluded) in one frame but seen
in another. We formulate the inference of such flattened representations
and motion segmentation, and derive an optimization scheme. We also
introduce a new depth ordering scheme, which is independent of lay-
ered inference and addresses the case of self-occlusion. It requires little
computation given the flattened representations. Experiments on bench-
mark datasets show the advantage of our method over existing layered
methods, which do not model 3D motion and self-occlusion.
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1 Introduction

Layered models are a powerful way to model a video sequence. Such models aim
to explain a video by decomposing it into layers, which describe the shapes and
appearances of objects, their motion, and a generative means to reconstructing
the video. They also relate objects through their occlusion relations and depth
ordering, i.e., the ordering of objects in front of each other with respect to the
given camera viewpoint. Compared to dense 3D reconstruction from monocular
video, which is valid for rigid scenes, layered approaches provide a computation-
ally efficient intermediate 2D representation of (dynamic) scenes, which is still
powerful enough for a variety of computer vision problems. Some of these prob-
lems include segmentation, motion estimation (e.g., tracking and optical flow),
and shape analysis. Since all of the aforementioned problems are coupled, layered
approaches provide a natural and principled framework to address these prob-
lems. Although such models are general in solving a variety of problems and have
been successful in these problems, existing layered approaches are fundamentally
limited as they are 2D and only model objects moving according to planar mo-
tions. Thus, they cannot cope with 3D motions such as rotation in depth and the

⋆⋆ Code available: https://github.com/donglao/layers3Dmotion
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Fig. 1. Example flattened representation of the rotating earth. The video
sequence (left) shows the rotating earth. The flattened representation reconstructed by
our algorithm is on the right. Notice that the representation compactly captures parts
of the earth that are self-occluded in some frames, but visible in others.

associated self-occlusion phenomena. Here, we define self-occlusion as the part
of a 3D object surface that is not visible, in the absence of other objects, due to
camera viewpoint. In this paper, we generalize layered models and depth order-
ing to self-occlusion generated from out-of-plane object motion and non-planar
camera viewpoint change.

Specifically, our contributions are as follows. 1. From a modeling perspective,
we introduce flattened 3D object representations (see Fig. 1), which are compact
2D representations of the radiance of 3D deforming objects. These represen-
tations aggregate parts of the 3D object radiance that are self-occluded (and
occluded by other objects) in some frames, but are visible in other frames into a
compact 2D representation. They generalize layered models to enable modeling
of 3D (non-planar) motion and corresponding self-occlusion phenomena. 2. We
derive an optimization algorithm within a variational framework for inferring the
flattened representations and segmentation whose complexity grows linearly (as
opposed to combinatorially) with the number of layers. 3. We introduce a new
global depth ordering method that treats self-occlusion, in addition to occlusion
from other objects. The algorithm requires virtually no computation given the
flattened representations and segmentation. It also allows for the depth ordering
to change with time. 4. Finally, we demonstrate the advantage of our approach
in recovering layers, depth ordering and in segmentation on benchmark datasets.

