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Felipe Codevilla1, Antonio M. López1, Vladlen Koltun2, and Alexey Dosovitskiy2

1 Computer Vision Center, Universitat Autònoma de Barcelona
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Abstract. Autonomous driving models should ideally be evaluated by deploying

them on a fleet of physical vehicles in the real world. Unfortunately, this approach

is not practical for the vast majority of researchers. An attractive alternative is to

evaluate models offline, on a pre-collected validation dataset with ground truth

annotation. In this paper, we investigate the relation between various online and

offline metrics for evaluation of autonomous driving models. We find that of-

fline prediction error is not necessarily correlated with driving quality, and two

models with identical prediction error can differ dramatically in their driving per-

formance. We show that the correlation of offline evaluation with driving quality

can be significantly improved by selecting an appropriate validation dataset and

suitable offline metrics.
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1 Introduction

Camera-based autonomous driving can be viewed as a computer vision problem. It re-

quires analyzing the input video stream and estimating certain high-level quantities,

such as the desired future trajectory of the vehicle or the raw control signal to be ex-

ecuted. Standard methodology in computer vision is to evaluate an algorithm by col-

lecting a dataset with ground-truth annotation and evaluating the results produced by

the algorithm against this ground truth (Figure 1(a)). However, driving, in contrast with

most computer vision tasks, is inherently active. That is, it involves interaction with

the world and other agents. The end goal is to drive well: safely, comfortably, and in

accordance with traffic rules. An ultimate evaluation would involve deploying a fleet of

vehicles in the real world and executing the model on these (Figure 1(b)). The logisti-

cal difficulties associated with such an evaluation lead to the question: Is it possible to

evaluate a driving model without actually letting it drive, but rather following the offline

dataset-centric methodology?

One successful approach to evaluation of driving systems is via decomposition. It

stems from the modular approach to driving where separate subsystems deal with sub-

problems, such as environment perception, mapping, and vehicle control. The percep-

tion stack provides high-level understanding of the scene in terms of semantics, 3D lay-

out, and motion. These lead to standard computer vision tasks, such as object detection,

semantic segmentation, depth estimation, 3D reconstruction, or optical flow estimation,

which can be evaluated offline on benchmark datasets [10, 5, 19]. This approach has

been extremely fruitful, but it only applies to modular driving systems.
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Fig. 1. Two approaches to evaluation of a sensorimotor control model. Top: offline (passive) eval-

uation on a fixed dataset with ground-truth annotation. Bottom: online (active) evaluation with an

environment in the loop.

Recent deep learning approaches [1, 27] aim to replace modular pipelines by end-to-

end learning from images to control commands. The decomposed evaluation does not

apply to models of this type. End-to-end methods are commonly evaluated by collecting

a large dataset of expert driving [27] and measuring the average prediction error of

the model on the dataset. This offline evaluation is convenient and is consistent with

standard practice in computer vision, but how much information does it provide about

the actual driving performance of the models?

In this paper, we empirically investigate the relation between (offline) prediction

accuracy and (online) driving quality. We train a diverse set of models for urban driving

in realistic simulation [6] and correlate their driving performance with various metrics

of offline prediction accuracy. By doing so, we aim to find offline evaluation procedures

that can be executed on a static dataset, but at the same time correlate well with driving

quality. We empirically discover best practices both in terms of selection of a validation

dataset and the design of an error metric. Additionally, we investigate the performance

of several models on the real-world Berkeley DeepDrive Video (BDDV) urban driving

dataset [27].

Our key finding is that offline prediction accuracy and actual driving quality are

surprisingly weakly correlated. This correlation is especially low when prediction is

evaluated on data collected by a single forward-facing camera on expert driving trajec-

tories – the setup used in most existing works. A network with very low prediction error

can be catastrophically bad at actual driving. Conversely, a model with relatively high

prediction error may drive well.

