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Abstract. We cast shape matching as metric learning with convolu-
tional networks. We break the end-to-end process of image representa-
tion into two parts. Firstly, well established efficient methods are chosen
to turn the images into edge maps. Secondly, the network is trained with
edge maps of landmark images, which are automatically obtained by a
structure-from-motion pipeline. The learned representation is evaluated
on a range of different tasks, providing improvements on challenging
cases of domain generalization, generic sketch-based image retrieval or
its fine-grained counterpart. In contrast to other methods that learn a
different model per task, object category, or domain, we use the same net-
work throughout all our experiments, achieving state-of-the-art results
in multiple benchmarks.
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1 Introduction

Deep neural networks have recently become very popular for computer-vision
problems, mainly due to their good performance and generalization. These net-
works have been first used for image classification by Krizhevsky et al. [3], then
their application spread to other related problems. A standard architecture of
a classification network starts with convolutional layers followed by fully con-
nected layers. Convolutional neural networks (CNNs) became a popular choice

Fig. 1. Three examples where shape is the only relevant information: sketch, art-
work, extreme illumination conditions. Top retrieved images from the Oxford Build-
ings dataset [1]: CNN with an RGB input [2] (left), and our shape matching network
(right). Query images are shown with black border.
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Fig. 2. Edge maps extracted from matching and non-matching image pairs that serve
as training data for our network.

of learning image embeddings, e.g. in efficient image matching — image retrieval.
It has been observed that the convolutional part of the classification network
captures well colours, textures and structures within the receptive field.

In a number of problems, the colour and/or the texture is not available or
misleading. Three examples are shown in Figure 1. For sketches or outlines, there
is no colour or texture available at all. For artwork, the colour and texture is
present, but often can be unrealistic to stimulate certain impression rather than
exactly capture the reality. Finally, in the case of extreme illumination changes,
such as a day-time versus night images, the colours may be significantly distorted
and the textures weakened. On the other hand, the image discontinuities in
colour or texture, as detected by modern edge detectors, and especially their
shapes, carry the information about the content, independent of, or insensitive
to, the illumination changes, artistic drawing and outlining.

This work is targeting at shape matching, in particular the goal is to extract
a descriptor that captures the shape depicted in the input. The shape descriptors
are extracted from image edge maps by a CNN. Sketches, black and white line
drawings or cartoons are simply considered as a special type of an edge map.

The network is trained without any human supervision or image, sketch or
shape annotation. Starting from a pre-trained classification network stripped off
the fully connected layers, the CNN is fine-tuned using a simple contrastive loss
function. Matching and non-matching training pairs are extracted from auto-
matically generated 3D models of landmarks [2]. Edge maps detected on these
images provide training data for the network. Examples of positive and negative
pairs of edge maps are shown in Figure 2.

We show the importance of shape matching on two problems: 1) modality
invariant representation, i.e. classification for domain generalization, and 2) cross
modality matching of sketches to images.

In the domain generalization, some of the domains are available, but some
are completely unseen during the training phase. We evaluate on domain gen-
eralization by performing object recognition. We extract the learned descriptors
and train a simple classifier on the seen domains, which is later used to classify
images of the unseen domain. We show, that for some combinations of seen-
unseen domains, such as artwork and photograph, descriptors using colour and
texture are useful. However, for some combinations, such as photograph and line
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drawing, the shape information is crucial. Combining both types of descriptors
outperforms the state-of-the-art approach in all settings.

In the cross modality matching task, it is commonly assumed that annotated
training data is available for both modalities. Even for this task, we apply the
domain generalization approach, using the descriptors learned on edge maps of
building images. We evaluate the cross modality matching on sketch based image
retrieval datasets. Modern sketch-based image retrieval take the path of object
recognition from human sketches. Rather than performing shape matching, the
networks are trained to recognize simplified human drawings. Such an approach
requires very large number of annotated images and drawn sketches for each cat-
egory of interest. Even though the proposed network is not trained to recognize
human-drawn object sketches, our experiments show that it performs well on
standard benchmarks.

2 Related work

Shape matching is shown useful in several computer vision tasks such as object
recognition [1], object detection [5], 3D shape matching [6,7] and cross-modal
retrieval [3,9]. In this section we review prior work related to sketch-based im-
age retrieval, a particular flavor of cross-modal retrieval, where we apply the
proposed representation. Finally, we discuss domain generalization approaches
since our method is directly applicable on this problem handling it simply by
learning shape matching.

Sketch-based image retrieval has been, until recently, handled with hand-
crafted descriptors [10,11,12,13,14,15,16,17,18,19]. Deep learning methods have
been applied to the task of sketch-based retrieval [20,21,22 ,25,26] much
later than to the related task of image retrieval. We attribute the delay to the
fact that the training data acquisition for sketch-based retrieval is much more
tedious compared to image-based retrieval because it not only includes labeling
the images, but also sketches must be drawn in large quantities. Methods with
no learning typically carry no assumptions on the depicted categories, while the
learning based methods often include category recognition into training. The
proposed method aims at generic sketch-based retrieval, not limited to a fixed
set of categories; it is, actually, not even limited to objects.