1.1 Related Work

The literature on layered models for segmentation, motion estimation and depth
ordering is extensive, and we highlight only some of the advances. Layers relate
to video segmentation and motion segmentation (e.g., [1–6]) in that layered
models provide a segmentation, and a principled means of dealing with occlusion
phenomena. We are interested in more than just segmentation, i.e., a generative
explanation of the video, which these methods do not provide. Since the problems
of segmentation, motion estimation and depth ordering are related, many layered
approaches are treated as a joint inference problem where the layers, motion and
depth ordering are solved together. As the joint inference problem is difficult
and a computationally intensive optimization procedure, early approaches (e.g.,
[7–15]) for layers employed low dimensional parametric motion models (e.g.,
translation or affine), which inherently limits them to planar motion.
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Later approaches (e.g., [16–19]) to layers model motion of layers with fully
non-parametric models based on optical flow (e.g., [20–24]), thus enabling 2D
articulated motion and deformation. [16] formulates the problem of inferring
layered representations as an extension of the classical Mumford and Shah seg-
mentation problem [25–28], which provides a principled approach to layers. In
[16] depth ordering is not formulated, but layers can still be inferred. Optimiza-
tion, based on gradient descent was employed due to the non-convexity of the
problem. While our optimization problem is similar to the framework there, their
optimization method does not allow for self-occlusion. Later advances (e.g., [17,
18]) improved the optimization in the layer and motion inference. However the
depth ordering problem, which is coupled with layered inference, is combina-
torial in the number of layers, restricting the number of layers. [29, 30] aim to
overcome the combinatorial problem by considering localized layers rather than
a full global depth ordering. Within local regions there are typically few layers
and it is feasible to solve the combinatorial problem. Further advances in opti-
mization were achieved in [19], where the expensive joint optimization problem
for segmentation, motion estimation and depth ordering are decoupled, result-
ing in less expensive optimization. There, depth ordering is solved by a convex
optimization problem based on occlusion cues. While the aforementioned lay-
ered approaches have modeled complex deformation, they are all 2D and cannot
cope with self-occlusion phenomena arising from 3D rotation in depth, which is
present in realistic scenes. Thus, segmentation could fail when objects undergo
non-planar motion. Our work extends layers to model such self-occlusion, and
our depth ordering also accounts for this phenomena. While [31, 3] does treat
self-occlusion, it only performs video segmentation not layered inference; we show
out-performance against that method in experiments in video segmentation.

A recent approach to layers [30] uses semantic segmentation in images (based
on the advances in deep learning) to improve optical flow estimation and hence
the layered inference. Although our method does not integrate semantic object
detectors, as the focus is to address self-occlusion, it does not preclude them,
and they can be used to enhance our method, for instance in the initialization.

2 Layered Segmentation With Flattened Object Models

In this section, we formulate the inference of the flattened 3D object represen-
tations, and segmentation as an optimization problem.

2.1 Energy Formulation

We denote the image sequence by {It}
T
t=1 where It : Ω → R

k (k = 3 for the color
channels), Ω ⊂ R

2 is the domain of the image, and T is the number of images.
Suppose that there are N objects (including the “background” which includes all
of the scene except the objects of interest), and denote by Ri ⊂ R

2 the domain
(shape) of the flattened 3D object representation for object i. We denote by
fi : Ri → R

k the radiance function of object i defined in the flattened object



4 D. Lao and G. Sundaramoorthi

Fig. 2. Schematic of flattened representations and generation of images.

domain. fi is a compact representation of all the appearances of the object i seen
in the image sequence. The object appearance in any image can be obtained from
the part of fi visible in that frame. We define the warps, wit : Ri → Ω, as the
mapping from the flattened representation domain of object i to frame t. These
will be diffeomorphisms (smooth and invertible maps) from the un-occluded
portion of Ri to the segmentation of object i at time t. For convenience, they
will be extended diffeomorphically to all of Ri. We denote by Vi,t : Ω → [0, 1]
the visibility functions, the relaxed indicator functions for the pixels in image t
that map to the visible portion of object i. Finally, we let R̃i,t = {Vi,t = 1} be
the domain of projected flattened object i that is visible in from t. See Figure 2.

We now define an energy to recover the flattened representation of each the
objects, i.e., fi, Ri, the warps wi,t and the visibility functions. The energy consists
of two components, Eapp, the appearance energy that is driven by the images,
and Ereg, which contain regularity terms. The main term of the appearance
energy aims to choose the flattened representations such that they can as close
as possible reconstruct each of the images It by deforming the flattened rep-
resentations by smooth warps. Thus, the appearance energy consists of a term
that warps the appearances fi into the image domains via the inverse of wit and
compares it via the squared error to the image It within R̃it, the segmentations.
The first term in the energy to be minimized is thus

Eapp =
∑

t,i

∫

R̃it

|It(x)− fi(w
−1
it (x))|2 dx−

∫

R̃it

βt(x) log pi(It(x)) dx. (1)