We found two general approaches to increasing this poor correlation between pre-

diction and driving. The first is to use more suitable validation data. We found that

prediction error measured in lateral cameras (sometimes mounted to collect additional

images for imitation learning) better correlates with driving performance than predic-

tion in the forward-facing camera alone. The second approach is to design offline met-
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rics that depart from simple mean squared error (MSE). We propose offline metrics that

correlate with driving performance more than 60% better than MSE.

2 Related Work

Vision-based autonomous driving tasks have traditionally been evaluated on dedicated

annotated real-world datasets. For instance, KITTI [10] is a comprehensive benchmark-

ing suite with annotations for stereo depth estimation, odometry, optical flow estima-

tion, object detection, semantic segmentation, instance segmentation, 3D bounding box

prediction, etc. The Cityscapes dataset [5] provides annotations for semantic and in-

stance segmentation. The BDDV dataset [27] includes semantic segmentation annota-

tion. For some tasks, ground truth data acquisition is challenging or nearly impossible in

the physical world (for instance, for optical flow estimation). This motivates the use of

simulated data for training and evaluating vision models, as in the SYNTHIA [22], Vir-

tual KITTI [9], and GTA5 datasets [20], and the VIPER benchmark [19]. These datasets

and benchmarks are valuable for assessing the performance of different components of

a vision pipeline, but they do not allow evaluation of a full driving system.

Recently, increased interest in end-to-end learning for driving has led to the emer-

gence of datasets and benchmarks for the task of direct control signal prediction from

observations (typically images). To collect such a dataset, a vehicle is equipped with

one or several cameras and additional sensors recording the coordinates, velocity, some-

times the control signal being executed, etc. The Udacity dataset [25] contains record-

ings of lane following in highway and urban scenarios. The CommaAI dataset [23]

includes 7 hours of highway driving. The Oxford RobotCar Dataset [16] includes over

1000 km of driving recoded under varying weather, lighting, and traffic conditions. The

BDDV dataset [27] is the largest publicly available urban driving dataset to date, with

10,000 hours of driving recorded from forward-facing cameras together with smart-

phone sensor data such as GPS, IMU, gyroscope, and magnetometer readings. These

datasets provide useful training data for end-to-end driving systems. However, due to

their static nature (passive pre-recorded data rather than a living environment), they do

not support evaluation of the actual driving performance of the learned models.

Online evaluation of driving models is technically challenging. In the physical world,

tests are typically restricted to controlled simple environments [13, 4] and qualitative re-

sults [18, 1]. Large-scale real-world evaluations are impractical for the vast majority of

researchers. One alternative is simulation. Due of its logistical feasibility, simulation

have been commonly employed for driving research, especially in the context of ma-

chine learning. The TORCS simulator [26] focuses on racing, and has been applied to

evaluating road following [3]. Rich active environments provided by computer games

have been used for training and evaluation of driving models [7]; however, the available

information and the controllability of the environment are typically limited in commer-

cial games. The recent CARLA driving simulator [6] allows evaluating driving policies

in living towns, populated with vehicles and pedestrians, under different weather and

illumination conditions. In this work we use CARLA to perform an extensive study of

offline performance metrics for driving.



4 F. Codevilla, A. M. López, V. Koltun, and A.Dosovitskiy

Although the analysis we perform is applicable to any vision-based driving pipeline

(including ones that comprise separate perception [21, 24, 28, 2, 12] and control mod-

ules [17]), in this paper we focus on end-to-end trained models. This line of work dates

back to the ALVINN model of Pomerleau [18], capable of road following in simple

environments. More recently, LeCun et al. [15] demonstrated collision avoidance with

an end-to-end trained deep network. Chen et al. [3] learn road following in the TORCS

simulator, by introducing an intermediate representation of “affordances” rather than

going directly from pixels to actions. Bojarski et al. [1] train deep convolutional net-

works for lane following on a large real-world dataset and deploy the system on a phys-

ical vehicle. Fernando et al. [8] use neural memory networks combining visual inputs

and steering wheel trajectories to perform long-term planning, and use the CommaAI

dataset to validate the method. Hubschneider et al. [11] incorporate turning signals as

additional inputs to their DriveNet. Codevilla et al. [4] propose conditional imitation

learning, which allows imitation learning to scale to complex environments such as ur-

ban driving by conditioning action prediction on high-level navigation commands. The

growing interest in end-to-end learning for driving motivates our investigation of the

associated evaluation metrics.

