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Abstract. This paper proposes a novel Dynamic Conditional Convolu-
tional Network (DCCN) to handle conditional few-shot learning, i.e, only
a few training samples are available for each condition. DCCN consists of
dual subnets: DyConvNet contains a dynamic convolutional layer with
a bank of basis filters; CondiNet predicts a set of adaptive weights from
conditional inputs to linearly combine the basis filters. In this manner, a
specific convolutional kernel can be dynamically obtained for each con-
ditional input. The filter bank is shared between all conditions thus only
a low-dimension weight vector needs to be learned. This significantly fa-
cilitates the parameter learning across different conditions when training
data are limited. We evaluate DCCN on four tasks which can be formu-
lated as conditional model learning, including specific object counting,
multi-modal image classification, phrase grounding and identity based
face generation. Extensive experiments demonstrate the superiority of
the proposed model in the conditional few-shot learning setting.

Keywords: Conditional Model · Few-Shot Learning · Deep Learning ·
Dynamic Convolution · Filter Bank

1 Introduction

A conditional model is a significant machine learning framework which can be
exploited in many tasks, such as multi-modal learning and conditional gener-
ative models. It usually contains two inputs. One is interest of task, and the
other one is conditional input and provides additional information of specific
situation. Recently deep conditional models have attracted much attention since
deep neural networks have achieved unprecedented advances in many important
fields, such as computer vision [13, 15], natural language processing [37, 19] and
speech recognition [26, 1]. However, they generally suffer performance decline in
the challenging conditional few-shot learning scenario, where training sam-
ples for each condition are limited due to the high dimension of the condition
space although the total number of training samples can be large.
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Deep learning based methods typically require a huge amount of labelled
data for training as well as specialized computational platform and optimization
strategies to achieve satisfactory performance. Their performance usually drops
severely for learning problems with small training sample size due to severe
over-fitting issues. In contrast, humans, even children can grasp a new concept
(e.g., a “giraffe”) remarkably fast, “sample efficiently” and generalize to novel
cases reasonably from just a short exposure to few examples (e.g., pictures in a
book) [4, 20]. This phenomenon motivates the research on the problem of few-
shot learning, i.e., the task to learn a new concept on the fly, from a few or even
a single annotated example for each category [3, 36].

Few-shot learning is of great significance both academically and industrially,
since 1) models excelling at this task would help alleviate expensive and labour-
intensive data collection and labeling as they would not require massive labelled
training data to achieve reasonable performance; 2) the target data in practice
usually have a large number of different categories but very few examples per
category. For instance, when operating in natural environments, robots are sup-
posed to recognize many unfamiliar objects after seeing only few examples for
each [17]. The ability of generalizing in such scenarios would be beneficial to
modeling the practical data distribution more effectively.

In this paper, we mainly focus on improving two kinds of models in the condi-
tional few-shot learning scenario, i.e., the discriminative one and the generative
one. The discriminative models often resort to hand-crafted features with huge
human-engineering efforts and then adopt metric learning algorithms or data-
driven deep learning solutions from ample labelled data. However, such data-
driven methods are too computationally complex to meet practical applications.
Moreover, massive labelled training data covering all underlying variations are
usually expensive and unavailable. The generative models often leverage data
generative models, e.g., Generative Adversarial Networks (GANs) [10], Con-
ditional Generative Adversarial Networks (Conditional-GANs) [24], Boundary
Equilibrium Generative Adversarial Networks (BE-GANs) [2], etc., for synthe-
sizing auxiliary training data for data augmentation. However, among current
generative methods, the quality of synthesized data is still far from being satis-
factory to perform practical analysis tasks.