The second term above groups pixels by similarity to other image intensities, via
local histograms (i.e., a collection of histograms that vary with spatial location)
pi for object i. The spatially varying weight βt is small when the first term is
reliable enough to group the pixel, and small otherwise. This term is needed to
cope with noise: if a pixel back projects to a point in the scene that is only visible
in few frames, the true appearance that can be recovered is unreliable, and hence
more weight is placed on grouping the pixel based on similar intensities in the
image. The weighting function β, will be given in the optimization section, as
it will be easier to interpret there. Other terms could be used rather than the
second one, possibly integrating semantic knowledge, but we choose it for its
simplicity, as our main objective is in optimization of the first term.
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The regularity energy Ereg consists of boundary regularity of the regions
defined by the visibility functions and an area penalty on the domains of the
flattened object models, and is defined as follows:

Ereg = α
∑

i,t

Len(∂R̃i,t) + γ
∑

i

Area(Ri), (2)

where α, γ > 0 are weights, Len(∂R̃it) is the length of the boundary of R̃it, which
induces spatially regular regions in the images, and Area(Ri) is the area of the
domain of the object model. The last term, which can be thought of as a measure
of compactness of the representation, is needed so that the models are compact
as possible. Note that if that term is not included, a trivial (non-useful) solution
to the full optimization problem is to simply choose a single object model that is
a concatenation of all the images, the warps to be the identity, and the visibility
functions to be 1 everywhere, which gives Eapp = 0.

The goal is to optimize the full energy E = Eapp +Ereg, which is a joint op-
timization problem in the shapes Ri and appearances fi of the flattened objects,
the warps wit, and the visibility functions Vit.

Occlusion and Self-Occlusion: By formulating the energy with flattened ob-
ject models, we implicitly address issues of both occlusion from one object mov-
ing in front of another, and self-occlusion, which are both naturally addressed and
are not distinguished. The flattened model Ri, fi contain parts of the projected
object that are visible in one frame but not another. The occluded and self-
occluded parts of the representation in frame t are the set Ri\w

−1
it ({Vit = 1}).

Considering only the first term of Eapp, the occluded part of the Ri are the
points that map to points x in which the squared error |It(x)− fi(w

−1
it (x))|2 is

not smallest when compared to squared error from other flattened representa-
tions that map to the points x.

For the problem of flattened representation inference, distinguishing occlu-
sion and is not needed. However, we eventually want to go beyond segmentation
and obtain a depth ordering of objects, which requires distinguishing both oc-
clusion (see Section 3). This separation of occlusion and self-occlusion allows
one to see behind objects in images. See Fig. 6 where we visualize the flattened
representation minus the self-occlusion, which shows the object(s) without other
objects occluding them.

2.2 Optimization Algorithm

Due to non-convexity, our optimization algorithm will be a joint gradient de-
scent in the flattened shapes, appearances, warps, and the visibility functions.
We now show the optimization of each one of these variables, given the others
are fixed and then give the full optimization procedure at the end.

Appearance Optimization: We optimize in fi given estimates of the other
variables. Notice that fi appears only in the first term of Eapp. We can perform
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Fig. 3. Seeing Behind Occlusion from Other Objects. From top to bottom: Orig-
inal image, the flattened representation minus the self-occlusion, which removes occlu-
sion due to other objects, and the object segmentation. Video segmentation datasets
label the bottom as the segmentation, but the middle seems to be a natural object
segmentation. Which should be considered ground truth?

a change of variables of each of the integrals, and then differentiate the expression
in fi(x), and solve for the global optimum of fi, which gives that

fi(x) =

∑

t It(wit(x))Vit(wit(x))Jit(x)
∑

t Vit(wit(x))Jit(x)
, x ∈ Ri, (3)

where Jit(x) = det∇wit(x) is the determinant of the Jacobian of the warp. The
expression for fi has a natural interpretation: the appearance at x is a weighted
average of the images values at visible projections of x, i.e., wit(x), in the image
domain. The weighting is done by area distortion of the mappings.