3 Methodology

We aim to analyze the relation between offline prediction performance and online driv-

ing quality. To this end, we train models using conditional imitation learning [4] in a

simulated urban environment [6]. We then evaluate the driving quality on goal-directed

navigation and correlate the results with multiple offline prediction-based metrics. We

now describe the methods used to train and evaluate the models.

3.1 Conditional Imitation Learning

For training the models we use conditional imitation learning – a variant of imitation

learning that allows providing high-level commands to a model. When coupled with a

high-level topological planner, the method can scale to complex navigation tasks such

as driving in an urban environment. We briefly review the approach here and refer the

reader to Codevilla et al. [4] for further details.

We start by collecting a training dataset of tuples {〈oi, ci,ai〉}, each including

an observation oi, a command ci, and an action ai. The observation oi is an image

recorded by a camera mounted on a vehicle. The command ci is a high-level naviga-

tion instruction, such as “turn left at the next intersection”. We use four commands –

continue, straight, left, and right – encoded as one-hot vectors. Finally, ai
is a vector representing the action executed by the driver. It can be raw control signal –

steering angle, throttle, and brake – or a more abstract action representation, such as a

waypoint representing the intended trajectory of the vehicle. We focus on predicting the

steering angle in this work.

Given the dataset, we train a convolutional network F with learnable parameters θ

to perform command-conditional action prediction, by minimizing the average predic-
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tion loss:

θ
∗ = argmin

θ

∑

i

ℓ(F (oi, ci,θ), ai), (1)

where ℓ is a per-sample loss. We experiment with several architectures of the network F ,

all based on the branched model of Codevilla et al. [4]. Training techniques and network

architectures are reviewed in more detail in section 3.2. Further details of training are

provided in the supplement.

3.2 Training

Data collection. We collect a training dataset by executing an automated navigation

expert in the simulated environment. The expert makes use of privileged information

about the environment, including the exact map of the environment and the exact po-

sitions of the ego-car, all other vehicles, and pedestrians. The expert keeps a constant

speed of 35 km/h when driving straight and reduces the speed when making turns. We

record the images from three cameras: a forward-facing one and two lateral cameras

facing 30 degrees left and right. In 10% of the data we inject noise in the driving policy

to generate examples of recovery from perturbations. In total we record 80 hours of

driving data.

Action representation. The most straightforward approach to end-to-end learning for

driving is to output the raw control command, such as the steering angle, directly [1,

4]. We use this representation in most of our experiments. The action is then a vector

a ∈ R
3, consisting of the steering angle, the throttle value, and the brake value. To

simplify the analysis and preserve compatibility with prior work [1, 27], we only predict

the steering angle with a deep network. We use throttle and brake values provided by

the expert policy described above.

Loss function. In most of our experiments we follow standard practice [1, 4] and use

mean squared error (MSE) as a per-sample loss:

ℓ(F (oi, ci,θ), ai) = ‖F (oi, ci,θ)− ai‖
2
. (2)

We have also experimented with the L1 loss. In most experiments we balance the data

during training. We do this by dividing the data into 8 bins based on the ground-truth

steering angle and sampling an equal number of datapoints from each bin in every mini-

batch. As a result, the loss being optimized is not the average MSE over the dataset, but

its weighted version with higher weight given to large steering angles.

Regularization. Even when evaluating in the environment used for collecting the train-

ing data, a driving policy needs to generalize to previously unseen views of this en-

vironment. Generalization is therefore crucial for a successful driving policy. We use

dropout and data augmentation as regularization measures when training the networks.

Dropout ratio is 0.2 in convolutional layers and 0.5 in fully-connected layers. For

each image to be presented to the network, we apply a random subset of a set of transfor-

mations with randomly sampled magnitudes. Transformations include contrast change,

brightness, and tone, as well as the addition of Gaussian blur, Gaussian noise, salt-and-

pepper noise, and region dropout (masking out a random set of rectangles in the image,
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each rectangle taking roughly 1% of image area). In order to ensure good convergence,

we found it helpful to gradually increase the data augmentation magnitude in proportion

to the training step. Further details are provided in the supplement.

