
Uncertainty Estimates and Multi-Hypotheses

Networks for Optical Flow
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Abstract. Optical flow estimation can be formulated as an end-to-
end supervised learning problem, which yields estimates with a superior
accuracy-runtime tradeoff compared to alternative methodology. In this
paper, we make such networks estimate their local uncertainty about the
correctness of their prediction, which is vital information when building
decisions on top of the estimations. For the first time we compare several
strategies and techniques to estimate uncertainty in a large-scale com-
puter vision task like optical flow estimation. Moreover, we introduce a
new network architecture and loss function that enforce complementary
hypotheses and provide uncertainty estimates efficiently with a single for-
ward pass and without the need for sampling or ensembles. We demon-
strate the quality of the uncertainty estimates, which is clearly above
previous confidence measures on optical flow and allows for interactive
frame rates.

Keywords: Convolutional Neural Networks, Optical Flow Estimation,
Uncertainty Estimation

1 Introduction

Recent research has shown that deep networks typically outperform handcrafted
approaches in computer vision in terms of accuracy and speed. Optical flow
estimation is one example: FlowNet [6,12] yields high accuracy optical flow at
interactive frame rates, which is relevant for many applications in the automotive
domain or for activity understanding.

A valid critique of learning-based approaches is their black-box nature: since
all parts of the problem are learned from data, there is no strict understanding
on how the problem is solved by the network. Although FlowNet 2.0 [12] was
shown to generalize well across various datasets, there is no guarantee that it will
also work in different scenarios that contain unknown challenges. In real-world
scenarios, such as control of an autonomously driving car, an erroneous decision
can be fatal; thus it is not possible to deploy such a system without information
about how reliable the underlying estimates are. We should expect an additional
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Fig. 1: Joint estimation of optical flow and its uncertainty. Left: Image from a KITTI
2015 sequence. Middle: Estimated optical flow. Right: The estimated uncertainty
(visualized as heatmap) marks the optical flow in the shadow of the car as unreliable
(pointed by the red arrow), contrary to the car itself, which is estimated with higher
certainty. Marked as most reliable is the optical flow for the static background.

estimate of the network’s own uncertainty, such that the network can highlight
hard cases where it cannot reliably estimate the optical flow or where it must
decide among multiple probable hypotheses; see Figure 1. However, deep net-
works in computer vision typically yield only their single preferred prediction
rather than the parameters of a distribution.

The first contribution of this paper is an answer to the open question which
of the many approaches for uncertainty estimation, most of which have been
applied only to small problems so far, are most efficient for high-resolution
encoder-decoder regression networks. We provide a comprehensive study of em-
pirical ensembles, predictive models, and predictive ensembles. The first cate-
gory comprises frequentist methods, the second one relies on the estimation of
a parametric output distribution, and the third one combines the properties of
the previous two. We implemented these approaches for FlowNet using the com-
mon MC dropout technique [7], the less common Bootstrapped Ensembles [19]
and snapshot ensembles [11]. We find that in general all these approaches yield
surprisingly good uncertainty estimates, where the best performance is achieved
with uncertainty estimates derived from Bootstrapped Ensembles of predictive
networks.

While such ensembles are a good way to obtain uncertainty estimates, they
must run multiple networks to create sufficiently many samples. This drawback
increases the computational load and memory footprint at training and test
time linearly with the number of samples, such that these approaches are not
applicable in real-time.

As a second contribution, we present a multi-headed network architecture
that yields multiple hypotheses in a single network without the need of sam-
pling. We use a loss that only penalizes the best hypothesis. This pushes the
network to make multiple different predictions in case of doubt. We train a
second network to optimally combine the hypotheses and to estimate the final
uncertainty. This network yields the same good uncertainty estimates as Boot-
strapped Ensembles, but allows for interactive frame rates. Thus, in this paper,
we address all three important aspects for deployment of optical flow estima-
tion in automotive systems: high accuracy inherited from the base network, a
measure of reliability, and a fast runtime.
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2 Related Work

Confidence measures for optical flow. While there is a large number of
optical flow estimation methods, only few of them provide uncertainty estimates.