Shape Optimization: We optimize in the shape of the flattened region Ri by
gradient descent, since the energy is non-convex in Ri. We first consider the
terms in Eapp and perform a change of variables so that the integrals are over
the domains Ri. The resulting expression fits into a region competition problem
[32], and we can use the known gradient computation there. One can show that
the gradient with respect to the boundary ∂Ri is given by

∇∂Ri
E =

∑

t

[

|Ĩit − fi|
2 − |Ĩjt − f̃j |

2 − βt log
pi(Ĩit)

pj(Ĩjt)
+ ακi

]

JitṼiNi + γNi,

(4)
where Ni is the unit outward normal to the boundary of Ri, Ĩit = It ◦ wit,
Ṽi = Vit ◦ wit, f̃j = fj ◦ w

−1
jt ◦ wit, and j, which is a function of x and t, is the

layer adjacent to layer i in It. This optimization is needed so that the size and
shape of the flattened representation can adapt to new self-occlusion discovered.
This is a major distinction over [16], which although has a similar model to ours,
by-passes this optimization and instead only optimizes the segmentation, which
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Image sequences 2D layer 3D layer

Fig. 4. Layered Inference of Rubix cube Two different video sequences (top and
bottom rows) of the same Rubix cube with different camera motion. [Last column]:
Our flattened 3D representations capture information about the 3D structure (e.g.,
connectivity between faces of the Rubix cube) and motion, and includes parts of the
object that are self-occluded. [Second last column]: Existing 2D layered models (result
from a modern implementation of [16]) cannot adapt to 3D motion and self-occlusion.

is equivalent in the case of no self-occlusion, but not otherwise. Thus, it cannot
adapt to self-occlusion. See Fig. 4.

Visibility Optimization: We optimize in the visibility functions Vit, which
form the segmentation, given the other variables. Note that the visibility func-
tions can be determined from the corresponding projected regions R̃it. We thus
compute the gradient of the energy with respect to the boundary of the projected
regions ∂R̃it. This is a standard region competition problem. One can show that
the gradient is then

∇∂R̃it
E =

∑

t

[

|It − f̂i|
2 − |It − f̂j |

2 − βt log
pi(It)

pj(It)
+ ακi

]

Ñi, x ∈ ∂R̃it (5)

where f̂i = fi(w
−1
it (x)), Ñi is the normal to ∂R̃it, and j is defined as before: it

is the layer adjacent to i in It.

Warp Optimization: We optimize in the warps wit given the other variables.
Since the energy is non-convex, we use gradient descent. To obtain smooth,
diffeomorphic warps, and robustness to local minima, we use Sobolev gradients
[33, 34]. The only term that involves the warp wit is the first term of the Eapp.
One can show that the Sobolev gradient Git with respect to wit, has a translation
component avg(Git) = avg(Fit) and a deformation component that satisfies:

{

−∆G̃it(x) = Fit(x) x ∈ wit(Ri)

∇G̃it(x) · Ñi = |It − f̂i|
2ṼiÑi x ∈ ∂wit(Ri)

, Fit = ∇f̂i[It − f̂i]
T Ṽi (6)

where ∆ denotes the Laplacian, and ∇ denotes the spatial gradient. The op-
timization involves updating the warp wit iteratively by the translation until
convergence, then one update step of wit by the deformation G̃it, and the pro-
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Algorithm 1 Layered optimization

1: Input: Initialization for the flattened representations Ri, fi
2: repeat // update the flattened representations, warps and segmentations

3: For all i and t, update wit performing gradient descent (6) until convergence
4: For all i, compute fi by (3)
5: For all i, update Ri by one step in negative gradient direction (4)
6: For all t, update the Vit by one step in negative gradient direction (5)
7: until the energy E converges

cess is iterated until convergence.

Initialization: The innovation in our method is the formulation and the opti-
mization for flattened representations and self-occlusion, and we do not focus
here on the initialization. Here we provide a simple scheme that we use in ex-
periments, unless otherwise stated. From {It}

T
t=1, we compute frame-to-frame

optical flow using [23] and then by composing flow, we obtain displacement
vt,T/2 between t and T/2. We use these as components in an edge-detector [35],
which gives the number of regions and a segmentation in frame T/2. We then
choose that segmentation as the initial flattened regions. One could use more
sophisticated strategies, for instance, by using semantic object detectors.

