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Abstract. Despite tremendous progress achieved in temporal action lo-
calization, state-of-the-art methods still struggle to train accurate models
when annotated data is scarce. In this paper, we introduce a novel active
learning framework for temporal localization that aims to mitigate this
data dependency issue. We equip our framework with active selection
functions that can reuse knowledge from previously annotated datasets.
We study the performance of two state-of-the-art active selection func-
tions as well as two widely used active learning baselines. To validate
the effectiveness of each one of these selection functions, we conduct
simulated experiments on ActivityNet. We find that using previously ac-
quired knowledge as a bootstrapping source is crucial for active learners
aiming to localize actions. When equipped with the right selection func-
tion, our proposed framework exhibits significantly better performance
than standard active learning strategies, such as uncertainty sampling.
Finally, we employ our framework to augment the newly compiled Kinet-
ics action dataset with ground-truth temporal annotations. As a result,
we collect Kinetics-Localization, a novel large-scale dataset for temporal
action localization, which contains more than 15K YouTube videos.

Keywords: Video Understanding · Temporal Action Localization
· Active Learning · Video Annotation

1 Introduction

Video data arguably dominates the largest portion of internet content. With
more than 74% of total internet traffic being video [15], a need that arises is to au-
tomatically understand and index such massive amounts of data. The computer
vision community has embraced this problem, and during the last decade, sev-
eral approaches for video analysis have been proposed [8,26,31,39,41,48,52,58,76].
One of the most challenging tasks in this field, which has recently gained much
attention, is to understand and temporally localize human actions in untrimmed
videos. Such a task, which is widely known as temporal action localization, aims
to produce temporal bounds in a video, during which human actions occur.
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Fig. 1:Active Learning for Action Localization.We compare three different
active learners for temporal action localization. We plot the localization perfor-
mance (mAP) of each learner at different active learning steps. Each learner’s aim
is to use the least number of training samples as possible, which are obtained se-
quentially by annotating samples from an unlabeled set. The proposed method
resembles Learner C, which minimizes the number of active learning steps to
reach a target performance. Using our active learner, we construct Kinetics-
Localization, a novel and large-scale dataset for temporal action localization.

Datasets such as Thumos14 [35], ActivityNet [8], and Charades [58] have en-
abled the development of innovative approaches addressing the temporal action
localization problem [50,56,71,75,77]. These approaches have been successful in
increasing localization performance while maintaining a low computational foot-
print [5,71]. For instance, current state-of-the-art approaches [44,77] have im-
proved more than three times the first reported performance on datasets like
Thumos14 and ActivityNet. However, despite those great achievements, a cru-
cial limitation persists, namely the dependence of these models on large-scale
annotated data for training. This limitation often prevents the deployment of
action localization methods at scale, due to the large costs associated with video
labeling (e.g. Charades authors [58] spent $1 per video).

Additionally, given that datasets for temporal action localization are rela-
tively small, it is unclear whether existing methods will reach performances like
the ones obtained in other vision tasks such as object detection [54]. To overcome
some of these issues, Wang et al. [68] propose a new model that uses video-level
annotations combined with an attention mechanism to pinpoint actions temporal
bounds. Although it does not require temporal ground-truth, their performance
is significantly lower than that achieved by fully-supervised approaches, thus,
restricting its applications that do not require accurate detection.

In this paper, we propose an active learning method that aims to ease the
large-scale data dependence of current temporal localization methods. As in
every active learning setting [55], our goal is to develop a learner that selects
samples (videos in this case) from unlabeled sets to be annotated by an or-
acle. As compared to traditional active learners [27,42] where heuristics such
as uncertainty sampling are used to perform the sample selection, we explore
novel selection functions [25,40] that reuse knowledge from a previously exist-
ing dataset. For instance, we study a learnable selection function that learns a
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mapping from a model-sample state pair to an expected improvement in perfor-
mance. In doing so, such function learns to score the unlabelled samples based on
the expected performance gain they are likely to produce if they are annotated
and used to update the current version of the localization model being trained.