In order to address the challenging and realistic conditional few-shot learning
problems, we explore a novel approach to learn a deep conditional model from
a few labeled examples of each condition, which can generalize well to other
cases of the same condition. The conditions could be based on category labels,
on some part of data, or even on data from different modalities. Moreover, to
enable on-the-fly computation with high efficiency, we embody this conditional
few-shot learning problem into learning dual subnets jointly in an end-to-end
way. One subnet is called DyConNet, which contains a Dynamic Convolutional
layer with a bank of trainable basis filters. Given any Conditional input, the
other subnet, called CondiNet, predicts a set of adaptive weights to linearly
combine the basis filters. In this manner, a specific convolutional kernel can be
dynamically obtained for each conditional input, as illustrated in Fig. 1. Dur-
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Fig. 1. Dynamic convolutional layer of DyConvNet. It has a filter bank consisting of
several basis filters. A set of adaptive weightsW = {w1,w2, · · · ,wn} is predicted by the
embedding of CondiNet from conditional inputs Y to perform the linear combination
on the basis filters, which produces the convolution filters applied on feature maps X

ing optimization, the filter bank is shared between all conditionals thus only a
low-dimension weight vector needs to be leaned for each condition, which signif-
icantly compensates the limited information in few-shot setting and facilitates
the sample-efficient parameter learning across conditions. We term this model
as Dynamic Conditional Convolutional Network (DCCN). We evaluate DCCN
on four distinct tasks, all of which can be formulated as conditional model learn-
ing, including specific object counting, multi-modal image classification, phrase
grounding and identity based face generation. The proposed DCCN outperforms
other discriminative and generative conditional models for all the tasks.

Our contributions in this paper are summarized as follows. (1) We present a
novel and effective deep architecture, which contains a Dynamic Convolutional
subNet (DyConvNet) and a Conditional subNet (CondiNet) that jointly per-
form learning to learn in an end-to-end way. This deep architecture provides a
unified framework for efficient conditional few-shot learning. (2) The dynamic
convolution is achieved through linearly combining the basis filters of the fil-
ter bank in the DyConvNet with a set of adaptive weights predicted by the
CondiNet from conditional inputs, which is different from existing conditional
learning approaches that combine the two inputs through direct concatenation.
(3) Our architecture is general and works well for multiple distinct conditional
model learning tasks. The source codes as well as the trained models of our deep
architecture will be made available to the community.

2 Related Works

Our work is related to several others in the literature. However, we believe to be
the first to look at methods that can learn the parameters of deep conditional
models in the few-shot setting.

Since its inception, few-shot learning has been widely studied in the context
of generative approaches. The real annotated data covering all variations are ex-
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pensive to achieve, even impossible, thus synthesizing realistic data is beneficial
for more efficiently training deep models for few-shot learning, by augmenting
the number of samples with desired variations and avoiding costly annotation
work [40, 39]. Successful generation from limited labelled training samples usually
requires carefully tuned inductive biases using additional available information
due to the high dimensionality of the feature space [14]. Such additional infor-
mation can be accessed through various ways. For instance, 1) more samples
of categories of interest can be obtained from huge amount of unlabelled data
as in semi-supervised learning [42, 6]; 2) the available labelled training data can
be augmented using simple transformations, such as jittering, noise injection,
etc., as commonly used in deep learning [7, 8, 18]; 3) samples from other relevant
categories can be utilized through transfer learning to assist parameter learn-
ing [21]; 4) new virtual samples can be synthesized, either rendered explicitly
with GAN-based techniques [10, 24, 2] or created implicitly through composi-
tional representations [25, 41]. Recently, Mehrotra et al. [23] argued that having
a learnable and more expressive similarity objective is an essential missing com-
ponent, and proposed a network design inspired by deep residual networks that
allows the efficient computation of this more expressive pairwise similarity ob-
jective. These approaches can significantly advance the performance of few-shot
learning if a generative model that accounts for the underlying data distribution
is known. However, such a model is usually unavilable and the generation of
additional real or synthesized samples often requires substantial efforts.

