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Abstract. Human activity recognition is typically addressed by detect-
ing key concepts like global and local motion, features related to object
classes present in the scene, as well as features related to the global con-
text. The next open challenges in activity recognition require a level of
understanding that pushes beyond this and call for models with capa-
bilities for fine distinction and detailed comprehension of interactions
between actors and objects in a scene. We propose a model capable of
learning to reason about semantically meaningful spatio-temporal inter-
actions in videos. The key to our approach is a choice of performing
this reasoning at the object level through the integration of state of the
art object detection networks. This allows the model to learn detailed
spatial interactions that exist at a semantic, object-interaction relevant
level. We evaluate our method on three standard datasets (Twenty-BN
Something-Something, VLOG and EPIC Kitchens) and achieve state of
the art results on all of them. Finally, we show visualizations of the in-
teractions learned by the model, which illustrate object classes and their
interactions corresponding to different activity classes.
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1 Introduction

The field of video understanding is extremely diverse, ranging from extract-
ing highly detailed information captured by specifically designed motion cap-
ture systems [30] to making general sense of videos from the Web [I]. As in
the domain of image recognition, there exist a number of large-scale video
datasets [6I24UT2JTTI2TIT3], which allow the training of high-capacity deep learn-
ing models from massive amounts of data. These models enable detection of key
cues present in videos, such as global and local motion, various object categories
and global scene-level information, and often achieve impressive performance in
recognizing high-level, abstract concepts in the wild.

However, recent attention has been directed toward a more thorough un-
derstanding of human-focused activity in diverse internet videos. These efforts
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Fig. 1. Humans can understand what happened in a video (“the leftmost carrot was
chopped by the person”) given only a pair of frames. Along these lines, the goal of this
work is to explore the capabilities of higher-level reasoning in neural models operating
at the semantic level of objects and interactions.

range from atomic human actions [I3] to fine-grained object interactions [12]
to everyday, commonly occurring human-object interactions [11]. This returns
us to a human-centric viewpoint of activity recognition where it is not only the
presence of certain objects / scenes that dictate the activity present, but the
manner, order, and effects of human interaction with these scene elements that
are necessary for understanding. In a sense, this is akin to the problems in current
3D human activity recognition datasets [30], but requires the more challenging
reasoning and understanding of diverse environments common to internet video
collections.

Humans are able to infer what happened in a video given only a few sample
frames. This faculty is called reasoning and is a key component of human intelli-
gence. As an example we can consider the pair of images in Figure[I] which shows
a complex situation involving articulated objects (human, carrots and knife), the
change of location and composition of objects. For humans it is straightforward
to draw a conclusion on what happened (a carrot was chopped by the human).
Humans have this extraordinary ability of performing visual reasoning on very
complicated tasks while it remains unattainable for contemporary computer vi-
sion algorithms [34JT0].

There have been a number of attempts to equip neural models with reasoning
abilities by training them to solve Visual Question Answering (VQA) problems.
Among proposed solutions are prior-less data normalization [25], structuring
networks to model relationships [29/40] as well as more complex attention based
mechanisms [I7]. At the same time, it was shown that high performance on exist-
ing VQA datasets can be achieved by simply discovering biases in the data [19].

We extend these efforts to object level reasoning in videos. Since a video is
a temporal sequence, we leverage time as an explicit causal signal to identify
causal object relations. Our approach is related to the concept of the “arrow
of the time” [20] involving the “one-way direction” or “asymmetry” of time. In
Figure [I] the knife was used before the carrot switched over to the chopped-up
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state on the right side. For a video classification problem, we want to identify
a causal event A happening in a video that affects its label B. But instead of
identifying this causal event directly from pixels we want to identify it from an
object level perspective.

Following this hypothesis we propose to make a bridge between object de-
tection and activity recognition. Object detection allows us to extract low-level
information from a scene with all the present object instances and their semantic
meanings. However, detailed activity understanding requires reasoning over these
semantic structures, determining which objects were involved in interactions, of
what nature, and what were the results of these. To compound problems, the
semantic structure of a scene may change during a video (e.g. a new object can
appear, a person may make a move from one point to another one of the scene).