Model architecture. We experiment with a feedforward convolutional network, which

takes as input the current observation as well as an additional vector of measurements

(in our experiments the only measurement is the current speed of the vehicle). This

network implements a purely reactive driving policy, since by construction it cannot

make use of temporal context. We experiment with three variants of this model. The

architecture used by Codevilla et al. [4], with 8 convolutional layers, is denoted as

“standard”. We also experiment with a deeper architecture with 12 convolutional layers

and a shallower architecture with 4 convolutional layers.

3.3 Performance metrics

Offline error metrics. Assume we are given a validation set V of tuples 〈oi, ci,ai, vi〉,
indexed by i ∈ V . Each tuple includes an observation, an input command, a ground-

truth action vector, and the speed of the vehicle. We assume the validation set consists

of one or more temporally ordered driving sequences. (For simplicity in what follows

we assume it is a single sequence, but generalization to multiple sequences is trivial.)

Denote the action predicted by the model by âi = F (oi, ci,θ). In our experiments, ai
and âi will be scalars, representing the steering angle. Speed is also a scalar (in m/s).

Table 1. Offline metrics used in the evaluation. δ is the Kronecker delta function, θ is the Heavi-

side step function, Q is a quantization function (see text for details), |V | is the number of samples

in the validation dataset.

Metric name Parameters Metric definition

Squared error – 1

|V |

∑
i∈V

‖ai − âi‖
2

Absolute error – 1

|V |

∑
i∈V

‖ai − âi‖1

Speed-weighted absolute error – 1

|V |

∑
i∈V

‖ai − âi‖1 vi

Cumulative speed-weighted absolute error T 1

|V |

∑
i∈V

∥∥∥∥
T∑

t=0

(ai+t − âi+t)vi+t

∥∥∥∥
1

Quantized classification error σ 1

|V |

∑
i∈V

(1− δ (Q(ai, σ), Q(âi, σ)))

Thresholded relative error α 1

|V |

∑
i∈V

θ (‖âi − ai‖ − α ‖ai‖)

Table 1 lists offline metrics we evaluate in this paper. The first two metrics are

standard: mean squared error (which is typically the training loss) and absolute error.

Absolute error gives relatively less weight to large mistakes than MSE.

The higher the speed of the car, the larger the impact a control mistake can have. To

quantify this intuition, we evaluate speed-weighted absolute error. This metric approxi-

mately measures how quickly the vehicle is diverging from the ground-truth trajectory,
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that is, the projection of the velocity vector onto the direction orthogonal to the heading

direction.

We derive the next metric by accumulating speed-weighted errors over time. The

intuition is that the average prediction error may not be characteristic of the driving

quality, since it does not take into account the temporal correlations in the errors. Tem-

porally uncorrelated noise may lead to slight oscillations around the expert trajectory,

but can still result in successful driving. In contrast, a consistent bias in one direction

for a prolonged period of time inevitably leads to a crash. We therefore accumulate the

speed-weighted difference between the ground-truth action and the prediction over T

time steps. This measure is a rough approximation of the divergence of the vehicle from

the desired trajectory over T time steps.

Another intuition is that small noise may be irrelevant for the driving performance,

and what matters is getting the general direction right. Similar to Xu et al. [27], we

quantize the predicted actions and evaluate the classification error. For quantization, we

explicitly make use of the fact that the actions are scalars (although a similar strategy

can be applied to higher-dimensional actions). Given a threshold value σ, the quantiza-

tion function Q(x, σ) returns −1 if x < −σ, 0 if −σ ≤ x < σ, and 1 if x ≥ σ. For

steering angle, these values correspond to going left, going straight, and going right.

Given the quantized predictions and the ground truth, we compute the classification

error.