Figure 1 depicts the learning process of three different action localization
strategies. To evaluate each learner, we measure the performance improvements,
which are assessed on a labeled set, at different training dataset sizes (or learn-
ing stages). We associate traditional action localization approaches [5,71,77] to
Learner A (passive learning), which randomly picks samples to be annotated for
future training iterations. Learner A exhibits passive behavior in making smart
selections of samples to augment its training set. Learner B is an active learner
that uses uncertainty sampling [42] to select the samples (the learner chooses
instances whose labels are most uncertain). Learner C is a learning-based active
learner. Because it incorporates historical knowledge from previous dataset se-
lections, Learner C enables a better learning process. In this paper, we introduce
an active learning framework that minimizes the number of active learning steps
required to reach the desired performance.

Contributions. The core idea of the paper is to develop an active learning
framework for temporal action localization. Specifically, the contributions of this
paper are threefold. (1) We introduce a new active learner for action localiza-
tion (see Section 3). To develop our approach, we thoughtfully study different
sampling functions, including those that can exploit previously labeled data to
learn or bootstrap a selection function that chooses unlabelled samples with the
aim of improving the localization model the most. (2) We conduct extensive
experiments in Section 4 demonstrating the capabilities of the proposed frame-
work. When compared to traditional learning (random sampling), our approach
learns to detect actions significantly quicker. Additionally, we show that our ac-
tive learner can be employed in batch-mode, and is robust to noisy ground-truth
annotations. (3) We employ our active learner to construct a novel dataset for
temporal action localization (see Section 5). Using videos from the Kinetics [39]
dataset, we apply our learner to request temporal annotations from Amazon
Mechanical Turk workers. We name this collected dataset Kinetics-Localization

and it comprises more than 15K YouTube videos.

2 Related Work

This section briefly discusses the most relevant work to ours, namely those re-
lated to active learning and temporal action localization.

Active Learning tackles the problem of selecting samples from unlabeled sets
to be annotated by an oracle. In the last decade, several active learning strategies
have been proposed [27,42,63] and applied to several research fields, including
speech recognition [32], natural language processing [62], chemistry [18], just to
name a few. We refer the reader to the survey of Settles [55] for an extensive re-
view of active learning methods. Active learning has also been used in traditional
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computer vision tasks, such as image classification [4,22,25,36,37,53] and object
detection [64], or to construct large-scale image and video datasets [16,66,72].
Very recently, active learning approaches have emerged in more contemporary
vision tasks, including human pose estimation [46] and visual question answer-
ing [45]. Most of the active learning approaches in computer vision have used
the simple but effective uncertainty sampling query strategy [42,43], where un-
labelled samples are selected based on the entropy of their scores generated by
the current discriminative model (least confidence and margin based score selec-
tions are other popular query strategies). However, the main limitation of this
strategy is its inability to handle complex scenarios where factors such as label
noise, outliers, or shift in data distribution arise in the active learning setting
[40]. Inspired by very recent ideas in active learning [1,25,40,70,74], our proposed
active learning framework learns (or bootstrap) a function that selects samples
for annotation based on knowledge extracted from a previous dataset. One vari-
ant of our approach estimates the effect of labeling a particular instance on the
performance of the current discriminative model. As such, this learnable func-
tion is able to overcome the shortcomings of heuristic active learners, such as
uncertainty sampling (see Section 4).

Temporal Action Localization. Many techniques have been developed over
the years to recognize [11,12,49,59,67], and localize human activities, either in
images [28,47,73] or videos [29,34,69]. Our work focuses on the temporal action
localization problem in video, whose goal is to provide starting and ending times
of an action occurring within an untrimmed video. Researchers have explored
innovative ideas to efficiently and accurately address this problem. Earlier meth-
ods rely on applying action classifiers in a sliding window fashion [19,23,50]. To
unburden the computational requirements of sliding windows, a new line of work
studies the use of action proposals to quickly scan a video in an attempt to re-
duce the search space [6,7,10,20,24,56]. More recently, end-to-end approaches
have boosted the performance of stage-wise methods, demonstrating the impor-
tance of jointly optimizing classifiers and feature extractors [13,71,75,77].