Post-hoc methods apply post-processing to already estimated flow fields.
Kondermann et al. [16] used a learned linear subspace of typical displacement
neighborhoods to test the reliability of a model. In their follow-up work [17],
they proposed a hypothesis testing method based on probabilistic motion mod-
els learned from ground-truth data. Aodha et al. [1] trained a binary classifier
to predict whether the endpoint error of each pixel is bigger or smaller than a
certain threshold and used the predicted classifier’s probability as an uncertainty
measure. All post-hoc methods ignore information given by the model structure.

Model-inherent methods, in contrast, produce their uncertainty estimates us-
ing the internal estimation model, i.e., energy minimization models. Bruhn and
Weickert [3] used the inverse of the energy functional as a measure of the de-
viation from the model assumptions. Kybic and Nieuwenhuis [18] performed
bootstrap sampling on the data term of an energy-based method in order to
obtain meaningful statistics of the flow prediction. The most recent work by
Wannenwetsch et al. [29] derived a probabilistic approximation of the posterior
of the flow field from the energy functional and computed flow mean and co-
variance via Bayesian optimization. Ummenhofer et al. [28] presented a depth
estimation CNN that internally uses a predictor for the deviation of the esti-
mated optical flow from the ground-truth. This yields a confidence map for the
intermediate optical flow that is used internally within the network. However,
this approach treats flow and confidence separately and there was no evaluation
for the reliability of the confidence measure.

Uncertainty estimation with CNNs. Bayesian neural networks (BNNs)
have been shown to obtain well-calibrated uncertainty estimates while maintain-
ing the properties of standard neural networks [24,22]. Early work [24] mostly
used Markov Chain Monte Carlo (MCMC) methods to sample networks from the
distribution of the weights, where some, for instance Hamiltonian Monte Carlo,
can make use of the gradient information provided by the backpropagation algo-
rithm. More recent methods generalize traditional gradient based MCMC meth-
ods to the stochastic mini-batch setting, where only noisy estimates of the true
gradient are available [5,30]. However, even these recent MCMC methods do not
scale well to high-dimensional spaces, and since contemporary encoder-decoder
networks like FlowNet have millions of weights, they do not apply in this setting.

Instead of sampling, variational inference methods try to approximate the
distribution of the weights by a more tractable distribution [8,2]. Even though
they usually scale much better with the number of datapoints and the number
of weights than their MCMC counterparts, they have been applied only to much
smaller networks [10,2] than in the present paper.

Gal and Ghahramani [7] sampled the weights by using dropout after each
layer and estimated the epistemic uncertainty of neural networks. In a follow-
up work by Kendall and Gal [15], this idea was applied to vision tasks, and
the aleatoric uncertainty (which explains the noise in the observations) and
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the epistemic uncertainty (which explains model uncertainty) were studied in
a joint framework. We show in this paper, that the dropout strategy used in
all previous computer vision applications [15,26] is not the best one per-se, and
other strategies yield better results.

In contrast to Bayesian approaches, such as MCMC sampling, bootstrapping
is a frequentist method that is easy to implement and scales nicely to high-
dimensional spaces, since it only requires point estimates of the weights. The
idea is to train M neural networks independently on M different bootstrapped
subsets of the training data and to treat them as independent samples from the
weight distribution. While bootstrapping does not ensure diversity of the models
and in the worst case could lead to M identical models, Lakshminarayanan et
al. [19] argued that ensemble model averaging can be seen as dropout averaging.
They trained individual networks with random initialization and random data
shuffling, where each network predicts a mean and a variance. During test time,
they combined the individual model predictions to account for the epistemic
uncertainty of the network. We also consider so-called snapshot ensembles [11]
in our experiments. These are obtained rather efficiently via Stochastic Gradient
Descent with warm Restarts (SGDR) [21].

Multi-hypotheses estimation. The loss function for the proposed multi-
hypotheses network is related to Guzman-Rivera et al. [9], who proposed a similar
loss function for SSVMs. Lee et al. [20] applied the loss to network ensembles
and Chen & Koltun [4] to a single CNN.