Finally, the last metric is based on quantization and relative errors. Instead of quan-

tizing with a fixed threshold as in the previous metric, here the threshold is adaptive,

proportional to the ground truth steering signal. The idea is that for large action val-

ues, small discrepancies with the ground truth are not as important as for small action

values. Therefore, we count the fraction of samples for which ‖âi − ai‖ ≥ α ‖ai‖.

Online performance metrics. We measure the driving quality using three metrics. The

first one is the success rate, or simply the fraction of successfully completed naviga-

tion trials. The second is the average fraction of distance traveled towards the goal per

episode (this value can be negative is the agent moves away form the goal). The third

metric measures the average number of kilometers traveled between two infractions.

(Examples of infractions are collisions, driving on the sidewalk, or driving on the op-

posite lane.)

4 Experiments

We perform an extensive study of the relation between online and offline performance

of driving models. Since conducting such experiments in the real world would be im-

practical, the bulk of the experiments are performed in the CARLA simulator [6]. We

start by training a diverse set of driving models with varying architecture, training data,

regularization, and other parameters. We then correlate online driving quality metrics

with offline prediction-based metrics, aiming to find offline metrics that are most pre-

dictive of online driving performance. Finally, we perform an additional analysis on

the real-world BDDV dataset. Supplementary materials can be found on the project

page: https://sites.google.com/view/evaluatedrivingmodels.
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4.1 Experimental setup

Simulation. We use the CARLA simulator to evaluate the performance of driving mod-

els in an urban environment. We follow the testing protocol of Codevilla et al. [4] and

Dosovitskiy et al. [6]. We evaluate goal-directed navigation with dynamic obstacles.

One evaluation includes 25 goal-directed navigation trials.

CARLA provides two towns (Town 1 and Town 2) and configurable weather and

lighting conditions. We make use of this capability to evaluate generalization of driving

methods. We use Town 1 in 4 weathers (Clear Noon, Heavy Rain Noon, Clear Sunset

and Clear After Rain) for training data collection, and we use two test conditions: Town

1 in clear noon weather and Town 2 in Soft Rain Sunset weather. The first condition is

present in the training data; yet, note that the specific images observed when evaluating

the policies have almost certainly not been seen during training. Therefore even this

condition requires generalization. The other condition – Town 2 and soft rain sunset

weather – is completely new and requires strong generalization.

For validation we use 2 hours of driving data with action noise and 2 hours of data

without action noise, in each of the conditions. With three cameras and a frame rate of

10 frames per second, one hour of data amounts to 108,000 validation images.

Real-world data. For real-world tests we use the validation set of the BDDV dataset [27],

containing 1816 dashboard camera videos. We computed the offline metrics over the en-

tire dataset using the pre-trained models and the data filtering procedures provided by

Xu et al. [27].

Network training and evaluation. All models were trained using the Adam opti-

mizer [14] with minibatches of 120 samples and an initial learning rate of 10−4. We

reduce the learning rate by a factor of 2 every 50K iterations. All models were trained

up to 500K iterations. In order to track the evolution of models during the course of

training, for each model we perform both online and offline evaluation after the follow-

ing numbers of training mini-batches: 2K, 4K, 8K, 16K, 32K, 64K, 100K, 200K, 300K,

400K, and 500K.

4.2 Evaluated models

We train a total of 45 models. The parameters we vary can be broadly separated into

three categories: properties of the training data, of the model architecture, and of the

training procedure. We vary the amount and the distribution of the training data. The

amount varies between 0.2 hours and 80 hours of driving. The distribution is one of

the following four: all data collected from three cameras and with noise added to the

control, only data from the central camera, only data without noise, and data from the

central camera without noise. The model architecture variations amount to varying the

depth between 4 and 12 layers. The variations in the training process are the use of

data balancing, the loss function, and the regularization applied (dropout and the level

of data augmentation). A complete list of parameters varied during the evaluation is

provided in the supplement.
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4.3 Correlation between offline and online metrics

We start by studying the correlation between online and offline performance metrics on

the whole set of evaluated models. We represent the results by scatter plots and cor-

relation coefficients. To generate a scatter plot, we select two metrics and plot each

evaluated model as a circle, with the coordinates of the center of the circle equal to

the values of these two metrics, and the radius of the circle proportional to the training

iteration the model was evaluated at. To quantify the correlations, we use the standard

sample Pearson correlation coefficient, computed over all points in the plot. In the fig-

ures below, we plot results in generalization conditions (Town 2, unseen weather). We

focus our analysis on the well-performing models, by discarding the 50% worst models

according to the offline metric. Results in training conditions, as well as scatter plots

with all models, are shown in the supplement.

