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Abstract. This paper addresses the challenging problem of estimating
the general visual attention of people in images. Our proposed method
is designed to work across multiple naturalistic social scenarios and pro-
vides a full picture of the subject’s attention and gaze. In contrast, ear-
lier works on gaze and attention estimation have focused on constrained
problems in more specific contexts. In particular, our model explicitly
represents the gaze direction and handles out-of-frame gaze targets. We
leverage three different datasets using a multi-task learning approach.
We evaluate our method on widely used benchmarks for single-tasks
such as gaze angle estimation and attention-within-an-image, as well as
on the new challenging task of generalized visual attention prediction.
In addition, we have created extended annotations for the MMDB and
GazeFollow datasets which are used in our experiments, which we will
publicly release.
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1 Introduction

As humans, we are exquisitely sensitive to the gaze of others. We can rapidly
infer if another person is making eye contact, follow their gaze to identify their
gaze target, categorize quick glances to objects, and even identify when someone
is not paying attention [19]. Automatically detecting and quantifying these types
of visual attention from images and video remains a complex, open challenge.
Although gaze estimation has long been an active area of research, most work
has focused on relatively constrained versions of the problem in specific prede-
termined contexts. For example, [31, 18] predict the gaze target given that the
person is looking at a point on a smartphone screen, [23] predicts fixation on
an object given that the person is looking at salient object within the frame,
[7, 30] predict eye contact given that the camera is located near the subject’s
eyes, and [24] predicts the focus of a person’s gaze across views in commercial
movies which include camera views that follow the actor’s attention. It remains
a significant challenge to design a system that can model the visual attention of
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Fig. 1. We present a model which aims to understand different aspects of the gener-
alized attention prediction problem which are exemplified above. In (a) subjects are
looking at a salient object in the scene, in (b) the subject is looking somewhere outside
of the frame and in (c) the subject is looking at or around the camera. Our model
predicts the 3D gaze vector of subjects in each of these images, along with the location
of the gaze fixation in the image, if it exists. Our model explicitly determines if the
subject’s gaze target lies outside the frame.

subjects in unconstrained scenarios, without the preconditions utilized by prior
works. We call this the problem of generalized visual attention prediction.

The three examples in Figure 1 illustrate the difficulty of the challenge. In
Figure 1 (a), the subjects are looking at a salient object in the scene, while
in (b) the subject is looking somewhere outside of the scene, and (c) they are
looking at the camera. The case of Figure 1 (a) is addressed by the pioneering
work of Recasens et al. [23], which tackles this problem by obtaining human
annotations of subject gaze targets, leveraging the finding from [21, 4, 5] which
indicate that annotators very often agree on which object is salient in the scene.
Their approach, however, was not designed to handle cases (b) and (c) since
the dataset annotation process forces human annotators to label a point in the
image as the fixation location. In other words the dataset does not distinguish
between subjects looking at a point inside of the image or looking somewhere
outside of the image. A purely saliency based approach would also fail: notice
that there are salient objects in (b), an American flag, and (c), a mug, which
can confound such an approach.

Figure 1 (c) corresponds to the case of screen-based eye tracking [18, 11],
in which subjects look at images on a screen and are captured by a calibrated
camera that permits the estimation of the gaze location. The scenario in Figure 1
(a) corresponds to gaze following and has been addressed in [23]. Figure 1 (b)
represents a challenging case, which has not been addressed by prior work, in
which the gaze target lies outside the frame and therefore cannot be identified
explicitly without additional information.

It is challenging to design an attention model which can deal with these
three different scenarios reliably. We tackle this problem by developing a novel
generalized visual attention estimation method which jointly learns a subject-
dependent saliency map and a 3D gaze vector represented by yaw and pitch.
This allows us to estimate the final fixation likelihood map.
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Our method is designed so that the fixation likelihood map becomes close
to zero when the subject is looking outside the frame, as in cases (b) and (c).
When the subject is looking at a target which is visible in the image, as in case
(a), then the fixation likelihood map predicts where the subject is likely to be
attending. The model simultaneously estimates the 3D gaze angle to provide a
complete picture of the subject’s attention and gaze. As a result, our approach
produces interpretable results spanning all three of the cases in Figure 1.