Despite the large body of work on action localization, most methods focus
on either improving performance [77] or boosting speed [5], while very few in-
vestigate the use of active learning to mitigate the data dependency problem.
To the best of our knowledge, only the work of Bandla and Grauman [2] has
incorporated active learning to train an action detection model. However, their
method relies on hand-crafted active selection functions such as uncertainty sam-
pling [42], which works well in controlled scenarios where statistical properties
of the dataset can be inferred. However, it fails when more complex shifts in
data distribution are present. In contrast and inspired by recent works [25,40],
our approach avoids predefined heuristics and instead learns or bootstraps the
active selection function from existing data. We will show that learning such a
function not only improves the learning process of an action localization model
on a given dataset, but it is also adaptable for use when annotating new data.
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Fig. 2: Active Learner for Temporal Action Localization. Firstly, we train
an action localization model with a labeled set of videos. Then, using the trained
model, we generate video predictions in an unlabeled set and select one of the
videos that is expected to improve the learner the most. Finally, an oracle tem-
porally annotates the selected video and then added into the labeled set.

3 Active Learner for Temporal Action Localization

We propose an active learning framework for temporal action localization. Our
goal is to train accurate detection models using a reduced amount of labeled data.
At every learning step t, a set of labeled samples Lt is first used to train a model
ft. Then, from an unlabeled pool Ut, a video instance v∗ is chosen by a selection
function g. Afterwards, an oracle provides temporal ground-truth for the selected
instance, and the labeled set Lt is augmented with this new annotation. This
process repeats until the desired performance is reached or the set Ut is empty.
As emphasized in previous work [37,46], the key challenge in active learning is
to design the proper selection function, which seeks to minimize the number
of times an oracle is queried to reach a target performance. Accordingly, we
empower our proposed framework with state-of-the-art selection functions that
exploit previously labeled datasets as bootstrapping.

This section provides a complete walk-through of our approach (see Figure
2). We describe our model for temporal action localization, elaborate on our
proposed active selection function, and explain in detail the oracle’s task.

3.1 Localization Model Training Step

Much progress has been made in designing accurate action detection models
[5,24,71,77]. So ideally, any of these detectors can be used here. These detectors
can be grouped into two categories, namely, stage-wise and end-to-end models.
Models trained end-to-end have shown superior detection rates. However, such
methods cannot decompose the localization problem into simpler tasks. We argue
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that decomposing the action localization task is key, specially for active learning
methods that use previous knowledge to bootstrap the selection function learning
process. As such, we opt for designing a stage-wise action localization model.

Our model takes as input a video v described by a set of n temporal segments,
denoted by S = {s1, · · · , sn} where si = [tstart, tend] is a 2D vector containing
starting and ending times of a segment. In this paper, these temporal segments
are action proposals generated by DAPs [20]. Our localization model’s goal is
to select k temporal segments Sk from the initial set S and produce a vector of
confidence scores zc ∈ R

k for each action class c in the dataset. In short, our
model maps an input video described by a large set of candidate segments into
a small set of temporal predictions: ft(v,S) →

{

Sk, {zc}c∈C

}

where C is the set
of action classes.

To that end, we organize our model into three modules: a video encoder

whose goal is to describe temporal segments S in terms of a feature vector o, an
attention module which picks k segments based on a binary action classifier ht,
and an action classifier φ(Sk) which generates the confidence scores zc for each
class in C. Below, we provide design details for each component.

Video Encoder. Given a set of temporal segments S, our aim is to encode
each individual segment si with a compact representation. We first extract frame-
level features using a CNN and then aggregate these representations into a single
feature vector oi. In our experiments, we train an Inception V3 network [61] using
the Kinetics dataset [39] and extract features from the pool3 layer (a feature
vector with 2048 dimensions). To reduce the temporal receptive field, we opt
for average pooling, which beyond its simplicity has demonstrated competitive
performance in various tasks [38,60]. Thus, our video encoder generates a matrix
of visual observations, O = [o1 · · ·on] ∈ R

2048×n.