3 Uncertainty Estimation with Deep Networks

Assume we have a dataset D = {(x0,y
gt
0 ), . . . , (xN ,ygt

N )}, which is generated by
sampling from a joint distribution p(x,y). In CNNs, it is assumed that there is
a unique mapping from x to y by a function fw(x), which is parametrized by
weights w that are optimized according to a given loss function on D.

For optical flow, we denote the trained network as a mapping from the input
images x = (I1, I2) to the output optical flow y = (u,v) as y = fw(I1, I2),
where u,v are the x- and y-components of the optical flow. The FlowNet by
Dosovitskiy et al. [6] minimizes the per-pixel endpoint error

EPE =
√

(u− ugt)2 + (v − vgt)2 , (1)

where the pixel coordinates are omitted for brevity. This network, as depicted in
Figure 2a, is fully deterministic and yields only the network’s preferred output
y = fw(x). Depending on the loss function, this typically corresponds to the
mean of the distribution p(y|x,D). In this paper, we investigate three major
approaches to estimate also the variance σ2. These are based on the empirical
variance of the distribution of an ensemble, a parametric model of the distribu-
tion, and a combination of both. The variance in all these approaches serves as
an estimate of the uncertainty.
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Fig. 2: Overview of the networks considered in this paper. (a) FlowNetC trained with
EPE. (b) Same network as (a), where an ensemble is built using dropout, bootstrapping
or SGDR. (c) FlowNetC trained with -log-likelihood to predict mean and variance.
(d) Same network as (c), where an ensemble is built using dropout, bootstrapping or
SGDR. (e) FlowNetH trained to predict multiple hypotheses with variances, which are
merged to a single distributional output. Only (a) exists in this form for optical flow.

3.1 Empirical Uncertainty Estimation

A straightforward approach to get variance estimates is to train M different
models independently, such that the mean and the variance of the distribution
p(y|x,D) can be approximated with the empirical mean and variance of the
individual model’s predictions. Let fwi

(x) denote model i of an ensemble of M
models with outputs uwi

and vwi
. We can compute the empirical mean and

variance for the u-component by:

µu =
1

M

M
∑

i=1

uwi
(x) (2)

σ2
u =

1

M

M
∑

i=1

(uwi
(x)− µu)

2 (3)

and accordingly for the v-component of the optical flow. Such an ensemble of
M networks, as depicted in Figure 2b, can be built in multiple ways. The most
common way is via Monte Carlo Dropout [7]. Using dropout also at test time,
it is possible to randomly sample from network weights M times to build an
ensemble. Alternatively, ensembles of individual networks can be trained with
random weight initialization, data shuffling, and bootstrapping as proposed by
Lakshminarayanan et al. [19]. A more efficient way of building an ensemble is to
use M pre-converged snapshots of a single network trained with the SGDR [21]
learning scheme, as proposed by Huang et al. [11]. We investigate these three
ways of building ensembles for flow estimation and refer to them as Dropout,
Bootstrapped Ensembles and SGDR Ensembles, respectively.
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3.2 Predictive Uncertainty Estimation

Alternatively, we can train a network to output the parameters θ of a parametric
model of the distribution p(y|x,D) as introduced by Nix and Weigend [25]. In the
literature, Gaussian distributions (where θ parameterizes the distribution’s mean
and the variance) are most common, but any type of parametric distribution is
possible. Such networks can be optimized by maximizing their log-likelihood:

log p(D | w) =
1

N

N
∑

i=1

log p(yi | θ(xi,w)) (4)

w.r.t. w. The predictive distribution for an input x is then defined as:

p(y | x,w) ≡ p(y | θ(x,w)). (5)

While negative log-likelihood of a Gaussian corresponds to L2 loss, FlowNet is
trained with an EPE loss, which has more robustness to outliers. Thus, we model
the predictive distribution by a Laplacian, which corresponds to an L1 loss. The
univariate Laplace distribution has two parameters a and b and is defined as:

L(u|a, b) =
1

2b
e−

|u−a|
b . (6)

As Wannewetsch et al. [29], we model the u and v components of the optical
flow to be independent. The approximation yields:

L(u, v|au, av, bu, bv) ≈ L(u|au, bu) · L(v|av, bv). (7)

We obtain a probabilistic version of FlowNet with outputs au, av, bu, bv by
minimizing the negative log-likelihood of Eq. 7:

− log(L(u|au, bu) · L(v|av, bv)) =
|u− au|

bu
+ log bu +

|v − av|

bv
+ log bv. (8)

As an uncertainty estimate we use the variance of the predictive distribution,
which is σ2 = 2b2 in this case. This case corresponds to a single FlowNetC
predicting flow and uncertainty as illustrated in Figure 2c.

3.3 Bayesian Uncertainty Estimation

From a Bayesian perspective, to obtain an estimate of model uncertainty, rather
than choosing a point estimate for w, we would marginalize over all possible
values:

p(y | x,D) =

∫

p(y | x,w)p(w | D)dw (9)

=

∫

p(y | θ(x,w))p(w | D)dw. (10)
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This integral cannot be computed in closed form, but by sampling M networks
wi ∼ p(w|D) from the posterior distribution and using a Monte-Carlo approxi-
mation [24], we can approximate its mean and variance as:

p(y | x,D) ≈
M
∑

i=1

p(y | θ(x,wi)). (11)

Since every parametric distribution has a mean and a variance, also the distri-
butions predicted by each individual network with weights wi yield a mean µi

and a variance σ2
i . The mean and variance of the mixture distribution in Eq. 11

can then be computed by the law of total variance for the u-component (as well
as for the v-component) as:

µu =
1

M

M
∑

i=1

µu,i (12)

σ2
u =

1

M

M
∑

i=1

(

(µu,i − µu)
2 + σ2

u,i

)

. (13)

This again can be implemented as ensembles obtained by predictive variants of
dropout [7], bootstrapping [19] or SGDR [11], where the ideas from Section 3.1
and Section 3.2 are combined as shown in Figure 2d.

4 Predicting Multiple Hypotheses within a Single

Network

The methods presented in the Sections 3.1 and 3.3 require multiple forward
passes to obtain multiple samples with the drawback of a much increased com-
putational cost at runtime. In this section, we propose a loss function to make
multiple predictions within a single network. We call these predictions hypothe-
ses. For the predicted hypotheses, we encourage multimodality by the design
of the loss function [9,20,4]. This makes the predictions more diverse and leads
to capturing more different solutions, but does not allow for merging by simply
computing the mean as for the ensembles presented in the last section. There-
fore, we also propose to use a second network that merges the hypotheses to a
single prediction and variance, as depicted in Figure 2e.

Since a ground-truth is available only for the single true solution, the question
arises of how to train a network to predict multiple hypotheses and how to ensure
that each hypothesis comprises meaningful information. To this end, we use a loss
that punishes only the best among the network output hypotheses y1, . . . ,yM [9].
Let the loss between a predicted flow vector y(i, j) and its ground-truth ygt(i, j)
at pixel i, j be defined by a loss functon l. We minimize:

Lhyp =
∑

i,j

l(ybest idx(i,j),y
gt(i, j)) +∆(i, j) , (14)
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where best idx(i, j) selects the best hypothesis per pixel according to the ground-
truth:

best idx(i, j) = argmin
k

[

EPE(yk(i, j),y
gt(i, j))

]

. (15)

∆ = ∆u+∆v encourages similar solutions to be from the same hypothesis k via
one-sided differences, e.g. for the u component:

∆u(i, j) =
∑

k;i>1;j

|yk,u(i, j)− yk,u(i− 1, j)|+

∑

k;i;j>1

|yk,u(i, j)− yk,u(i, j − 1)|
(16)

For l, we either use the endpoint error from Eq. 1 or the negative log-
likelihood from Eq. 8. In the latter case, each hypothesis is combined with an
uncertainty estimation and l also operates on a variance σ. Equations 15 and
16 remain unaffected. For the best index selection we stick to the EPE since it
is the main optimization goal.