Our Contribution. The major contribution of this work is our method for gen-
eralized visual attention prediction, which works across most natural scenarios.
To effectively train our model, we exploit three public datasets that were origi-
nally collected for different tasks. Specifically, we use the EYEDIAP dataset [11]
to learn a precise gaze angle representation, a modified version of the GazeFol-
low dataset [23] to learn a gaze-relevant scene saliency representation, and the
SynHead dataset [13] to complement the first two datasets as it includes large
face pose variations and subject attention outside of the image frame.

As a result of our multi-task learning approach, our model achieves state-
of-the-art results on the GazeFollow [23] task, which consists in identifying
the location of the scene the subject is looking at. Our model also competes
with state-of-the-art models on the 3D gaze estimation task from the EYEDIAP
dataset [11]. Most importantly, we evaluate our full model on a new challenging
task that automatically quantifies dense visual attention in naturalistic social in-
teractions. We report our results on the Multimodal Dyadic Behavior (MMDB)
dataset [25], a dataset of video recordings of the social and communicative be-
havior of toddlers. This dataset has frame-level annotations of subject’s visual
targets among many other nonverbal behaviors. We are the first to report at-
tention estimation results on this dataset. We compare our results to several
baselines, demonstrating the superior performance of our method.

2 Related work

Gaze Estimation: Gaze estimation aims to predict the gaze of a human subject.
Our work is related to third person gaze estimation and tracking methods which
seek to estimate either the three dimensional direction of the gaze or the fixation
point of the gaze on a screen. Krafka et al. [18] predict the coordinates of the
gaze on a smartphone screen and present a dataset which addresses this prob-
lem. Mora et al. [11] present EYEDIAP, a dataset designed for the evaluation of
gaze estimation which was collected in a controlled lab environment. They de-
vise an RGB-D method which predicts the 3D vector of the gaze of the subject.
There exist datasets which address similar tasks, such as MPIIGaze [31], as well
as synthetic datasets of eye images for gaze estimation [29, 27]. In addition to
predicting the 3D gaze vector, our work predicts a fixation likelihood map of the
scene as well as whether the person is looking at a location inside or outside of
the image.
Visual Saliency: The objective of visual saliency prediction is to estimate loca-
tions in an image which attract the attention of humans looking at the image.
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Since the seminal work of Itti et al. [16] visual saliency prediction has been
extensively studied. Recently deep learning methods have shown superior per-
formance on this task due to their ability to learn features and to incorporate
both local and global context into the prediction [28, 20, 33]. Our work in gener-
alized visual attention prediction is influenced by the task of visual saliency since
people tend to look at salient objects inside a scene, yet it is distinct because
we consider cases where the subject is not looking at any object in the scene. A
method driven primarily by saliency detection would not succeed in the latter
case. Furthermore, real-world scenes are more likely to generate a wide range of
3D gaze directions in comparison to a screen-based eye-tracking scenario.
Gaze Following: The paper by Recasens et al. [23] presents a new computer vi-
sion problem which inspired this work. The problem can be described as follows:
given a single image containing one or more people, predict the location that
each person in the scene is looking at. They presented a novel dataset which
contains manual annotations of where the subjects are looking in each image.
Our work differs in that we consider cases where the subjects are looking outside

of the frame, and we predict the gaze direction in these cases even though the
gaze target is not visible. In addition to predicting a fixation likelihood map for
the image, we predict the 3D gaze vector of each subject. Gorji and Clark [12]
study a problem at the intersection of visual saliency and gaze following, which
consists of incorporating signals from regions of an image which guide attention
to a certain part of the image. For example, when subjects in an image look at
an object, this amplifies the apparent saliency of the object. Again, our problem
differs in that we do not predict visual saliency but we predict the subject’s gaze
fixation and gaze direction.
Attention Modeling: Prior works have presented different methods for measuring
third-person visual attention using an environment-mounted camera. By assum-
ing body or head orientation is a good proxy for visual orientation, [3] projects
attention on the street by tracking pedestrians in 3D, [26, 8] model the focus of
attention in crowded social scene, and [6] predicts the object in the scene that
a person is interacting with which is usually indicated by hand manipulation or
pointing. Our work is certainly related, although it differs because we explicitly
consider the gaze of the subject.