Attention Module. This module receives a visual observation matrix O to pick
k temporal segments Sk which are most likely to contain an action. We adopt
a linear Support Vector Machine (SVM) [17,21] to learn a binary classifier that
discriminates between actions and background. We employ Platt scaling [51] to
obtain probabilistic scores from the SVM outputs. Finally, to select the output
segments, we perform hard attention pooling and pick the top-k segments with
high confidence scores. We set k = 10 in our experiments. Accordingly, our
attention module ht outputs a small number of segments Sk, which are encoded
with their corresponding visual representations in O.

Action Classifier. Taking as input a reduced set of temporal segments Sk,
the action classifier aims to generate a set of confidence scores zc for each action
category in C. Consciously, we build a model composed of a fully-connected
layer and a soft-max classifier. Thus, our action classifier φ generates the final
detection results

{

Sk, {zc}c∈C

}

.

Training. We define the labeled set at learning step t of size pt as Lt =
{

(vtrain1 ,y1), (v
train
2 ,y2), · · · (v

train
pt

,ypt
)
}

, where Y = [y1| · · · |ypt
] ∈ R

2×pt
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contains the temporal annotations of all action instances. We also define the set of

temporal segments of sizem as S
(t)
i = {strain1 , · · · , strainm }, where i ∈ {1, 2, ..., pt}

describes each video. We train our attention and action classifier modules sep-

arately. To train the attention module, we define instances in S
(t)
i as positives

if the temporal Intersection over Union (tIoU) with any ground-truth instance
is greater than 0.7. Similarly, for training the action classifier, we use temporal
instances with tIoU greater than 0.7, but considering only the top-k segments
chosen by our attention module.

3.2 Active Selection Step

Our aim is to design a selection function g that picks an instance v∗ from the
unlabeled set Ut. Our primary challenge is to develop this function such that
it selects the samples that are expected to improve the localization model the
most. Additionally, we want the selection function to generalize to unseen action
categories. Purposefully, instead of sampling directly from the ft predictions, we
cast the selection problem into a meta-learning task; pick samples that improve

attention module ht the most. Here, we focus the learner on the attention module
as opposed to the action classifier, since the former deals with a more complex
task (temporal boundary generation) and its output directly impacts the latter.
Formally, our learnable selector g takes as input confidence scores produced by
the action classifier ht when applied to the unlabeled set Ut:X = [x1,x2, · · · ,xqt ]
where X ∈ R

l×qt with l being the number of temporal segments and qt the
number of unlabeled videos. In this section, we introduce three different sampling
functions, which are studied and diagnosed in Section 4.

Learning Active Learning (LAL). Here, we follow [40] and formulate the
learning of the selection function as a regression problem, which predicts the
improvement in performance of our attention module for all samples belonging
to Ut. We construct a feature matrix F from pairs of model state and sample
description. We choose the model state to be the SVM weights defining ht and
the sample description to be the histogram of confidence scores in X. The tar-
get vector used for regression is η, which corresponds to the improvement δ in
localization performance (in practice mean Average Precision) after the model
ht is trained with each of the samples in a Set of previously labeled examples
Kt individually. In our experiments, we refer to Kt as the Knowledge-Source
Set. To generate a matrix F that explores enough pairs of model and sample
states, we follow the Monte-Carlo procedure used in [40]. Once matrix F and
targets η are constructed, we learn g using Support Vector Regression (SVR).
Once trained, we can apply g to the unlabelled set to select the sample with the
highest predicted performance improvement: g(Ut) → v∗.

Maximum Conflict Label Equality (MCLE). This method leverages knowl-
edge from past existing datasets. We closely follow [25] and devise a method
that uses zero-shot learning as warm initialization for active learning. We opt
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for simplicity and implement a Video Search zero-shot learning approach, which
uses top results from YouTube search as positive samples [14]. This approach’s
implementation is based on the code provided by [25].