To minimize Lhyp, the network must make a prediction close to the ground-
truth in at least one of the hypotheses. In locations where multiple solutions
exist and the network cannot decide for one of them, the network will predict
several different likely solutions to increase the chance that the true solution is
among these predictions. Consequently, the network will favor making diverse
hypotheses in cases of uncertainty. In Tables 3 and 4 of the supplemental material
we provide visualizations of such hypotheses.

In principle, Lhyp could collapse to use only one of the hypotheses’ outputs.
In this case the other hypotheses would have very high error and would never be
selected for back-propagation. However, due to the variability in the data and the
stochasticity in training, such collapse is very unlikely. We never observed that
one of the hypotheses was not used by the network, and for the oracle merging
we observed that all hypotheses contribute more or less equally. We show this
diversity in our experiments.

5 Experiments

To evaluate the different strategies for uncertainty estimation while keeping the
computational cost tractable, we chose as a base model the FlowNetC architec-
ture from Dosovitsky et al. [6] with improved training settings by Ilg et al. [12]
and by us. A single FlowNetC shows a larger endpoint error (EPE) than the
full, stacked FlowNet 2.0 [12], but trains much faster. Note that this work aims
for uncertainty estimation and not for improving the optical flow over the base
model. The use of ensembles may lead to minor improvements of the optical flow
estimates due to the averaging effect, but these improvements are not of major
concern here. In the end, we will also show results for a large stacked network
to demonstrate that the uncertainty estimation as such is not limited to small,
simple networks.
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5.1 Training Details

Table 1: Optical flow quality
on Sintel train clean with the
original FlowNetC [12] and
our implementation.

Iter. EPE

FlowNetC [12] 600k 3.77
FlowNetC [12] 1.2m 3.58
FlowNetC ours 600k 3.40

In contrast to Ilg et al. [12], we use Batch Nor-
malization [13] and a continuously dropping co-
sine learning rate schedule [21]. This yields shorter
training times and improves the results a little; see
Table 1. We train on FlyingChairs [6] and start
with a learning rate of 2e−4. For all networks, we
fix a training budget of 600k iterations per net-
work, with an exception for SGDR, where we also
evaluate performing some pre-cycles. For SGDR
Ensembles, we perform restarts every 75k itera-
tions. We fix the Tmult to 1, so that each annealing
takes the same number of iterations. We experi-
ment with different variants of building ensembles
using snapshots at the end of each annealing. We
always take the latest M snapshots when building
an ensemble. For dropout experiments, we use a dropout ratio of 0.2 as suggested
by Kendall et al. [15]. For Bootstrapped Ensembles, we train M FlowNetC in
parallel with bootstrapping, such that each network sees different 67% of the
training data. For the final version of our method, we perform an additional
training of 250k iterations on FlyingThings3D [23] per network, starting with a
learning rate of 2e−5 that is decaying with cosine annealing. We use the Caffe [14]
framework for network training and evaluate all runtimes on an Nvidia GTX
1080Ti. We will make the source code and the final models publicly available.

For the ensembles, we must choose the size M of the ensemble. The sampling
error for the mean and the variance decreases with increasing M . However,
since networks for optical flow estimation are quite large, we are limited in the
tractable sample size and restrict it to M = 8. We also use M = 8 for FlowNetH.

For SGDR there is an additional pre-cycle parameter: snapshots in the begin-
ning have usually not yet converged and the number of pre-cycles is the number
of snapshots we discard before building the ensemble. In the supplemental ma-
terial we show that the later the snapshots are taken, the better the results are
in terms of EPE and AUSE. We use 8 pre-cycles in the following experiments.