3 Method

Figure 2 is an overview of our deep neural network model and its input and
output. The model takes three inputs: the whole image, a crop of the subject’s
face, and the location of her face. Given the input, the model estimates 1. the
subject’s gaze angle in terms of yaw and pitch degrees (“where” component
of visual attention), 2. the subject-dependent saliency in terms of a heatmap
(“what” component of visual attention), and 3. how likely the subject is fixating
at the estimated gaze target in the scene (overall “strength” of visual attention).
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Fig. 2. Overview of our approach. Full scene image, a person’s face location whose
visual attention we want to predict, and the corresponding close-up face image is pro-
vided as input. Scene and face images go through separate convolutional layers in such
a way that (a) (b) and (c) contribute to person-centric saliency, and (b) and (d) con-
tribute to gaze angle prediction. In the very last layer, the final feature vectors for
these two tasks are combined to estimate how likely the person is actually fixating at
a gaze target within the observable scene.

The model has two fully-convolutional pathways, one connected to the whole
image (Figure 2-a) and the other connected to the face image (Figure 2-b). The
reasoning behind having two separate pathways is inspired by the way humans
infer another person’s visual attention, as first exploited by [23]. For example,
when we interpret a person’s attention from an image, we infer their gaze di-
rection and consider whether there are any salient objects in the image along
the estimated direction. Based on this hypothesis, [23] connects two indepen-
dent conv pathways together to learn the heatmap (Figure 2-c). We take this
approach further and extend their model by explicitly training for the gaze angle
(Figure 2-d) with a convolutional pathway that is connected to the face image,
using a multi-task learning framework. Adding the gaze angle output as an aux-
iliary task has several advantages, including the additional supervisory signal
that we can devise based on the relationship between gaze heatmap and angle,
which pushes performance in heatmap estimation even further.

Lastly, we define the likelihood of fixation: a single-valued measure of how
likely it is that the subject is looking at the estimated target region inside the
frame. It is modeled by a fully connected layer (Figure 2-e). Using this last
output, the model can produce a much more complete estimation of a person’s
visual attention. Think of the case of Figure 1-b or c, where the person is looking
outside the image frame. In such cases, we want the heatmap to be as close to
zero as possible since the person is not attending to any point inside of the image.
By training this last layer to produce higher value for when it is more certain
that the heatmap region is attended to and lower value otherwise, the value can
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be applied to the heatmap with an operator ⊙ which can be a weighting operator
or a gating operator depending on application.

Since there exists no single dataset that covers all of the various gaze and
scene combinations that we address in this paper (e.g., looking outside the frame,
looking at the camera, fixation on an in-frame object, etc), we adopt a cross
domain learning approach where the model learns partial information relevant
to each task from different datasets. Depending on what supervisory signal is
available in a given batch of training data, the model selectively updates its
corresponding branches.

We describe the model architecture in more detail in subsection 3.1. We
elaborate on the loss function in 3.2 and talk about the datasets and training
procedures in 3.3.

3.1 Model

The inputs given to the model are the entire image, the subject’s cropped face
and the location of the face of the subject whose attention we want to estimate.
The two images are resized to 227×227 so that the face can be observed in higher
resolution by the network. Face position is available in terms of the (x, y) full
image coordinates. These coordinates are quantized into a 13×13 grid and then
flattened to a 169 dimensional 1-hot vector.