Uncertainty Sampling (US). This baseline samples videos with the most
uncertain predictions. Following standard uncertainty sampling approaches [42],
we compute the entropy of the video predictions (i.e. the histogram of confidence
scores in the columns of X) and select the one with highest entropy value.
This baseline is popularly used in computer vision applications such as image
classification [53] or human pose estimation [46].

3.3 Annotation Step

The oracle’s task is to annotate videos chosen by the selection function g. Specif-
ically, the oracle is asked to provide temporal bounds of all instances of an
intended action. Towards this goal, several researchers have proposed efficient
strategies to collect such annotations [9,57]. Most of them have focused their
approaches to exploit crowd-sourcing throughput and have used Amazon Me-
chanical Turk to annotate their large-scale video datasets. In this work, we ex-
periment with two type of oracles: (i) simulated ones, which we emulate by using
the ground-truth from existing and completely annotated datasets, and (ii) real
human annotators, who are Amazon Mechanical Turk workers. We observe that
the proposed framework is indiscriminately good in both cases.

4 Diagnostic Experiments

To evaluate our framework, we analyze its performance, including all its variants
of selection functions, when oracles are simulated, i.e. we emulate an oracle’s
outcome by using the ground-truth from existing datasets that have already
been completely annotated.

4.1 Experimental Settings

Dataset. We choose ActivityNet [8], the largest available dataset for temporal
action localization, to conduct the diagnostic experiments in this section. Specif-
ically, we use the training and validation sets of ActivityNet 1.3, which include
14950 videos from 200 activity classes.

Metrics. We use the mean Average Precision (mAP) metric to assess the per-
formance of an action localization model. Following the standard evaluation of
ActivityNet, we report mAP averaged in a range of tIoU thresholds, i.e. from
0.5 to 0.95 with an increment of 0.05. To quantify the merits of a sampling
function, we are particularly interested in observing the rate of increase of mAP
with increasing training set size (i.e. increasing percentage of the dataset used
to train the localization model).
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Setup. LAL and MCLE approaches (introduced in Section 3.2) leverage knowl-
edge extracted from previous datasets to bootstrap the selection function learn-
ing process. To exploit each of these methods to their full extent, we extract two
category-disjoint subsets from ActivityNet. The first subset, dubbedKnowledge-

Source, contains 2790 videos from 50 action categories. This subset is used to
bootstrap the LAL and MCLE sampling functions. The second subset, dubbed
ActivityNet-Selection, consists of 11160 videos with 150 action categories,
which do not overlap with the ones in Knowledge-Source. We mainly con-
duct the active learning experiments on ActivityNet-Selection. Addition-
ally, to measure the performance of the localization model, we define a Test-

ing Set, which contains 3724 unseen videos from the same 150 categories
as ActivityNet-Selection. The Testing Set videos do not overlap with
ActivityNet-Selection nor Knowledge-Source videos.

We use the following protocol in our diagnostic experiments. We bootstrap
LAL and MCLE using the labeled data in Knowledge-Source by following
the method described in Section 3.2. Note that US does not need previous knowl-
edge to operate. Once the selection function is available, we randomly select 10%
from ActivityNet-Selection as a training set to build an initial action local-
ization model (refer to Section 3.1). Then, we evaluate the model’s mAP perfor-
mance on the Testing Set, and we apply our active learner onto the remaining
videos of ActivityNet-Selection to select one or more of them, which will
be annotated in the next step. Subsequently, we probe the oracle, which is simu-
lated in this case by using the ground-truth directly provided by ActivityNet-

Selection, to obtain temporal annotations for the selected videos. Finally, we
augment the training set with the newly annotated samples, which in turn are
used to re-train the localization model. This sequential process repeats until we
have used 100% of the videos in ActivityNet-Selection for training.