The effect of validation data. We first plot the (offline) average steering MSE ver-

sus the (online) success rate in goal-directed navigation, for different offline validation

datasets. We vary the number of cameras used for validation (just a forward-facing cam-

era or three cameras including two lateral ones) and the presence of action noise in the

validation set. This experiment is inspired by the fact that the 3-camera setup and the

addition of noise have been advocated for training end-to-end driving models [27, 1, 6,

4].

The results are shown in Figure 2. The most striking observation is that the corre-

lation between offline prediction and online performance is weak. For the basic setup –

central camera and no action noise – the absolute value of the correlation coefficient is

only 0.39. The addition of action noise improves the correlation to 0.54. Evaluating on

data from three cameras brings the correlation up to 0.77. This shows that a successful

policy must not only predict the actions of an expert on the expert’s trajectories, but

also for observations away from the expert’s trajectories. Proper validation data should

therefore include examples of recovery from perturbations.

Offline metrics. Offline validation data from three cameras or with action noise may

not always be available. Therefore, we now aim to find offline metrics that are predictive

of driving quality even when evaluated in the basic setup with a single forward-facing

camera and no action noise.

Figure 3 shows scatter plots of offline metrics described in Section 3.3, versus the

navigation success rate. MSE is the least correlated with the driving success rate: the ab-

solute value of the correlation coefficient is only 0.39. Absolute steering error is more

strongly correlated, at 0.61. Surprisingly, weighting the error by speed or accumulat-

ing the error over multiple subsequent steps does not improve the correlation. Finally,

quantized classification error and thresholded relative error are also more strongly cor-

related, with the absolute value of the correlation coefficient equal to 0.65 and 0.64,

respectively.

Online metrics. So far we have looked at the relation between offline metrics and a

single online metric – success rate. Is success rate fully representative of actual driving

quality? Here we compare the success rate with two other online metrics: average frac-

tion of distance traveled towards the goal and average number of kilometers traveled

between two infractions.
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Fig. 2. Scatter plots of goal-directed navigation success rate vs. steering MSE when evaluated on

data from different distributions. We evaluate the models in the generalization condition (Town

2) and we plot the 50% best-performing models according to the offline metric. Sizes of the

circles denote the training iterations at which the models were evaluated. We additionally show

the sample Pearson correlation coefficient for each plot. Note how the error on the basic dataset

(single camera, no action noise) is the least informative of the driving performance.
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Fig. 3. Scatter plots of goal-directed navigation success rate vs. different offline metrics. We eval-

uate the models in the generalization condition (Town 2) and we plot the 50% best-performing

models according to the offline metric. Note how correlation is generally weak, especially for

mean squred error (MSE).
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Figure 4 shows pairwise scatter plots of these three online metrics. Success rate and

average completion are strongly correlated, with a correlation coefficient of 0.8. The

number of kilometers traveled between two infractions is similarly correlated with the

success rate (0.77), but much less correlated with the average completion (0.44). We

conclude that online metrics are not perfectly correlated and it is therefore advisable

to measure several online metrics when evaluating driving models. Success rate is well

correlated with the other two metrics, which justifies its use as the main online metric

in our analysis.
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Fig. 4. Scatter plots of online driving quality metrics versus each other. The metrics are: success

rate, average fraction of distance to the goal covered (average completion), and average distance

(in km) driven between two infractions. Success rate is strongly correlated with the other two

metrics, which justifies its use as the main online metric in our analysis.