The model consists of two convolutional (conv) pathways: a face pathway
(Figure 2-d) and a scene pathway (Figure 2-c). ResNet 50 [14] is used as a
backbone network for the conv pathways (Figure 2-a and b). Specifically we use
all conv layers of ResNet50 for each of our conv pathways. After each ResNet50
block we add three conv layers (1x1, followed by 3x3, followed by 1x1) with ReLu
and batch norm - with stride 1 and no padding. The blue conv layers represented
in (c) have filter depth of 512, 128 and 1 respectively. The purple and red conv
layers after the face pathway (represented in (c) and (d)) have filter depth of
512, 128 and 16. These conv layers serve to reduce the dimensionality of the
features extracted by the ResNet50 backbone networks.

In the face pathway, the feature vector computed with the face input image
goes through a fully connected layer to predict the gaze angle represented using
yaw and pitch intrinsic Euler angles. In the scene pathway, the feature vectors
extracted from the whole image as well as from the face image are concatenated
with the face position input vector to learn the person-centric heatmap. Similarly
to face position, the ground truth used for learning the heatmap is available as
a gaze target position in (x, y) coordinates which is quantized into 10 grids in
each dimension.

Lastly, the input vectors to the last layer of each pathway are concatenated
and go into the final fully connected layer to estimate the “strength” of the
fixation ie. how likely it is that the person is actually fixating at a gaze target
within the observable scene. The training label for this value is equal to 1 for
a fixation inside of the image and 0 when the subject is looking outside of the
scene. We also explore alternative model architectures and restrict our training
to a subset of the three datasets. Experiments are reported in Section 4.4.
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Fig. 3. Our project and compare loss is illustrated here. If the estimated angle is close
to the actual one, the projected gaze angle on the image should also be close to the
vector connecting the head position to the gaze target.

3.2 Loss

As our model predicts gaze angle, saliency map and the fixation likelihood, we
need to apply appropriate loss functions for each task. For the angle regression
task we use an L1 loss, and for the other two tasks we use a cross entropy loss.
Moreover, we recognize that the gaze angle and fixation target predictions are
closely related. Based on their relationship additional constraints can be imposed
to augment the training loss signal. Namely, when the subject is looking at a
target, the actual gaze is a ray from the subject’s head to the gaze target. This
ray can be projected onto the image. It becomes a 2D vector coming from the
subject’s head to the target exemplified by the blue vector in Figure 3. If the
estimated angle is close to the actual one, the projected gaze angle on the image
(orange vector in Figure 3) should also be close to the blue vector. The proximity
of the two vectors is measured using the cosine distance. We call this the project
and compare loss.

3.3 Cross-Domain Datasets and Training Procedure

Fig. 4. Examples of datasets used to train our model. Left two: SynHead, middle two:
EYEDIAP, right two: GazeFollow.

The largest challenge in training our model is the lack of availability of train-
ing examples. Although there are a couple of existing datasets that are suitable



8 E. Chong, N. Ruiz, Y. Wang, Y. Zhang, A. Rozga, and J. M. Rehg

for training certain parts of our network, no single dataset contains all of the
information that we need to train the full model. Therefore, we leverage three
different datasets, namely, GazeFollow [23], EYEDIAP [11], and SynHead [13].
We selectively train different sub-parts of our network at a time depending on
the available supervisory information within a training batch. See Figure 4 to
see sample images from each dataset.

GazeFollow [23] is a real-world image dataset with manual annotations of
the locations where people are looking. The images are taken from other major
datasets such as MS COCO [22] and PASCAL [10]. As a result, the images cover
a wide range of scenes, people, and gaze directions. However, the actual 3D
gaze angles are not available. Furthermore, images where subjects are looking
outside of the image frame are not distinguished and all images have a fixation
annotation inside of the frame. Although it is mentioned in [23] that if the
annotators indicated that the person was looking outside the image, the image
would be discarded, we notice that there are a considerable number of images in
which persons appear to be looking outside of the frame. Therefore, we added
additional annotations to this dataset in the form of a binary indicator label
for “looking inside” or “looking outside” for every image. In total, we identified
14,564 images correspond to the “looking outside” case which is approximately
11.6% of the total training samples. We have publicly released our additional
annotations along with this paper.