4.2 Selection Function Ablation Study

Comparison under Controlled settings. Figure 3 (Left) compares mAP
performance between the three selection functions introduced in Section 3.2 on
the Testing Set. We also report the performance of a Random Sampling base-
line for reference. We report how the mAP of the localization model increases
with the increase in training data, which is iteratively sampled according to the
three active learning methods. These results help us investigate the effectiveness
of each method in terms of how much improvement is obtained by adding a
certain amount of training data. It is clear that LAL and MCLE significantly
outperform US and the random sampling baseline. For example, to achieve 80%
of the final mAP (i.e. when all of ActivityNet-Selection is used for train-
ing), LAL and MCLE require only 35% and 38% of the training data to be
labelled respectively, while Uncertainty and Random Selection need 42% and
65% respectively to achieve the same performance. We attribute the superiority
of LAL and MCLE to the fact that both approaches reuse information from
labeled classes in the Knowledge-Source Set. Additionally, LAL directly ex-
ploits the current state of the localization model to make its selection at every
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Fig. 3: Selection Function Ablation Study. Left.We show the % of full mAP
(full training) achieved at different ratios of labeled videos. We report the Area
Under the Learning Curve (AULC) for each sampling function. LAL and MCLE
present steeper increases on mAP. Center. We report the AULC at different
batch sizes. LAL is robust to large batch sizes. Right. We compute AULC
against different level of noise from oracle annotations. All methods tolerate
small levels of noise.

training step. As such, it has inherently broader knowledge about the dataset it
is annotating as compared to the simple heuristics used by Uncertainty Selection.

Effect of Sampling Batch Size. Re-training a model whenever a single new
sample is made available is prohibitively expensive. To alleviate this problem,
researchers often consider active learning in batch-mode [3]. In batch-mode, our
active learner selects groups of samples instead of just one. For LAL, we simply
rank all the unlabelled samples and pick the top scoring ones based on LAL’s
predictions (i.e. the performance gain they are expected to cause when they are
individually added to the training). For MCLE and Uncertainty Sampling, we
select one unlabeled instance at a time until we completely fill the batch that
will be annotated by the oracle. Figure 3 (Center) shows the Area Under the
Learning Curve for different sampling batch sizes. The AULC value summarizes
the performance of an active learner by computing the area under the “per-

centage of full mAP vs ratio of labeled videos” curve. For reference, we include
the performance when using a single selection (i.e. batch size of 1). Uncertainty
Sampling performance is poor after increasing the sampling batch size to 32.
Interestingly, MCLE performance is strongly degraded at larger sampling batch
sizes. The AULC score jumps from 0.75% down to 0.65% when the batch size
is set to 64. On the other hand, we observe that LAL is relatively robust to
larger sampling batch sizes. For instance, for a batch of size 64, the AULC drops
only 0.05. We attribute the robustness of LAL to the fact that it estimates the
selection score of each sample independently. Motivated by a trade-off between
computational footprint and performance, we fix the selection batch size to 64
for the remaining experiments.
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Effect of Noisy Annotations. Here, we analyze the performance of the se-
lection functions when exposed to noisy oracles. To evaluate robustness against
noisy annotations, we measure the performance of our active learner when dif-
ferent levels of noise are injected into the oracle responses. We quantify the
noise in terms of how much an oracle response differs, in tIoU, from the orig-
inal ground-truth. For example, at 5% noise level, the oracle returns temporal
instances sampled from a Gaussian distribution with mean equal to 95% tIoU.

Similar to previous analysis, Figure 3 (Right) reports the AULC at different
noise levels. We observe that all sampling functions tolerate high levels of noise
and in some cases (LAL) their performance can even improve when small (5%)
noise levels are added. We conjecture that this improvement is due to the fact
that such small levels of noise can be seen as adversarial examples, which previous
works have demonstrated to be beneficial for training [30].