We propose an Object Relation Network (ORN), a neural network mod-
ule for reasoning between detected semantic object instances through space and
time. The ORN has potential to address these issues and conduct relational
reasoning over object interactions for the purpose of activity recognition. A set
of object detection masks ranging over different object categories and temporal
occurrences is input to the ORN. The ORN is able to infer pairwise relationships
between objects detected at varying different moments in time.

Code and object masks predictions will be publicly availableﬁ

2 Related work

Action Recognition. Pre-deep learning approaches in action recognition fo-
cused on handcrafted spatio-temporal features including space-time interest points
like SIFT-3D, HOG3D, IDT and aggregated them using bag-of-words techniques.
Some hand-crafted representations, like dense trajectories [39], still give compet-
itive performance and are frequently combined with deep learning.

In the recent past, work has shifted to deep learning. Early attempts adapt
2D convolutional networks to videos through temporal pooling and 3D convolu-
tions [2I37]. 3D convolutions are now widely adopted for activity recognition with
the introduction of feature transfer by inflating pre-trained 2D convolutional ker-
nels from image classification models trained on ImageNet /ILSVRC [28] through
3D kernels [6]. The downside of 3D kernels is their computational complexity
and the large number of learnable parameters, leading to the introduction of
2.5D kernels, i.e. separable filters in the form of a 2D spatial kernel followed by
a temporal kernel [4I]. An alternative to temporal convolutions are Recurrent
Neural Networks (RNNs) in their various gated forms (GRUs, LSTMs) [16]].

Karpathy et al. [18] presented a wide study on different ways of connecting
information in spatial and temporal dimensions through convolutions and pool-
ing. On very general datasets with coarse activity classes they have showed that
there was a small margin between classifying individual frames and classifying
videos with more sophisticated temporal aggregation.

S https://github.com/fabienbaradel/object_level_visual_reasoning
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Simoyan et al. [32] proposed a widely adopted two-stream architecture for
action recognition which extracts two different streams, one processing raw RGB
input and one processing pre-computed optical flow images.

In slightly narrower settings, prior information on the video content can allow
more fine-grained models. Articulated pose is widely used in cases where humans
are guaranteed to be present [30]. Pose estimation and activity recognition as a
joint (multi-task) problem has recently shown to improve both tasks [23].

Attention models are a way to structure deep networks in an often generic
way. They are able to iteratively focus attention to specific parts in the data with-
out requiring prior knowledge about part or object positions. In activity recog-
nition, they have gained some traction in recent years, either as soft-attention
on articulated pose (joints) [33], on feature map cells [3T36], on time [42] or on
parts in raw RGB input through differentiable crops [3].

When raw video data is globally fed into deep neural networks, they focus
on extracting spatio-temporal features and perform aggregations. It has been
shown that these techniques fail on challenging fine-grained datasets, which re-
quire learning long temporal dependencies and human-object interactions. A
concentrated effort has been made to create large scale datasets to overcome
these issues [T2JTTI2TUT3].

Relational Reasoning. Relational reasoning is a well studied field for many
applications ranging from visual reasoning [29] to reasoning about physical
systems [4]. Battaglia et al. [4] introduce a fully-differentiable network physics
engine called Interaction Network (IN). IN learns to predict several physical
systems such as gravitational systems, rigid body dynamics, and mass-spring
systems. It shows impressive results; however, it learns from a virtual environ-
ment, which provides access to virtually unlimited training examples. Following
the same perspective, Santoro et al. [29] introduced Relation Network (RN),
a plug-in module for reasoning in deep networks. RN shows human-level per-
formance in Visual Question Answering (VQA) by inferring pairwise “object”
relations. However, in contrast to our work, the term “object” in [29] does not
refer to semantically meaningful entities, but to discrete cells in feature maps.
The number of interactions therefore grows with feature map resolutions, which
makes it difficult to scale. Furthermore, a recent study [19] has shown that some
of these results are subject to dataset bias and do not generalize well to small
changes in the settings of the dataset.