EYEDIAP [11] dataset is designed for the evaluation of the gaze estimation
task. It has videos of 16 different subjects with full face and background visible
in a laboratory environment. Each subject was asked to look at a specific target
point on a monitor screen and the 3D gaze angle was annotated by leverag-
ing camera calibration and face depth measurement from depth camera. This
dataset contains precise 3D gaze angles for frames where the person is fixating
the target point. The dataset also contains video of the subjects looking at a 3D
ball target instead of 2D screen target point, but we exclude these ball sessions
from our experiments in order to conduct a fairer comparison with prior work.
We randomly hold out four subjects for test and use the rest of the sessions for
training. Since subjects were looking at a screen, all of the frames can be consid-
ered as looking outside the image. However, since the dataset has been collected
in a controlled setting the backgrounds are primarily white and there is not a lot
of variety in lighting or pose. Also, measured gaze angles range between −40◦

to 40◦ which is rather limited.

NVIDIA SynHead [13] is a synthetic dataset created for the head pose es-
timation task. The dataset contains 510,960 frames of 70 head motion tracks
rendered using 10 individual head models. The gaze of the head is fixed and
aligned with the head pose, thus we use the labeled 3D head pose as the gaze
angle ground truth. One of the advantages of a synthetic dataset is the ability to
insert different images in the background. We randomly generated 15% from the
total frames augmented with provided natural scene backgrounds and regard all
as “looking outside” examples. The main reason we include SynHead in training
is because it complements the EYEDIAP dataset, as the angle ranges are larger,



Connecting Gaze, Scene, and Attention 9

Table 1. Datasets used in our experiments and the number of samples in the training
and testing split, as well as the percentage of each split containing peopole looking
in/out.

Dataset Training set Test set

in vs out in vs out

GazeFollow [23] 125,557 88.4% vs 11.6% 4,782 100% vs 0%

EYEDIAP [11] 72,613 0% vs 100% 18,153 0% vs 100%

SynHead [13] 75,400 0% vs 100% - -

MMDB [25] - - 4,965 41.4% vs 58.6%

between −90◦ and 90◦, and it can include more diverse backgrounds. Since head
pose estimation is not a focus of this paper we do not set aside a test set and use
SynHead entirely for training. Dataset details are also summarized in Table 1.

Training Procedure. Since each dataset is relevant only to certain subtasks, we
only update the relevant parts of the network based on which dataset the training
sample is from, while freezing other irrelevant layers during back-propagation.
Specifically, when learning gaze angle estimation, we only update the angle path-
way (b) and (d) in Figure 2, when learning saliency we update the scene pathway
(a), (b) and (c) while freezing all other layers. Similarly, when training fixation
likelihood we only update the layer (e) in Figure 2. We found that this selective
back-propagation scheme is critical in achieving good performance.

In every batch, we draw random samples from all of the datasets shuffled
together and perform three separate back-propagation for the three outputs as
just described. In the beginning, both convolutional pathways were initialized
using a ResNet50 model pre-trained on the ImageNet classification task [9]. We
use the Adam optimization algorithm with a learning rate of 2.5e−4 and a batch
size of 36. Training usually converges within 12 epochs. All of our implementation
and experiments are done in PyTorch [1].

4 Evaluation

In this section we evaluate our model by comparing each output with a number of
existing methods and baselines. We first evaluate the person-dependent saliency
map in 4.1, gaze angle estimation in 4.2 and general attention estimation in 4.3.
Lastly, we evaluate our method by changing model architectures and training
dataset in 4.4.

4.1 Person-Dependent Saliency Prediction

We evaluate the performance of saliency map estimation using the suggested test
split of the GazeFollow dataset. The test split contains all “looking inside” cases
and each test image has multiple gaze target annotations. Following the same
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Fig. 5. Qualitative results of our model’s gaze-saliency prediction on the GazeFollow
dataset. Input image is given on the 1st and 3rd row, the output heatmap and estimated
gaze is overlaid below.