5 Online Experiments: Collecting Kinetics-Localization

In this section, we perform live experiments, where we employ our active learner
to build a new dataset. Instead of collecting the dataset from scratch, we exploit
Kinetics [39] videos (and its video-level labels) and enrich them with temporally
localized annotations for actions. We call our novel dataset Kinetics-Localization.
First, we run our active learner to collect temporal annotations from Kinetics
videos. Then, we present statistics of the collected data. Finally, we evaluate the
performance of models trained with the collected data.

5.1 Active Annotation Pipeline

The Kinetics dataset [39] is one of the largest available datasets for action recog-
nition. To construct the dataset, the authors used Amazon Mechanical Turk
(AMT) to decide whether a 10 seconds clip contains a target action. To gather
the pool of clips to be annotated, first a large set of videos are obtained by
matching YouTube titles with action names. Then, a classifier, which is trained
with images returned by Google Image Search, decides where the 10 seconds clip
to be annotated is extracted from. As a result, Kinetics provides more than 300K
videos among 400 different action labels. There is only one annotated action clip
in each video. The scale of the dataset has enabled the development of novel
neural network architectures for video [12]. Unfortunately, despite the tremen-
dous effort needed to build Kinetics, the dataset is not designed for the task
of temporal action localization. Thus, we commit our active learner to collect
temporal annotations for a portion of Kinetics.

We employ our active learner to gather temporal annotations for Kinetics
videos from 75 action classes. It needs to select samples that will be annotated
online by real human oracles. Following standard procedure for temporal video
annotation, we design a user interface that allows people to determine the tem-
poral bounds of actions in videos [9,57,65]. We rely on Amazon Mechanical Turk
workers (turkers) to annotate the videos. Snapshots of the user interface and de-
tails about the annotation process are available in the supplementary material.
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Fig. 4: Kinetics-Localization at a Glance. We introduce Kinetics-
Localization, a novel dataset for temporal action localization. Top: Distribu-
tion of number of videos and instances per class. Middle. Kinetics-Localization
attributes. We show the distribution of ground-truth instances for different at-
tributes including Coverage, Length, and Number of Instances per video. Bot-
tom. We analyze the distribution of ground-truth instances for pairwise interac-
tions of attributes. Each bin reports the percentage of ground-truth that belongs
to such bin.

5.2 Kinetics-Localization at a Glance

As a result of our annotation campaign, we effectively compile a temporal ac-
tion localization dataset comprising 15000 videos from 75 different action cate-
gories, resulting in more than 30000 temporal annotations. Figure 4 summarizes
Kinetics-Localization properties. Figure 4 (Top) shows the number of videos
and instances per class in the current version of the dataset. The distribution
of number of videos/instances is close to uniform. Also notice that the ratio of
instances per video is 2.2.



What do I Annotate Next? 13

Figure 4 (Middle) shows the ground-truth distribution for three different
inherent attributes of the dataset. (i) Coverage, which we measure as the frac-
tion between an instance’s length and the duration of the video it belongs to.
We group instance coverage into five groups: Extra Small (XS: (0, 0.2]); Small
(S: (0.2, 0.4]); Medium (M: (0.4, 0.6]); Large (L: (0.6, 0.8]); Extra Large (XL:
(0.8, 1.0]). (ii) Length, measured as the duration, in seconds, of an instance.
We define five bins to plot the distribution of this attribute: Extra Small (XS:
(0, 30]), Small (S: (30, 60]), Medium (M: (60, 120]), Large (L: (120, 180]), and
Extra Large (XL: > 180). (iii) Number of instances in a video (# instances),
which we cluster into five bins as well: Extra Small (XS: [0, 1]); Small (S: (1, 4]);
Medium (M: (4, 8]); Large (L: (8, 16]); Extra Large (XL: > 16). In terms of
coverage, extra small and extra large instances have a large portion of ground-
truth instances assigned. Also note that more than half of the instances have
at most small coverage (< 0.4). The dataset comprises 55.1% of instances that
are relatively small. We hypothesize that such small instances will enable new
challenges, as is the case in other fields such as face detection [33].