Overall Optimization Algorithm: The overall optimization is given by Algo-
rithm 1. Rather than evolving boundaries of regions, we evolve relaxed indicator
functions of the regions, described in Supplementary. We now specify βt in (1) as
βt(x) = [minj∼i,j=i

∑

t′ Vjt′(wjt′ ◦ w
−1
jt (x))Jjt′(w

−1
jt (x))]−1 where j ∼ i denotes

object j is adjacent to object i at x and x ∈ ∂Ri. βt is the unreliability of the
first term in Eapp, defined as follows. We compute for each j, the number of
frames t′ the point x corresponds to a point in the flattened representation j
that is visible in frame t′. To deal with distortion effects of the mapping, there
is a weighting by Jjt′ . Since the evolution depends on data from all j adjacent
to i and i, we define the unreliability βt(x) as the inverse of the least reliable
representation. Therefore, more times a point is visible, the more accurate the
appearance model will be, and the more dependence on the first term in Eapp,
and the less dependence on local histograms.

3 Depth Ordering

In this section, we show how the depth ordering of the objects in the images
can be computed from the segmentation and flattened models determined in the
previous section. In the first sub-section, we assume that the object surfaces in
3D, their mapping to the imaging plane, and the segmentation in the image are
known, and present a (trivial) algorithm to recover the depth ordering. Of course,
in our problem, the objects in 3D are not available. Thus, in the next sub-section,
we show how the previous algorithm can be used without 3D object surfaces by
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using the flattened representations and their mappings to the imaging plane as
proxies for the 3D surfaces and their mappings to the image.

3.1 Depth Ordering From 3D Object Surfaces

We first introduce notation for the object surfaces and mappings to the plane,
and then formalize self-occlusion and occlusion induced from other objects.
These concepts will be relevant to our depth ordering algorithm, which we
present following these formal concepts.

Notation and Definitions: Let O1, . . . , ON ⊂ R
3 denote N object surfaces in

the 3D world that are imaged to form the image I : Ω → R
k at a given view-

point at a given time. With abuse of notation we let Vi denote the segmentation
(points in Ω of object i) in the image I. Based on the given viewpoint, the cam-
era projection from points on the surface Oi to the imaging plane will be denoted
wOiI and w−1

OiI
will denote the inverse of the mapping. We can now provide com-

putational definitions for self-occlusion and occlusion induced by other objects,
relevant to our algorithms. The self-occlusion (formed due to the viewpoint of
the camera) is just the points of Oi (when all other objects are removed from
the scene) that are not visible from the viewpoint of the camera. wOiI(Oi) will
denote the projection of non self-occluded points on Oi. The occluded part of
object Oi induced by object Oj is w

−1
OiI

(wOiI(Oi)∩Vj). The occlusion of Oi in-
duced by other objects (denoted by Oi,occ) is just the union of the occluded parts
of Oi induced all other objects, which is given by wOiI

−1(∪j 6=i(wOiI(Oi)∩ Vj)).

Algorithm for Depth Ordering: We now present an algorithm for depth
ordering. The algorithm makes the assumption that if any part of object i is
occluded by object j, then any part of object j is not occluded by object i. This
can be formulated as

Assumption 1 For i 6= j, one of wOiI(Oi)∩Vj or wOjI(Oj)∩Vi must be empty.

Under this assumption, we can relate the depth ordering of object i and j; indeed,
Depth(i) < Depth(j) (object i is in front of object j) in case wOjI(Oj)∩Vi 6= ∅.
This naturally defines the depth ordering of each objects ranging from 1 to N .
Note that the depth ordering is not unique due to two cases, when both sets in
the assumption above are empty. First, if the projections of two objects do not
overlap (wOiI(Oi) ∩ wOjI(Oj) = ∅) then no relation can be established and the
ordering can be arbitrary. Second, if the overlapping part of the projections of
two objects are fully occluded by another object (wOiI(Oi)∩wOjI(Oj) ⊆ Vk, k 6=
i or j) then the depth relation between i and j cannot be established.