Case study. We have seen that even the best-correlated offline and online metrics have a

correlation coefficient of only 0.65. Aiming to understand the reason for this remaining

discrepancy, here we take a closer look at two models which achieve similar prediction

accuracy, but drastically different driving quality. The first model was trained with the

MSE loss and forward-facing camera only. The second model used the L1 loss and three

cameras. We refer to these models as Model 1 and Model 2, respectively.

Figure 5 (top left) shows the ground truth steering signal over time (blue), as well

as the predictions of the models (red and green, respectively). There is no obvious qual-

itative difference in the predictions of the models: both often deviate from the ground

truth. One difference is a large error in the steering signal predicted by Model 1 in a turn,

as shown in Figure 5 (top right). Such a short-term discrepancy can lead to a crash, and

it is difficult to detect based on average prediction error. The advanced offline metrics

evaluated above are designed to be better at capturing such mistakes.

Figure 5 (bottom) shows several trajectories driven by both models. Model 1 is able

to drive straight for some period of time, but eventually crashes in every single trial,

typically because of wrong timing or direction of a turn. In contrast, Model 2 drives

well and successfully completes most trials. This example illustrates the difficulty of

using offline metrics for predicting online driving behavior.
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Steering angle prediction vs Time Zoom-in of one turn
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Fig. 5. Detailed evaluation of two driving models with similar offline prediction quality, but very

different driving behavior. Top left: Ground-truth steering signal (blue) and predictions of two

models (red and green) over time. Top right: a zoomed fragment of the steering time series,

showing a large mistake made by Model 1 (red). Bottom: Several trajectories driven by the models

in Town 1. Same scenarios indicated with the same color in both plots. Note how the driving

performance of the models is dramatically different: Model 1 crashes in every trial, while Model

2 can drive successfully.

4.4 Real-world data

Evaluation of real-world urban driving is logistically complicated, therefore we restrict

the experiments on real-world data to an offline evaluation. We use the BDDV dataset

and the trained models provided by [27]. The models are trained to perform 4-way clas-

sification (accelerate, brake, left, right), and we measure their classification accuracy.

We evaluate on the validation set of BDDV.

The offline metrics we presented above are designed for continuous values and can-

not be directly applied to classification-based models. Yet, some of them can be adapted

to this discrete setting. Table 2 shows the average accuracy, as well as several additional

metrics. First, we provide a breakdown of classification accuracy by subsets of the data

corresponding to different ground truth labels. The prediction error in the turns is most

informative, yielding the largest separation between the best and the worst models. Sec-

ond, we try weighting the errors with the ground-truth speed. We measure the resulting

metric for the full validation dataset, as well as for turns only. These metrics reduce the

gap between the feedforward and the LSTM models.
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Table 2. Detailed accuracy evaluations on the BDDV dataset. We report the 4-way classification

accuracy (in %) for various data subsets and varying speed.

Average accuracy Weighted with speed

Model All data Straight Stop Turns All data Turns

Feedforward 78.0 90.0 72.0 32.4 80.7 27.7

CNN + LSTM 81.8 90.2 78.1 49.3 83.0 43.2

FCN + LSTM 83.3 90.4 80.7 50.7 83.6 44.4

4.5 Detailed evaluation of models

Scatter plots presented in the previous sections indicate general tendencies, but not the

performance of specific models. Here we provide a more detailed evaluation of several

driving models, with a focus on several parameters: the amount of training data, its

distribution, the regularization being used, the network architecture, and the loss func-

tion. We evaluate two offline metrics – MSE and the thresholded relative error (TRE) –

as well as the goal-directed navigation success rate. For TRE we use the parameter

α = 0.1.

The results are shown in Table 3. In each section of the table all parameters are

fixed, except for the parameter of interest. (Parameters may vary between sections.)

Driving performance is sensitive to all the variations. Larger amount of training data

generally leads to better driving. Training with one or three cameras has a surprisingly

minor effect. Data balancing helps in both towns. Regularization helps generalization

to the previously unseen town and weather. Deeper networks generally perform better.