A different trend of approaches to few-shot learning is to learn a discrimina-
tive embedding space, which is typically done with a siamese network [5]. Given
an exemplar of a novel category, recognition is performed in the embedding space
by a simple rule such as nearest-neighbor. Training is usually performed by clas-
sifying pairs according to distance [9], or by enforcing a distance ranking with
a triplet loss [27]. A variant is to combine embeddings using the outer-product,
which yields a bilinear classification rule [22]. Built on the advances made by
the siamese architecture, Vinyals et al. [33] employed ideas from metric learning
based on deep neural features and from recent advances that augment neural
networks with external memories. They proposed a framework which learns a
network that maps a small labelled support set and an unlabelled example to
its label, obviating the need for fine-tuning to adapt to new class types. Ravi
and Larochelle [31] proposed an Long Short Term Memory (LSTM) based meta-
learner model to learn the exact optimization algorithm used to train another
learner neural network classifier in the few-shot regime. The parametrization
of their model allows it to learn appropriate parameter updates specifically for
the scenario where a set amount of updates will be made, while also learning a
general initialization of the learner (classifier) network that allows for quick con-
vergence of training. However, these methods did not consider conditional model
learning and are usually computational expensive for effectively and efficiently
solving the few-shot learning problems.

Compared with previous attempts, our proposed method is conceptually sim-
ple yet powerful for conditional few-shot learning, which allows learning all pa-
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rameters from scratch, generalizing across different tasks, and can be seen as a
network that effectively “learns to learn”. Detailed comparisons with gernerative
and discriminative counterparts on various tasks are provided in Sec. 4.

3 Dynamic Conditional Parameter Prediction

Despite the recent success of deep neural networks, it remains challenging to
accommodate such models to an extremely large number of categories with lim-
ited samples for each, as in the scenario of few-shot learning. Many works to
date have mainly focused on learning one-to-one mappings from input to out-
put. However, many interesting problems are more naturally considered as a
probabilistic one-to-many mapping. For instance, in the case of image labelling,
there may be many different tags that could appropriately be applied to a given
image, and different data annotators may use different terms to describe the
same image. One way to help address the issue is to leverage additional informa-
tion from other modalities and to use a conditional model, taking as input small
samples and conditional variables, and the one-to-many mapping is instantiated
as a conditional predictive distribution.

Since we consider few-shot learning in a conditional modeling task, we start
with formulating the standard conditional model learning. It aims to find the
parameter W that minimizes the loss L of a predictor function h(X|Y ;W ),
averaged over N samples xi and corresponding conditions yi:

min
W

1

N

N

Σ
i=1

L(h(xi|yi;W )), (1)

where the model can be a discriminative one to learn a classifier or a generative
one to learn a conditional distribution over X and Y .

In the case when the dimension of the condition space is too high, the training
samples are still scarce for each conditional state even though there are massive
training data in total, and the goal is to learn W from small samples with the
condition y of interest, called conditional few-shot learning. The main challenge
in conditional few-shot learning is to find a mechanism to incorporate domain-
specific information into the network. Another challenge, which is of practical
importance in applications of few-shot learning, is to enhance efficiency of opti-
mization for Eqn. (1).

We propose to address both challenges by learning the parameter W of the
predictor from small samples with the conditions y using a meta-learning process,
i.e., a non-iterative feed-forward function ϕ (meta learner) that maps (y;W ′)
to an optimal W of the predictor (base learner). We parameterize this function
using a neural network model and we call it a CondiNet. The CondiNet output
depends on the condition y which is a representative of the condition of interest,
and contains parameter W ′ of its own. We train the CondiNet as follows such
that it can produce suitable W for different tasks. We optimize the CondiNet
using the following objective function. The feed-forward CondiNet evaluation is
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much faster than solving the optimization problem of Eqn. (1).

min
ϕ

1

N

N

Σ
i=1

L(h(xi;ϕ(yi;W
′))). (2)

Importantly, the parameters of the original W of Eqn. (1) now adapt dynam-
ically to each conditional input y. Note that the training scheme is reminiscent of
that of siamese networks [5] which also employ dual subnets. However, siamese
networks adopt the same network architecture with shared weights, and compute
the inner-product of their outputs to produce a similarity score:

min
W

1

N

N

Σ
i=1

L(〈h(xi;W ), h(yi;W )〉). (3)

There are two key differences with our model: 1) we treat h(·) and ϕ(·) asym-
metrically, which results in a different objective function; 2) more importantly,
the output of ϕ(y;W ′) is used to parametrize convolutional layers that deter-
mine the intermediate representations in the network h(·) dynamically. This is
significantly different from siamese networks [5] and bilinear networks [22], as
well as traditional conditional networks [24] based on the conditional probability
p(X|Y ;W ).