Under the previous assumption, we can derive a simple algorithm for depth
ordering. Note that by definition of depth ordering, for object i satisfyingDepth(i) =
1, we have that ∪j 6=iw

i
OI(Oi) ∩ Vj = ∅, which means that it is not occluded by

any other object. Therefore, we can recover the object with depth 1. By remov-
ing that object from the scene, we can repeat the the same test and identify the
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Algorithm 2 Depth ordering given 3D surfaces

1: Set index = 1;
2: Find i satisfying Vi = wi

OI(Oi), label Depth(i) = index;
3: For all objects j not labeled, let Vj = Vj ∪ (wj

OI(Oj) ∩ Vi);
4: index = index+ 1, go to Step 2 until all objects are labeled

object with depth 2. Continuing this way, we can recover the depth ordering of
all objects. One can effectively remove an object i from the scene in the image
by removing Vi from the segmentation in image I and then augmenting Vj by
the occluded part of object j induced by object i. Therefore we can recover the
depth ordering by Algorithm 2.

3.2 Depth Ordering From Flattened Representations

We now translate the depth ordering algorithm assuming 3D surfaces in the pre-
vious section to the case of depth ordering with flattened representations. We
define wOiRi

to be the mapping from the surface Oi to the flattened represen-
tation Ri. Ideally, wOiRi

is a one-to-one mapping, but in general it will be onto
since the video sequence from which the flattened representation is constructed
may not observe all parts of the object. By defining the mapping from the flat-
tened representation to the image as wRiI := wOiI ◦ w−1

OiR
, the definitions of

self-occlusion, occlusion induced by other objects, and the visible part of the
object can be naturally extended to the flattened representation. By noting that
w−1

OiRi
(Ri) ⊂ Oi, and under Assumption 1, we obtain the following property.

Statement 1 At least one of wRiI(Ri) ∩ Vj and wRjI(Rj) ∩ Vi must be empty.

This translates Assumption 1 to the mappings from flattened representations
to the image. This statement allows us to similarly define a depth ordering as
wRjI(Rj) ∩ Vi 6= ∅ means Depth(i) < Depth(j), as before. Therefore, we can
apply the same algorithm in the previous section with wOiI replaced by wRiI .

In theory, the mappings wRiI only map the non-self occluded part of Ri to
the image. However, in practice wRiI is computed from optical flow computation
in Section 2.2, which maps the entire flattened region Ri to the image. The
optical flow computation implicitly ignores data from the occluded (self-occluded
as well as occlusion from other objects) part of the flattened representation
through robust norms on the data fidelity, and extends the flow into occluded
parts by extrapolating the warp from the visible parts. Near the self occluding
boundary of the object, the mapping wOiI maps large surface areas to small
ones in the image so that the determinant of the Jacobian of the warp becomes
small. Since the warping wRiI from the flattened representation is a composition
with wOiI , near the self-occlusion, the map wRiI maps large areas to small areas
in the image. Since the optical flow algorithm extends the mapping near the
self-occlusion into the self-occlusion, the self-occlusion is mapped to a small area
(close to zero) in the image. Therefore, in Statement 1 rather than the condition
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Algorithm 3 Depth ordering from flattened representations

1: Set index = 1
2: i∗ = mini not labeled Area[wRiI(Ri)\ ∪j labeled Vj\Vi]
3: label Depth(i∗) = index

4: index = index+ 1, go to Step 2 until all objects are labeled

that wRjI(Rj)∩Vi = ∅ (object j is in front of object i), it is reasonable to assume
that wRjI(Rj) ∩ Vi has small area (representing the area of the mapping of the
self-occluded part of object j to Vi).

We can now extend the algorithm for depth ordering to deal with the case of
wRiI approximated with optical flow computation, based on the fact that self-
occlusions are mapped to a small region in the image. To identify the object on
top (depth ordering 1), rather than the condition wRiI(Ri)\Vi = ∅, we compute
the object i1 such that Area(wRiI(Ri)\Vi) is smallest over all i. As in the previous
algorithm, we can now remove the object with depth ordering 1, and again find
the object i2 that minimizes Area(wRiI(Ri)\Vi1\Vi) over all i 6= i1. We can
continue in this way to obtain Algorithm 3. Note that this allows one to compute
depth ordering from only a single image, which allows the depth ordering to
change with frames in a video sequence.