Finally, the L1 loss leads to better driving than the usual MSE loss. This last result is in

agreement with Figure 3, which shows that absolute error is better correlated with the

driving quality than MSE.

Next, for each of the 6 parameters and each of the 2 towns we check if the best

model chosen based on the offline metrics is also the best in terms of the driving quality.

This simulates a realistic parameter tuning scenario a practitioner might face. We find

that TRE is more predictive of the driving performance than MSE, correctly identifying

the best-driving model in 10 cases out of 12, compared to 6 out of 12 for MSE. This

demonstrates that TRE, although far from being perfectly correlated with the online

driving quality, is much more indicative of well-driving models than MSE.

5 Conclusion

We investigated the performance of offline versus online evaluation metrics for au-

tonomous driving. We have shown that the MSE prediction error of expert actions is

not a good metric for evaluating the performance of autonomous driving systems, since

it is very weakly correlated with actual driving quality. We explore two avenues for

improving the offline metrics: modifying the validation data and modifying the metrics

themselves. Both paths lead to improved correlation with driving quality.

Our work takes a step towards understanding the evaluation of driving models, but

it has several limitations that can be addressed in future work. First, the evaluation is
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Table 3. Detailed evaluation of models in CARLA. “TRE” stands for thresholded relative error,

“Success rate” for the driving success rate. For MSE and TRE lower is better, for the success

rate higher is better. We mark with bold the best result in each section. We highlight in green the

cases where the best model according to an offline metric is also the best at driving, separately

for each section and each town. Both MSE and TRE are not necessarily correlated with driving

performance, but generally TRE is more predictive of driving quality, correctly identifying 10

best-driving models out of 12, compared to 6 out of 12 for MSE.

MSE TRE @ 0.1 Success rate

Parameter Value Town 1 Town 2 Town 1 Town 2 Town 1 Town 2

Amount of training data 0.2 hours 0.0086 0.0481 0.970 0.985 0.44 0.00

1 hour 0.0025 0.0217 0.945 0.972 0.44 0.04

5 hours 0.0005 0.0093 0.928 0.961 0.60 0.08

25 hours 0.0007 0.0166 0.926 0.958 0.76 0.04

Type of training data 1 cam., no noise 0.0007 0.0066 0.922 0.947 0.84 0.04

1 cam., noise 0.0009 0.0077 0.926 0.946 0.80 0.20

3 cam., no noise 0.0004 0.0086 0.928 0.953 0.84 0.08

3 cam., noise 0.0007 0.0166 0.926 0.958 0.76 0.04

Data balancing No balancing 0.0012 0.0065 0.907 0.924 0.88 0.36

With balancing 0.0011 0.0066 0.891 0.930 0.92 0.56

Regularization None 0.0014 0.0092 0.911 0.953 0.92 0.08

Mild dropout 0.0010 0.0074 0.921 0.953 0.84 0.20

High dropout 0.0007 0.0166 0.926 0.958 0.76 0.04

High drop., data aug. 0.0013 0.0051 0.919 0.931 0.88 0.36

Network architecture Shallow 0.0005 0.0111 0.936 0.963 0.68 0.12

Standard 0.0007 0.0166 0.926 0.958 0.76 0.04

Deep 0.0011 0.0072 0.928 0.949 0.76 0.24

Loss function L2 0.0010 0.0074 0.921 0.953 0.84 0.20

L1 0.0012 0.0061 0.891 0.944 0.96 0.52

almost entirely based on simulated data. We believe that the general conclusion about

weak correlation of online and offline metrics is likely to transfer to the real world; how-

ever, it is not clear if the details of our correlation analysis will hold in the real world.

Performing a similar study with physical vehicles operating in rich real-world environ-

ments would therefore be very valuable. Second, we focus on the correlation coefficient

as the measure of relation between two quantities. Correlation coefficient estimates the

connection between two variables to some degree, but a finer-grained analysis may be

needed provide a more complete understanding of the dependencies between online and

offline metrics. Third, even the best offline metric we found is far from being perfectly

correlated with actual driving quality. Designing offline performance metrics that are

more strongly correlated with driving performance remains an important challenge.
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