5.2 Evaluation Metrics

Sparsification Plots. To assess the quality of the uncertainty measures, we use
so-called sparsification plots, which are commonly used for this purpose [1,29,17,18].
Such plots reveal on how much the estimated uncertainty coincides with the true
errors. If the estimated variance is a good representation of the model uncer-
tainty, and the pixels with the highest variance are removed gradually, the error
should monotonically decrease. Such a plot of our method is shown in Figure 3.
The best possible ranking of uncertainties is ranking by the true error to the
ground-truth. We refer to this curve as Oracle Sparsification. Figure 3 reveals
that our uncertainty estimate is very close to this oracle.
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Fig. 3: Sparsification plot of FlowNetH-Pred-Merged for the Sintel train clean dataset.
The plot shows the average endpoint error (AEPE) for each fraction of pixels having
the highest uncertainties removed. The oracle sparsification shows the lower bound by
removing each fraction of pixels ranked by the ground-truth endpoint error. Removing
20 percent of the pixels results in halving the average endpoint error.

Table 2: Comparison of flow and uncertainty predictions of all proposed methods with
M = 8 on the Sintel train clean dataset. Oracle-EPE is the EPE of the pixel-wise best
selection from the samples or hypotheses determined by the ground-truth. Var. is the
average empirical variance over the 8 samples or hypotheses. Predictive versions (Pred)
generally outperform empirical versions (Emp). Including a merging network increases
the performance. FlowNetH-Pred-Merged performs best for predicting uncertainties
and has a comparatively low runtime.

empirical (Emp) predictive (Pred)
AUSE EPE Oracle EPE Var. AUSE EPE Oracle EPE Var. Runtime

FlowNetC - 3.40 - - 0.133 3.62 - - 38ms

Dropout 0.212 3.67 2.56 5.05 0.158 3.99 2.96 3.80 320ms

SGDREnsemble 0.191 3.25 2.56 3.50 0.134 3.40 2.87 1.52 304ms

BootstrappedEnsemble 0.209 3.41 2.17 9.52 0.127 3.46 2.49 6.15 304ms

BootstrappedEnsemble-Merged 0.102 3.20 2.49 6.15 332ms

FlowNetH-Merged - 3.50 1.73 83.32 0.095 3.36 1.89 52.85 60ms

Sparsification Error. For each approach the oracle is different, hence a
comparison among approaches using a single sparsification plot is not possible.
To this end, we introduce a measure, which we call Sparsification Error. It is
defined as the difference between the sparsification and its oracle. Since this
measure normalizes the oracle out, a fair comparison of different methods is
possible. In Figure 4a, we show sparsification errors for all methods we present
in this paper. To quantify the sparsification error with a single number, we use
the Area Under the Sparsification Error curve (AUSE ).

Oracle EPE. For each ensemble, we also compute the hypothetical endpoint
error by considering the pixel-wise best selection from each member (decided by
the ground-truth). We report this error together with the empirical variances
among the members in Table 2.
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Fig. 4: (a) Sparsification error on the Sintel train clean dataset. The sparsification error
(smaller is better) is the proposed measure for comparing the uncertainty estimates
among different methods. FlowNetH-Pred-Merged and BootstrappedEnsemble-Pred-
Merged perform best in almost all sections of the plot. (b) Scatter plot of AEPE vs.
AUSE for the tested approaches visualizing some content of Table 2.

5.3 Comparison among Uncertainties from CNNs

Nomenclature.When a single network is trained against the endpoint error, we
refer to this single network and the resulting ensemble as empirical (abbreviated
as Emp; Figures 2a and 2b), while when the single network is trained against
the negative log-likelihood, we refer to the single network and the ensemble
as predictive (Pred ; Figures 2c and 2d). When multiple samples or solutions
are merged with a network, we add Merged to the name. E.g. FlowNetH-Pred-
Merged refers to a FlowNetH that predicts multiple hypotheses and merges them
with a network, using the loss for a predictive distribution for both, hypotheses
and merging, respectively (Figure 2e). Table 2 and Figures 4a, 4b show results
for all models evaluated in this paper.

Empirical Uncertainty Estimation. The results show that uncertainty
estimation with empirical ensembles is good, but worse than the other methods
presented in this paper. However, in comparison to predictive counterparts, em-
pirical ensembles tend to yield slightly better EPEs, as will be discussed in the
following.