Now, we explain the implementation of the CondiNet ϕ(·) and the main pre-
dictor h(·) formally. Given an input tensor x ∈ R

p×q×c, weights W ∈ R
k×k×c×d

(where k is the kernel size), and biases b ∈ R
d, the output f ∈ R

p′
×q′×d of a

convolutional layer is given by

f = W ∗ x+ b, (4)

where ∗ denotes convolution operation, and the biases b are applied to each of
the d channels.

We propose to formulate the weights and biases as functions of y, W (y)
and b(y), to represent the dynamic conditional parameters given the conditional
input y ∈ R:

f = W (y) ∗ x+ b(y). (5)

While Eqn. (5) seems to be a straightforward drop-in replacement for convo-
lutional layers, careful analysis reveals that it scales extremely poorly. The main
reason is the typically high dimensionality of the output space of the CondiNet
ϕ(·) : R → R

k×k×c×d. Since k is usually small and so is k2, for a comparable
number of input and output channels in a convolutional layer (c ≃ d), the output
space of the CondiNet grows quadratically with the number of channels. Over-
fitting issues, memory and time costs make learning such a regressor difficult in
few-shot learning settings.

In order to address the above-mentioned issue when learning a conditional
model in few shot, we herein propose a simple yet effective method to reduce the
output space by considering a decomposition as below (we drop the bias term b

for simplification),

f =
n

Σ
i=1

(w′

i(y) · wi) ∗ x, (6)
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Fig. 2. Flow charts of object counting based on specific object ID

where w ∈ R
k×k×c×d, w′(y) ∈ R, the product (w′

i(y) · wi) can be seen as
a decomposed representation of convolutional kernels, to linearly combine the
adaptive weights w′

i predicted by the CondiNet ϕ(·) and the basis filters wi of
a filter bank, and n denotes the number of basis filters.

The filter bank is shared between all conditional states and only the weights
of basis filters are specific for each conditional state. Both w and w′ contain
trainable parameters, but they are modest in size compared to the case discussed
in Eqn. (5). Importantly, the CondiNet ϕ(·) now only needs to predict a set of
adaptive weights, so its output space grows linearly with the number of basis
filters in the filter bank (i.e., ϕ(·) : R → R

n). Since the resulted convolutional
kernel (w′

i ·wi) in Eqn. (6) is dynamically changed, depending on the prediction
of the CondiNet ϕ(·) and the filter bank of the main predictor h(·), we construct
h(·) as another subnet — DyConvNet. The dual subnets operate cooperatively
for jointly learning parameters of a deep conditional model with conventional
chain rules and Back Propagation (BP) algorithms in few shot.

4 Experiments

We evaluate our model on four conditional few-shot learning problems to verify
the effectiveness of dynamically combining the basis filters, including specific
object counting, multi-modal image classification, phrase grounding and identity
based face generation.

4.1 Specific Object Counting

The specific object counting task is from Amazon Bin Image Dataset (ABID)
Challenge, which is to predict the quantity of the object in a bin, given an image
and the target category. When the maximal quantity of an object in a bin is set
to a constant (here is 5), we formulate this task as a conditional classification
model by viewing the object category as a conditional input. As shown in Fig. 2
(b), one network is used to extract image features, and the other network is
used to embed the object ID. Finally, our dynamic conditional layer is used
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Table 1. Accuracies of object quantity verification and identification on the Amazon
Bin Image dataset

Methods
Dynamic

Plain
4-D 8-D 16-D

Identification 76.60% 76.81% 75.66% 74.48%
Verification 85.39% 85.48% 84.81% 84.87%

to combine the last layers of the two networks to output the quantity of the
object. Here we use a plain conditional network (Fig. 2 (a)) as a baseline, i.e.,
directly concatenating the last layers and substituting our dynamic conditional
layer with a fully-connected layer.