Table 2. Gaze-saliency evaluation on the GazeFollow test set

Method AUC L2 Distance Min Distance

Random 0.504 0.484 0.391
Center 0.633 0.313 0.230
Judd [17] 0.711 0.337 0.250
GazeFollow [23] 0.878 0.190 0.113
Our 0.896 0.187 0.112

evaluation method by [23], we compute the Area Under Curve (AUC) score of
the Receiver Operating Characteristic (ROC) curve in which the ground truth
target positions are the true labels and heatmap value on corresponding positions
are prediction confidence score. Our method achieves a score of 0.896 achieving
state-of-the-art performance. Along with AUC we also report results in L2, min
distance and angle metric. Please refer to [23] for details about the metric. The
numbers are summarized in Table 2 along with a number of baselines reported
in [23]. Qualitative results are presented in Figure 5.

4.2 Gaze Angle Prediction

We report the 3D gaze estimation accuracy based on the yaw and pitch output
of our model on the chosen EYEDIAP test split. Table 3 shows the angular er-
rors in which we achieve less than 0.5 degrees of difference to the state-of-the-art
appearance-based gaze estimation method. It is worth noticing that the mid-
dle two values come from [32] which are computed by five-fold cross validation
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Table 3. Gaze angle evaluation on EYEDIAP

Method Angular Error (degree)

Wood [29] 11.3◦

iTracker [18] 8.3◦

Zhang [32] 6.0 ◦

Our 6.4◦

with the entire EYEDIAP dataset whereas our method is evaluated on a single
train/test split. Although we did not choose to perform full cross validation, we
conclude that it reaches reasonable accuracy on the benchmark. Note also that
our method is trained on multiple tasks whereas all other methods are trained
solely on the gaze angle prediction task.

4.3 Generalized Attention Prediction During Naturalistic Social

Interactions

The primary inspiration for our work stems from the need for the ability to
quantify various types of visual attention behavior, which is one of the most im-
portant nonverbal social cues used in our daily life. Moreover, this is of particular
interest among researchers who study child development since gaze behavior of
young children is closely related to their social development and developmental
disorders such as Autism [15]. The MMDB dataset is one of the largest datasets
that contains children’s social and communicative behaviors, collected in order
to facilitate data-driven analysis of child behavior based on video. The dataset
contains a wide range of nonverbal behavior such as hand gestures, smile, and
gaze. It has frame-level human annotations of each behavior. As for gaze, each
frame is annotated when the child is looking at a ball, book or the examiner. This
is done by human annotation based on multiple views, therefore the child’s gaze
target can be visible or not depending on the viewpoint. Since the annotation
does not indicate in which view the gaze target is visible, we added additional
annotation ourselves and identified if the target is visible in a child-facing cam-
era view to construct labels for the general attention estimation problem. We
publicly release this annotation text file along with our paper.

We evaluate our method on the generalized attention prediction task. We
design a gaze target grid classification task, where each test image is divided
into N×N grids. If the subject is looking inside of the image then the grid square
which contains the gaze target is assigned a label of 1 while others are assigned
labels of 0. If the subject is looking somewhere outside of the frame then all grid
squares are assigned the 0 label. Using our method’s fixation likelihood map we
predict the positive gaze grid square. We test the GazeFollow model [23] which
is the closest work to our method in terms of having the ability to predict gaze
target location. One of its limitations is the inability to correctly predict the
“outside” case, where the subject is looking outside of the frame. As a result,
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Table 4. Evaluation on MMDB - gaze target grid classification

Grid Size Method Precision Recall

2x2 GazeFollow [23] 0.344 0.715
Our 0.744 0.851

5x5 GazeFollow [23] 0.210 0.437
Our 0.614 0.683

our method achieves much higher precision in addition to increased recall as
shown in Table 4.