Predictive Uncertainty Estimation. The estimated uncertainty is better
with predictive models than with the empirical ones. Even a single FlowNetC
with predictive uncertainty yields much better uncertainty estimates than any
empirical ensemble in terms of AUSE. This is because when training against a
predictive loss function, the network has the possibility to explain outliers with
the uncertainty. This is known as loss attenuation [15]. While the EPE loss tries
to enforce correct solutions also for outliers, the log-likelihood loss attenuates
them. The experiments confirm this effect and show that it is advantageous to
let a network estimate its own uncertainty.
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Predictive Ensembles. Comparing ensembles of predictive networks to a
single predictive network shows that a single network is already very close to
the predictive ensembles and that the benefit of an ensemble is limited. We
attribute this also to loss attenuation: different ensemble members appear to
attenuate outliers in a similar manner and induce less diversity, as can be seen
by the variance among the members of the ensemble (column ’Var.’ in Table 2).

When comparing empirical to predictive ensembles, we can draw the following
conclusions: a.) empirical estimation provides more diversity within the ensemble
(variance column in Table 2), b.) empirical estimation provides lower EPEs and
Oracle EPEs, c.) all empirical setups provide worse uncertainty estimates than
predictive setups.

Ensemble Types. We see that the commonly used dropout [7] technique
performs worst in terms of EPE and AUSE, although the differences between the
predictive ensemble types are not very large. SGDR Ensembles provide better
uncertainties, yet the variance among the samples is the smallest. This is likely
because later ensemble members are derived from previous snapshots of the same
model. Furthermore, because of the 8 pre-cycles, SGDR experiments ran the
largest number of training iterations, which could be an explanation why they
provide a slightly better EPE than other ensembles. Bootstrapped Ensembles
provide the highest sample variance and the lowest AUSE among the predictive
ensembles.

FlowNetH and Uncertainty Estimation with Merging Networks.
Besides FlowNetH we also investigated putting a merging network on top of
the predictive Bootstrapped Ensembles. Results show that the multi-hypotheses
network (FlowNetH-Pred-Merged) is on-par with BootstrappedEnsemble-Pred-
Merged in terms of AUSE and EPE. However, including the runtime, FlowNetH-
Pred-Merged yields the best trade-off; see Table 2. Only FlowNetC and FlowNetH-
Pred-Merged allow a deployment at interactive frame rates. Table 2 also shows
that FlowNetH has a much higher sample variance and the lowest oracle EPE.
This indicates that it internally has very diverse and potentially useful hypothe-
ses that could be exploited better in the future. For some visual examples, we
refer to Tables 3 and 4 in the supplemental material.

5.4 Comparison to Energy-Based Uncertainty Estimation

We compare the favored approach from the previous section (FlowNetH-Pred-
Merged) to ProbFlow [29], which is an energy minimization approach and cur-
rently the state-of-the-art for estimating the uncertainty of optical flow. Figure 5
shows the sparsification plots for the Sintel train final. ProbFlow has almost the
same oracle as FlowNetH-Pred-Merged, i.e. the flow field from ProbFlow can
equally benefit from sparsification, but the actual sparsification error due to its
estimated uncertainty is higher. This shows that FlowNetH-Pred-Merged has
superior uncertainty estimates. In Table 3 we show that this also holds for the
KITTI dataset. FlowNetH outperforms ProbFlow also in terms of EPE in this
case. This shows that the superior uncertainty estimates are not due to a weaker
optical flow model, i.e. from obvious mistakes that are easy to predict.
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Fig. 5: Plots of the sparsification curves with their respective oracles (a) and of the
sparsification errors (b) for ProbFlow, FlowNetH-Pred-Merged and FlowNetH-Pred-
Merged-SS (version with 2 refinement networks stacked on top) on the Sintel train final
dataset. KITTI versions are similar and provided in the supplemental material.