Dataset and evaluation metric. We evaluate our model on two sub-
tasks, i.e., object quantity verification and identification. The former is to verify
whether the given object quantity is correct for a bin image. The latter is to di-
rectly count the objects in a bin image. The dataset contains 535,234 bin images
and is divided into two subsets, 481,711 images for training and the remaining
images for test. For the object quantity verification, we test on triplets of image,
object ID and quantity. The accuracy is used to measure the performance of
both the tasks.

Architecture and training. Similar with the model architecture settings
provided by the dataset website, we use the ResNet-34 network to extract image
features. The embedding dimension of the object ID in the plain conditional
network is 512. The dimension of the dynamic conditional layer is set to 4, 8 and
16 respectively to investigate effects of using different numbers of basis filters. All
images are resized into 224x224 for convenient training and comparison. Because
it is actually a classification task, the Softmax loss is adopted to optimize the
entire network. We train for 30 epochs. The initial learning rate is 0.1 and it is
dropped by a factor of 10 every 10 epochs.

Results and analysis. Table 1 reports accuracies of our method under
various dimensions of the dynamic convolutional layer and the plain conditional
network. One can see that our network using 8-D dynamic layer achieves the
best accuracy. The plain conditional network performs not well because the
set of object IDs is too large and each ID is only associated with few training
examples (one example for most IDs). It is hard to learn a conditional network for
each ID when the embedding dimension is too high, and the network coditional
output would not be discriminative enough if the embedding dimension is low. In
contrast, the proposed DCCN makes different IDs share a filter bank. Only a low-
dimension vector is needed to learn to combine the set of filters as a convolutional
kernel. Through applying this kernel on the top layer of the feature network,
the spatially local correlation of image and object ID can be learned to make
the conditional output more discriminative for different IDs. Note that as the
dimension of dynamic layer continuously increases, such as 16, the performance
decreases instead due to overfitting.
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4.2 Multi-modal Image Classification

Multi-modal classification can be formulated as a typical conditional model con-
sisting of two networks. Fig. 3 (a) shows a general framework of multi-modal
classification. The inputs of the two network are an image and text describ-
ing the image, respectively. The texts are usually transformed into bag-of-words
vectors at first. The outputs of the networks are then combined into a feature
vector through a fully connected layer. We use this plain conditional network
as a baseline. Fig. 3 (b) illustrates the proposed dynamic convolution used for
multi-modal classification, where we substitute the fully connected layer with
the dynamic conditional layer.

Dataset and evaluation metric.We evaluate our model on the MIRFlickr-
25K dataset [16] which consists of 25,000 images downloaded from the social
website Flickr. Each image associates with some of 20,000 tags. 38 class labels
including various scenes and objects, such as sunset, car and bird, are used to
annotate these images and an image may belong to multiple class labels. We
randomly sample 20,000 images for training and the rest for testing. The multi-
label classification performance is measured by the Intersection over Union (IoU)
in the multi-label setting, which is defined as the number of correctly predicted
labels divided by the union of predicted and ground-truth labels.

Architecture and training. The base network for both the baseline and
our method is the ResNet-34 network. The embedding dimension of the text in
the baseline is 512. We set the dimensions of the dynamic conditional layer to
32, 64 and 128 respectively. To deal with the multiple labels in one image, here
we adopt the cross entropy loss to learn the conditional networks. The training
epoch is 90. Beginning with 0.1, the learning rate is dropped by a factor of 10
every 30 epochs.

Results and analysis. Table 2 reports the results of different methods on
the MIR-Flickr25K dataset. It can be observed that when the dimension of the
dynamic layer is 64, our dynamic conditional network outperforms the baseline
under the condition of various numbers of tags. We argue that although the
total training images are sufficient, there are only a few ones for each tag. That
is to say, it is still a few-shot learning for each tag. Thus the dynamic layer which
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Table 2. IoU of multi-modal multi-label classification on the MIR-Flickr25K dataset

Methods
Dynamic

Plain
32-D 64-D 128-D

Tags
5k 0.6517 0.6553 0.6520 0.6489
10k 0.6513 0.6606 0.6560 0.6516
20k 0.6549 0.6577 0.6543 0.6490
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reduces the parameters of the conditional network is able to address the problem
of overfitting effectively for this kind of few-shot conditional learning, and the
filter bank shared by tags can be learned easily by using all training images.