Additionally, we constructed various baseline tests consisting of a classifier
based on a subset of features constructed for saliency, gaze and head pose. Specif-
ically, we tested with SVM and Random Forest using a subset of {[23], [32], [2]} as
features. In other words, each classifier has been trained for detection of looking
inside with the training set described in Table 1, using aforementioned features,
and tested on the MMDB images. We report the results in Table 5. Note that
the MMDB dataset was not used for training across all methods including ours.
Moreover, we evaluate the value of multi-dataset training in solving the general
attention problem. As shown in the last three rows of Table 5, joint training
of gaze and saliency is critical in solving the general attention estimation task
because without the gaze angle estimate it is ineffective to determine whether
the subject is looking inside or outside the frame.

Table 5. Evaluation of fixation likelihood on MMDB

Method Average Precision

SVM with GazeFollow [23] 0.311
SVM with GazeFollow [23]+gaze [32] 0.531
SVM with GazeFollow [23]+headpose [2] 0.620
SVM with gaze [32]+headpose [2] 0.405
SVM with GazeFollow [23]+gaze [32]+headpose [2] 0.624

Random Forest with GazeFollow [23] 0.707
Random Forest with GazeFollow [23]+gaze [32] 0.727
Random Forest with GazeFollow [23]+headpose [2] 0.785
Random Forest with gaze [32]+headpose [2] 0.512
Random Forest with GazeFollow [23]+gaze [32]+headpose [2] 0.773

Our, trained only with GazeFollow dataset 0.737
Our, trained only with GazeFollow and EYEDIAP dataset 0.820
Our final 0.902
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Fig. 6. Example result of our method on the MMDB dataset. The dataset contains
various types of gaze behavior including fixations on a target both within and out of
frame. Our method produces low heatmap when the fixation target is outside and high
heatmap when the target becomes clear.

4.4 Alternative Model and Diagnostics

Finally, we run additional experiments to study how the performance of our
model is affected by different training datasets and architectural choice by evalu-
ating it on the GazeFollow benchmark. As shown in Table 6, omitting EYEDIAP
or SynHead training dataset did not have much impact on the attention-within-
an-image heatmap estimation whereas changing model architecture considerably
affected the scores. For example, using a single ResNet50 pathway which pools fa-
cial features using ROI-pooling shows significantly degraded performance which
supports our decision to use a scene pathway as well as a face pathway. Inter-
estingly, the project-and-compare loss was not as helpful as initially expected,
and we think that this is because the coverage range of pose in the SynHead
and EYEDIAP datasets is limited (within ± 90) which is not the case in the
GazeFollow dataset.

Qualitatively, we were able to observe that, even though our method is de-
signed to measure fixation outside, it can make mistakes when the target is within
the frame but occluded by other object. Also, when the subject is closer to the
camera than some salient object in the background, the method sometimes esti-
mates those as fixation candidate due to the lack of scene depth understanding.
Examples are illustrated in Figure 7.
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Table 6. Additional model evaluation and diagnostics on the GazeFollow test split

Method AUC L2 Distance

No EYEDIAP 0.887 0.197
No SynHead 0.895 0.191
No EYEDIAP and SynHead 0.891 0.194
No project-and-compare loss 0.895 0.189
Map resolution 15x15 0.778 0.194
ROI-pooling 0.700 0.325

Our final 0.896 0.187

Fig. 7. Challenging cases due to occlusion and the lack of depth understanding.

5 Conclusion

In this paper we presented the new challenging problem of generalized visual
attention prediction which encapsulates several constrained attention prediction
and gaze estimation problems that have been the focus of many previous works.
We proposed a multi-task learning approach and neural architecture leveraging
three different datasets which tackles this problem and works across multiple
naturalistic social scenarios. In order to train our architecture we have supple-
mented these datasets with new annotations and we release these annotations to
the public. Our model achieves state-of-the-art performance on the single-task
gaze-saliency prediction and competes with state-of-the-art methods on gaze es-
timation benchmarks while achieving promising performance on the generalized
attention prediction problem on the MMDB dataset. Future work in this area
can lead to breakthroughs in attention prediction applications which are valu-
able in numerous scientific and commercial areas. A suggested first step would
be to improve existing datasets with additional annotations or collect datasets
tailored for this problem.
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