Table 3: Comparison of FlowNetH to the state-of-the-art uncertainty estimation
method ProbFlow [29] on the Sintel train clean, Sintel train final and our KITTI
2012+2015 validation split datasets. The ’-FT-KITTI’ version is trained on Fly-
ingChairs [6] first and then on FlyingThings3D [23], as described in Sec. 5.1 and sub-
sequently fine-tuned on our KITTI 2012+2015 training split. FlowNetH-Pred-Merged,
-S and -SS are all trained with the FlowNet2 [12] schedule described in supplemental
material Fig. 6. Our method outperforms ProbFlow in AUSE by a large margin and
also in terms of EPE for the KITTI dataset. †runtime taken from [29], please see the
supplemental material for details on the computation of the ProbFlow outputs.

Sintel Clean Sintel Final KITTI
runtime

AUSE EPE AUSE EPE AUSE EPE

ProbFlow [29] 0.162 1.87 0.173 3.34 0.466 8.95 38.1s†

FlowNetH-Pred-Merged-FT-KITTI - - - - 0.086 3.12 60ms

FlowNetH-Pred-Merged 0.117 2.58 0.128 3.78 0.151 7.84 60ms

FlowNetH-Pred-Merged-S 0.091 2.29 0.098 3.51 0.102 6.86 86ms

FlowNetH-Pred-Merged-SS 0.089 2.19 0.096 3.40 0.091 6.50 99ms

Table 3 further shows that the uncertainty estimation is not limited to simple
encoder-decoder networks, but can also be applied successfully to state-of-the-art
stacked networks [12]. To this end, we follow Ilg et al. [12] and stack refinement
networks on top of FlowNetH-Pred-Merged. Different from [12], each refinement
network yields the residual of the flow field and the uncertainty, as recently
proposed by [27]. We refer to the network with the 1st refinement network as
FlowNetH-Pred-Merged-S and with the second refinement network as FlowNetH-
Pred-Merged-SS, since each refinement network is a FlowNetS [12].

The uncertainty estimation is not negatively influenced by the stacking, de-
spite the improving flow fields. This shows again that the uncertainty estimation
works reliably notwithstanding if the predicted optical flow is good or bad.

Figure 6 shows a qualitative comparison to ProbFlow. Clearly, the uncer-
tainty estimate of FlowNet-Pred-Merged also performs well outside motion bound-



14 E. Ilg, Ö. Çiçek, S. Galesso, A. Klein, O. Makansi, F. Hutter and T. Brox

Fig. 6: Comparison between FlowNetH-Pred-Merged and ProbFlow [29]. The first row
shows the image pair followed by its ground-truth flow for two different scenes from
the Sintel final dataset. The second row shows FlowNetH-Pred-Merged results: entropy
from a Laplace distribution with ground-truth error (we refer to this as Oracle Entropy

to represent the optimal uncertainty as explained in the supplemental material), pre-
dicted entropy and predicted flow. Similar to the second row, the third row shows
the results for ProbFlow. Although both methods fail at estimating the motion of the
dragon on the left scene and the motion of the arm and the leg in the right scene, our
method is better at predicting the uncertainties in these regions.

aries and covers many other causes for brittle optical flow estimates. More results
on challenging real-world data are shown in the supplemental video which can
also be found on https://youtu.be/HvyovWSo8uE.

6 Conclusion

We presented and evaluated several methods to estimate the uncertainty of deep
regression networks for optical flow estimation. We showed that SGDR and Boot-
strapped Ensembles perform better than the commonly used dropout technique.
Furthermore, we found that a single network can estimate its own uncertainty
surprisingly well and that this estimate outperforms every empirical ensemble.
We believe that these results will apply to many other computer vision tasks,
too. Moreover, we presented a multi-hypotheses network that shows very good
performance and is faster than sampling-based approaches and ensembles. The
fact that networks can estimate their own uncertainty reliably and in real-time
is of high practical relevance. Humans tend to trust an engineered method much
more than a trained network, of which nobody knows exactly how it solves the
task. However, if networks say when they are confident and when they are not,
we can trust them a bit more than we do today.
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