4.3 Phrase Grounding

The task of phrase grounding is to localize objects or scenes described by text
phrases in images [32, 29]. This task can also be modeled as a conditional model.
A typical framework of phrase grounding is illustrated in Fig. 4 (a). One con-
volutional neural network is used to produce a spatial feature map of an input
image, and Long Short-Term Memory network (LSTM) [11] is used to embed an
input phrase into a vector with fixed length. Then the features of a set of region
proposals (i.e.,Edge Boxes [43]) are extracted by applying the ROI pooling on
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Table 3. Accuracy (IoU > 0.5) of phrase grounding on the Flickr30k Entities dataset

Methods
Dynamic

SMPL NonlinearSP GroundeR
8-D 16-D 32-D

Accuracy 50.18 50.65 50.52 42.08 43.89 47.81

Table 4. Accuracy (IoU > 0.5) of phrase grounding for various phrase types on the
Flickr30k Entities dataset

Methods People Clothing Body parts Animals Vehicles Instruments Scene Other

SMPL 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23
GroundeR 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08
Dynamic 67.37 38.12 18.22 69.93 56.04 37.57 54.05 32.59

the spatial feature map. Finally, the proposal features are concatenated with the
phrase vector respectively to compute correlation scores by two fully connected
layers. Fig. 4 (b) shows the proposed dynamic convolution based phrase ground-
ing. We firstly use the dynamic conditional layer to combine the phrase vector
with the image feature map to obtain a correlative feature map. Then the ROI
pooling is applied to obtain the correlative feature map for each region proposal,
which is fed into the average pooling and a fully connected layer sequentially to
compute the correlation score.

Dataset and evaluation metric. The Flickr30k Entities dataset [30] is
used to evaluate our model for phrase grounding, which is an extension of the
Flickr30K dataset [38]. It consists of 31,000 images and their captions which
are associated with 276,000 manually annotated bounding boxes. We use 2,000
images for testing and the remaining images for training. Following [30], if a
single phrase (e.g., rainbow flags) has multiple ground truth bounding boxes,
the union of the boxes is used to represent the phrase. If the IoU of an image
region predicted for a phrase and the ground truth bounding box is larger than
0.5, the predicted region is deemed correct for the phrase.

Architecture and training. The same with [32], we adopt the VGG-16
network to extract the image feature map, which is pretrained on the PascalVOC
dataset for object detection and then is fixed when training the entire conditional
model. Both the numbers of the hidden and input units of LSTM are 512. The
dimension of the dynamic layer is set to 8, 16 and 32, respectively. 100 region
proposals generated by Edge Boxes are used as candidate bounding boxes. We
employ the Softmax loss to learn the model to maximize the correlation score of
the input phrase with the correct region proposal. We train for 90 epochs. The
initial learning rate is 0.01 and every 30 epochs it is dropped by a factor of 10.

Results and analysis. Table 3 reports the accuracy of phrase grounding
for different methods under the condition of IoU > 0.5 on the Flickr30k Entities
dataset. One can see that our dynamic conditional network achieves the best
accuracy compared with the state-of-the-art methods when the dimension of the
dynamic layer is 16. NonlinearSP [34] and GroundR [32] have similar frameworks
with Fig. 4 (a), i.e., using fully connected layers to combine the features of the
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image region and phrase. SMPL [35] utilizes a bipartite matching to compute
their correlation score. However, all of these methods do not consider that only
a few training images are available for each phrase although there are a large
number of training images in this dataset. In this sense, this task can be viewed
as a conditional few-shot learning problem which can be solved better by our
dynamic conditional layer. Table 4 reports the accuracy of phrase grounding
for different types of phrases. Our method has better performance than other
methods for most phrase types.