In the same line, a recent work [35] has shown promising results on discov-
ering objects and their interactions in an unsupervised manner using training
examples from virtual environments. In [38], attention and relational modules
are combined on a graph structure. From a different perspective, [25] show that
relational reasoning can be learned for visual reasoning in a data driven way with-
out any prior using conditional batch normalization with a feature-wise affine
transformation based on conditioning information. In an opposite approach, a
strong structural prior is learned in the form of a complex attention mecha-
nism: in [I7], an external memory module combined with attention processes
over input images and text questions, performing iterative reasoning for VQA.
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While most of the discussed work has been designed for VQA and for pre-
dictions on physical systems and environments, extensions have been proposed
for video understanding. Reasoning in videos on a mask or segmentation level
has been attempted for video prediction [22], where the goal was to leverage se-
mantic information to be able predict further into the future. Zhou et al [5] have
recently shown state-of-the-art performance on challenging datasets by extend-
ing Relation Network to video classification. Their chosen entities are frames, on
which they employ RN to reason on a temporal level only through pairwise frame
relations. The approach is promising, but restricted to temporal contextual in-
formation without an understanding on a local object level, which is provided
by our approach.

3 Object-level Visual Reasoning in Space and Time

Our goal is to extract multiple types of cues from a video sequence: interactions
between predicted objects and their semantic classes, as well as local and global
motion in the scene. We formulate this objective as a neural architecture with
two heads: an activity head and an object head. Figure [2] gives a functional
overview of the model. Both heads share common features up to a certain layer
shown in red in the figure. The activity head, shown in orange in the figure,
is a CNN-based architecture employing convolutional layers, including spatio-
temporal convolutions, able to extract global motion features. However, it is not
able to extract information from an object level perspective. We leverage the
object head to perform reasoning on the relationships between predicted object
instances.

Our main contribution is a new structured module called Object Relation
Network (ORN), which is able to perform spatio-temporal reasoning between
detected object instances in the video. ORN is able to reason by modeling how
objects move, appear and disappear and how they interact between two frames.

In this section, we will first describe our main contribution, the ORN network.
We then provide details about object instance features, about the activity head,
and finally about the final recognition task. In what follows, lowercase letters
denote 1D vectors while uppercase letters are used for 2D and 3D matrices or
higher order tensors. We assume that the input of our system is a video of T’
frames denoted by Xi.7 = (Xt)z;l where X; is the RGB image at timestep t.
The goal is to learn a mapping from Xi.r to activity classes y.

3.1 Object Relation Network

ORN (Object Relation Network) is a module for reasoning between semantic
objects through space and time. It captures object moves, arrivals and interac-
tions in an efficient manner. We suppose that for each frame t, we have a set
of objects k with associated features of. Objects and features are detected and
computed by the object head described in Section [3.2]
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Fig. 2. A functional overview of the model. A global convolutional model extracts
features and splits into two heads trained to predict, respectively activity classes and
object classes. The latter are predicted by pooling over object instance masks, which
are predicted by an additional convolutional model. The object instances are passed
through a visual reasoning module.

Reasoning about activities in videos is inherently temporal, as activities fol-
low the arrow of time [26], i.e. the causality of the time dimension imposes that
past actions have consequences in the future but not vice-versa. We handle this
by sampling: running a process over time ¢, and for each instant ¢, sampling a
second frame ¢’ with ¢'<t. Our network reasons on objects which interact be-

tween pairs of frames and their corresponding sets of objects Oy = {Of,}szl

and O; = {0,’?}2{:1. The goal is to learn a general function defined on the set of
all input objects from the combined set of both frames:

’
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The objects in this set are unordered, aside for the frame they belong to.
Inspired by relational networks [29], we chose to directly model inter-frame

interactions between pairs of objects (j, k) and leave modeling of higher-order

interactions to the output space of the mappings hg¢ and the global mapping fy:

g =Y ho(o],,0f) (2)
ik

It is interesting to note that hg( ) could have been evaluated over arbitrary
cliques, like singletons and triplets — this has been evaluated in the experimental
section. In order to better directly model long-range interactions, we make the
global mapping f,( , ) recurrent, which leads to the following form:

v = fo(8:re-1) 3)

where r; represents the recurrent object reasoning state at time ¢ and g, is the
global inter-frame interaction inferred at time ¢ such as described in Equation 2.
In practice, this is implemented as a GRU, but for simplicity we omitted the




