We also study the distribution between pairs of instance attributes (see Fig-
ure 4 (Bottom)). We observe three major trends from the ground-truth distri-
bution: (i) as expected, instances with high coverage tend to have no neighbours
(single instance per video); (ii) 34.9% of instances have extra small coverage and
extra small length, which we argue may be the hardest type of sample for current
detectors; (iii) In summary, we find that the dataset exhibits challenging types
of ground-truth instances, which may span ranges of difficulty.

5.3 Kinetics-Localization Benchmark

We evaluate two different temporal action localization models: (i) our temporal
localization model (Stage-Wise), which we introduced in Section 3.1; (ii) the
Structured Segmented Network (SSN) introduced by Zhao et al. [77] (we refer
to this approach as End-to-End). Although we could have employed other action
detectors such as [5,71], we choose SSN because it registers state-of-the-art per-
formance. We train each of the models either using Kinetics-Localization or the
original Kinetics dataset. Table 1 summarizes the results. We use the provided 10
second clips to train the action localization models, and assume that all remain-
ing content in the video is background information. Even though background
might also contain some valid action instances, we argue there is no systematic
way to add those for training without fully annotating them.

To properly quantify performance, we fully annotate a portion of the Kinetics
validation subset with temporal annotations, which we refer from now on as
Kinetics-Localization Validation Set. Table 1 shows the temporal localization
performance of both approaches at different tIoU thresholds on the Kinetics-
Localization Validation Set. We observe that the performance at lower tIoU
thresholds (e.g. 0.1) for both models is close to the achieved performance of
previous work on the trimmed classification task [12]. However, when the tIoU
threshold is increased to 0.2, the performance drastically drops. For example, the
mAP of the End-to-End SSN model (trained on the original Kinetics) decreases
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mAP (%) at tIoU
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Avg.

Kinetics-Localization

Stage-Wise 72.1 59.2 52.8 48.7 45.1 31.0 26.4 17.7 3.9 21.3
End-to-End 72.8 61.3 54.9 52.3 49.6 32.7 28.2 19.5 5.2 22.8

Kinetics [39]
Stage-Wise 43.2 34.7 22.8 15.1 13.7 11.0 8.9 5.7 2.9 8.2
End-to-End 59.4 40.1 28.3 20.8 15.0 11.8 9.4 5.2 1.2 8.3

Table 1: Kinetics-Localization benchmark. We report the mAP at different
tIoU thresholds of the Stage-Wise and End-to-End models. We averaged mAP
in a range of tIoU thresholds, i.e. from 0.5 to 0.95 with an increment of 0.05
(Avg. mAP). Notably, training with Kinetics-Localization dataset offers signifi-
cant gains in performance as compared to using the original Kinetics dataset.

from 59.4% to 40.1%. Also, once typical tIoU thresholds for localization are
used (0.5 to 0.9), both approaches perform poorly. We attribute this behavior to
the fact that Kinetics does not include accurate temporal action bounds, thus,
preventing the localization models to reason about temporal configurations of
actions. When comparing the performance of the Stage-Wise approach to that
of the same model trained with the newly collected Kinetics-Localization data,
an improvement of 13.1% mAP is unlocked on the validation set. This validates
the need for accurate temporal annotations to train localization models as well
as the need for cost effective frameworks to collect these annotations (like the
the active learner method we propose in this paper).

6 Conclusion

We introduced a novel active learning framework for temporal action localization.
Towards this goal, we explored several state-of-the-art active selection functions
and systematically analyzed their performance. We showed that our framework
outperforms baseline approaches when the evaluation is conducted with sim-
ulated oracles. We also observed interesting properties of our framework when
equipped with its LAL variant; (1) it exhibited good performance in batch-mode,
and (2) is robust to noisy oracles. After validating the contributions of our ac-
tive learner, we employed it to gather a novel dataset for temporal localization,
which we called Kinetics-Localization. We presented statistics of the datasets as
well as a novel established benchmark for temporal action localization. We hope
that the collected Kinetics-Localization dataset helps to encourage the design of
novel methods for action localization.
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