Although there are some phrase grounding methods which have better per-
formance than our method, e.g., RtP [28] and SPC+PPC [29], we argue that
these methods employ additional cues to improve correlation learning of image
region and phrase, such as region-phrase compatibility, candidate position and
size. Actually, our model is mostly like a proof-of-concept and applied on the
task of phrase grounding to verify its effectiveness on the conditional few-shot
learning. It is orthogonal to many technical improvements found in the phrase
grounding literature.

4.4 Identity Based Face Generation

The proposed DCCN can also be used to improve conditional generative models.
Here we test DCCN on the task of identity based face generation. Fig. 5 (a) shows
a general framework based on conditional generative adversarial nets (GAN) [24],
which consists of a generative model G and a discriminative model D. In G, the
prior input noise and the face ID are combined through a fully connected layer
to obtain a joint hidden representation. Then the representation is fed into a
deconvolutional neural network to generate a face image of the input ID. In D,
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(a) Precision-Coverage curve (b) Cumulative match characteristic curve

Fig. 6. Precision-Coverage and cumulative match characteristic curves of face identifi-
cation for identity based face generation.

a convolutional neural network is employed to extract the features of the faces
generated by G and the real faces. Then the feature and the embedding vector
of the face ID are concatenated and fed into a classifier, which judges whether
the face is real or not for this ID. The proposed dynamic convolution based
conditional GAN is illustrated in Fig. 5 (b). We use the dynamic conditional
layer to integrate the face ID with the noise in D and the image feature in G,
respectively.

Dataset and evaluation metric. We evaluate our model on the MS-Celeb-
1M dataset [12] which contains about 10M face images for 100K subjects. For
the training set, we randomly sample 100 subjects and 10 face images for each
subject to simulate the conditional few-shot setting. In testing, given a generated
face image, a pretrained face recognition model is used to predict which one of
the 100 subjects it belongs to. 50 images are generated for each subject. The
precision-coverage (PC) curve and the cumulative match characteristic (CMC)
curve are used to measure the performance of face identification.

Architecture and training. We use five-layer fully convolutional and de-
convolutional network in the generative and discriminative models, respectively.
To learn the conditional GAN, we optimize the generative model G and the dis-
criminative modelD alternatively.D is trained to minimize the classification loss
under the condition of the input ID, and G is trained to maximize the loss under
the same condition, i.e., G trying to generate face images which can confuse G.

Results and analysis. Fig. 6 illustrates the PR and CMC curves of the
face identification for generated face images. Table 5 reports the precision when
Coverage=0.99 and 0.95 and the accuracies of rank 1 and 5. It can be observed
that dynamic conditional GAN achieves better performance than the plain con-
ditional GAN in terms of all the metrics. The dynamic layer can effectively in-
corporate the information of conditional input through sharing filter bank across
conditions when limited training data are available for each condition. Some ex-
amples of generated faces are shown in Fig. 7. Each row of faces corresponds to
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Table 5. Accuracy and Precision@Coverage of face identification for generated faces

Methods
Accuracy Pricison@Coverage

Rank 1 Rank 5 P@C = 0.99 P@C = 0.95

Plain 0.457 0.550 0.05 0.18
Dynamic 0.688 0.748 0.21 0.71

Conditional GAN
Dynamic Convolution Based 

Conditional GAN

Fig. 7. Examples of identity based face generation

one subject. The faces generated by the dynamic conditional GAN are obviously
more similar with the real face of the subject.

5 Conclusion

This paper addressed the problem of conditional few-shot learning. A Dynamic
Conditional Convolutional Network is presented to incorporate conditional input
in a deep model when only a few training samples are available for each condition.
In this model, a set of adaptive weights from conditional inputs is predicted
to linearly combine the basis filters of a filter bank shared by all conditions.
Then a dynamic convolutional kernel can be obtained according to different
conditional inputs. Finally the dynamic kernel is applied on the top layer of
the other network to provide conditional output. Qualitative and quantitative
experiments on four tasks demonstrate that the proposed model achieves better
performance compared with other conditional learning models.
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