4 Experiments

In this section, we show the performance of our method on three standard bench-
marks, one for layered segmentation, and the others for video segmentation.

MIT Human Annotated Dataset Results: MIT Human Annotated Dataset
[36] has 10 sequences, and is used to test layered segmentation approaches and
depth ordering. Results are reported visually. Both planar and 3D motion are
present in these image sequences. We test our layered framework by using as ini-
tialization the human labeled ground truth segmentation of the first frame (not
depth ordering). Fig. 5 presents the segmentation and depth ordering results.
Our algorithm recovers the layers with high accuracy, and the depth ordering of
the layers correctly in most of the cases.

DAVIS 2016 Dataset: The DAVIS 2016 dataset [37] dataset is a dataset fo-
cusing on video object segmentation tasks. Video segmentation is one output of
our method, but our method goes further. The dataset contains 50 sequences
ranging from 25 to 100 frames. In each frame the ground truth segmentation
of the moving object versus the background is densely annotated. We run our
scheme fully automatically initialized by the method described in Section 2.2.

Coarse-to-Fine Scheme for DAVIS and FBMS-59: The initialization scheme
described in Section 2.2 often results in noisy results over time, perhaps missing
segmentations in some frames. To clean up this noise, we first run our algorithm
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Fig. 5. Segmentation and Depth ordering in MIT dataset. Multiple layers are
extracted to obtain multi-label segmentation. Based on the segmentation result and
extracted layers, Algorithm 3 is applied to compute depth ordering. In most cases the
depth ordering are inferred correctly. Note that due to the ambiguity of the depth
ordering, in some cases ground truth depth ordering does not exist. Layers in the front
are indicated by small values of depth.

with this initialization in small overlapping batches (of size 15 frames) of the
video. This fills in missing segmentations. We then run our algorithm with this
result as initialization on the whole video. This integrates coarse information
across the whole video. Finally, to obtain finer scale details, we again run our
algorithm on overlapping small batches (of size 7 frames). We iterate the last two
steps to obtain our final result. Table 1 shows the result of these stages (labeled
initialization, 1st, 2nd, 3rd, and the final result is labeled “ours”) on DAVIS.

Method Initial 1st 2nd 3rd [16] [19] [3] [38] Ours

J mean 0.491 0.571 0.644 0.673 0.615 0.514 0.625 0.625 0.683
J recall 0.575 0.629 0.745 0.766 0.715 0.581 0.743 0.700 0.777
J decay 0.097 0.050 0.064 0.069 0.041 0.127 0.110 - 0.069

F mean 0.509 0.575 0.622 0.651 0.593 0.490 0.593 0.593 0.672
F recall 0.550 0.637 0.737 0.738 0.695 0.578 0.691 0.662 0.759
F decay 0.089 0.064 0.075 0.082 0.070 0.128 0.118 - 0.082

Table 1. Evaluation of Segmentation Results on DAVIS. From left to right:
result after our initialization, result after the 1st stage of our coarse-to-fine layered
approach (see text for an explanation), result after our 2nd stage, result after our 3rd
stage of coarse-to-fine, results of competing methods, and finally our final result after
the last stage of our coarse-to-fine scheme.

Comparison on DAVIS: We compare to a modern implementation of the lay-
ered method [16], which is a equivalent to our method if the shape evolution of
the flattened representation is not performed. We also compare to [19], which
is another layered method based on motion. We also include in the comparison
non-layered approaches [3], which addresses the problem of self-occlusion in mo-
tion segmentation, and [38], which is another motion segmentation approach.
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Fig. 6. Qualitative Comparison on DAVIS. From left to right: (images 1-3): se-
quences with 3D motion inducing self-occlusion, (image 4): sequence with object color
similarity to background, and (images 5-8): sequences with occlusion by other objects.
Our layered segmentation successfully captures the object all of the sequence cases. In
(1-3) [19], a layered approach, fails due lack of 3-D motion modeling; in (4) color sim-
ilarity leads to wrong labeling in both [19, 3] due to reliance on intensity similarities.
In (5-8) [19, 3] fail due to inability to deal with objects moving behind others.

Qualitative comparison of the methods can be found in Fig. 6 and quantitative
comparison can be found in Table 1. Quantitatively, our method outperforms
all comparable motion-based approaches. Note the that the state-of-the-art ap-
proaches on this dataset use deep learning and are trained on large datasets (for
instance, Pascal), however, they only perform segmentation and do not give a
layered interpretation of the video and they are applicable to only binary seg-
mentation, and they cannot be adapted to multiple objects. Our method requires
no training data and is low-level, and comes close to the performance of these
deep learning approaches. In fact, in 15/50 sequences, our method performs the
best more than any other method.

FBMS-59 Dataset: To test our method on inferring more than two layered
representations, we test our method on the FBMS-59 Dataset, which is used for
benchmarking video segmentation algorithms. The test set of FBMS-59 contains
30 sequences with 69 labeled objects, and the the number of frames range from
19 to 800. Ground truth is given on selected frames. We compare to [3] that
is a video segmentation that handles self-occlusion but not layers (discussed in
the previous section), the layered approach [19], and other motion segmentation
approaches. Quantitative results and representative results are shown in Fig. 7.
They show that our method has the best results among these methods, and
shows a slight improvement over [3], with the additional advantage that our
method gives a layered representation, more powerful than just a segmentation.

Parameters: Our algorithm has few parameters, i.e., the parameter γ, which is
the weight on penalizing the area of the flattened representation, and α, which
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Methods F P R N

ours 76.2 90.4 65.9 28
[3] 75.9 89.8 65.8 28
[4] 74.1 86.0 65.1 23
[19] 68.3 82.4 58.4 17
[2] 66.7 74.9 60.1 20
[39] 62.0 79.6 50.7 7

Fig. 7. Results (qualitative and quantitative) and comparison on FBMS-59.

is the weight on the spatial regularity of the segmentation. These parameters
are not sensitive. The values chosen in the experiments were γ = 0.1 and α = 2.

Computational Cost: Our algorithm is linear in the number of layers (due to
the optical flow computation for each layer). For 2 layers and 480p video with
30 frames, our entire coarse-to-fine scheme runs in about 10 mins with a Matlab
implementation, on a standard modern processor.

5 Conclusion

We have generalized layered approaches to 3D planar motions and correspond-
ing self-occlusion phenomena. This was accomplished with an intermediate 2D
representation that concatenated all visible parts of an object in a monocular
video sequence into a single compact representation. This allowed for represent-
ing parts that were self-occluded in one frame but visible in another. Depth
ordering was formulated independent of the inference of the flattened represen-
tations, and is computationally efficient. Results on benchmark datasets showed
that the advantage of this approach over other layered works. Further, increased
performance was shown in the problem of motion segmentation over existing
layered approaches, which do not account for 3D motion.

A limitation of our method is that is dependent on the initialization, which re-
mains an open problem, although we provided a simple scheme. More advanced
schemes could use semantic segmentation. Another limitation is in our repre-
sentation, in that it does not account for all 3D motions and all self-occlusion
phenomena. For instance, a person walking, the crossing of legs cannot be cap-
tured with a 2D representation (our method accounted for this case on datasets
since the number of frames used was small enough that legs did not fully cross).
A solution would be to infer a 3D representation of the object from the monoc-
ular video, but this could be expensive computationally, and it is valid for only
rigid scenes. Our method trades off between complexity of a full 3D represen-
tation and its modeling power: although it does not model all 3D situations, it
is a clear advance over existing layered approaches, without the complexity of a
3D representation and its limitation to rigid scenes. Another limitation is when
Assumption 1 is broken (e.g., a hand grasping an object), in which our depth
ordering would fail, but the layers are still inferred correctly.
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