Learning-free methods have followed the same initial steps as in the tradi-
tional image search. These include the construction of either global [27,12,16] or
local [28,29,11,30,14] image and/or sketch representations. Local representations
are also using vector quantization to create a Bag-of-Words model [31]. Further
cases are symmetry-aware and flip invariant descriptors [30], descriptors that are
based on local contours [29] or line segments [14], and kernel descriptors [19].
Transformation invariance is often sacrificed for the sake of scalability [8,9]. In
contrast, the method proposed in this paper is fully translation invariant, and
scalable, because it reduces to a nearest-neighbor search in a descriptor space.

Learning-based methods require annotated data in both domains, typically for
a fixed set of object categories, making the methods [6,20,21,22,23,24,25,26,32] to
be category specific. End-to-end learning methods are applied to both category
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level [25,26] and to fine-grained, i.e. sub-category level retrieval [22,23,24,32],
while sometimes a different model per category has to be learned [33,22,34,32].
A sequence of different learning and fine-tuning stages is applied [22,23,24,25,26],
involving massive manual annotation effort. For example, the Sketchy dataset [23]
required collectively 3,921 hours of sketching. On the contrary, our proposed fine-
tuning does not require any manual annotation.

Domain generalization is handled in a variety of ways, ranging from learning
domain invariant features [35,30] to learning domain invariant classifiers [37,38]
or both [39,40]. Several methods focus on one-way shift between two domains,
such as sketch-based retrieval described earlier or learning on real photos and
testing on art [11,42]. An interesting benchmark is released in the work of Li
et al. [39], where four domains of increasing visual abstraction are used, namely
photos, art, cartoon, and sketches (PACS). Prior domain generalization meth-
ods [35,36,37] are shown effective on PACS, while simply training a CNN on all
the available (seen) domains is a very good baseline [39]. We tackle this problem
from the representation point of view and focus on the underlined shapes. Our
shape descriptor is extracted and the labels are used only to train a linear clas-
sifier. In this fashion, we are able to train on a single domain and test on all the
rest, while common domain generalization approaches require different domains
present in the training set.

3 Method

In this section we describe the proposed approach. The process of fine-tuning
the CNN is described in Section 3.1, while the final representation and the way
it is used for retrieval and classification is detailed in Section 3.2.

We break the end-to-end process of image description into two parts. In
the first part, the images are turned into edge maps. In particular, throughout
all our experiments we used the edge detector of Dolldr and Zitnick [13] due
to its great trade-off between efficiency and accuracy, and the tendency not
to consider textured regions as edges. Our earlier experiments on sketch-based
image retrieval with a CNN-based edge detector [44] did not show any significant
changes in the performance. An image is represented as an edge map, which is
a 2D array containing the edge strength in each image pixel. The edge strength
is in the range of [0,1], where 0 represents background. Sketches, in the case
of sketch-to-image retrieval, are represented as a special case of an edge map,
where the edge strength is either 0 for the background or 1 for a contour.

The second part is a fully convolutional network extracting a global image
descriptor. The two part approach allows, in a simple manner, to unify all modal-
ities at the level of edge maps. Jointly training these two parts, e.g. in the case of
a CNN-based edge detector [11], can deliver an image descriptor too. However,
this descriptor may not be based on shapes. It is unlikely that such an opti-
mization would end in a state where the representation between the two parts
actually corresponds to edges. Enforcing this with additional training data in
the form of edge maps and a loss on the output of the first part is exactly what
we are avoiding and improving in this work.
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3.1 Training

We use a network architecture previously proposed for image classification [45],
in particular, we use all convolutional layers and the activations of the very
last one, i.e., the network is stripped of the fully-connected layers. The CNN is
initialized by the parameters learned on a large scale annotated image dataset,
such as ImageNet [46]. This is a fairly standard approach adopted in a number
of problems, including image search [17,2,48]. The network is then fine-tuned
with pairs of image edge maps.

The network. The image classification network expects an RGB input image,
while the edge maps are only two dimensional. We sum the first convolution
filters over RGB. Unlike in RGB input, no mean pixel subtraction is performed
to the input data. To obtain a compact, shift invariant descriptor, a global max-
pooling [19] layer is appended after the last convolutional layer. This approach is
also known as Maximum Activations of Convolutions (MAC) vector [50]. After
the MAC layer, the vectors are {5 normalized.

Edge filtering. A typical output of edge detectors is a strength of an edge
in every pixel. We introduce an edge filtering layer to address two frequent
issues with edge responses. First, the background often contains close-to-zero
responses, which typically introduce noise into the representation. This issue is
commonly handled by thresholding the response function. Second, the strength
of the edges provides ordering, i.e. higher edge response implies that the edge
is more likely to be present, however its value typically does not have practical
interpretation. Prior to the first convolution layer, a continuous and differentiable
function is pre-pended. This layer is trained together with the rest of the network
to transform the edge detector output with soft thresholding by a sigmoid and
power transformation. Denote the edge strength by w € [0,1]. Edge filtering is
performed as
wP

flw) = [EprIce=nt (1)

where p controls the contrast between strong and weak edges, 7 is the threshold
parameter, and (3 is the scale of the sigmoid choosing between hard thresholding
and a softer alternative. The final function (1) with learned parameters is plotted
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Fig. 3. Sample images, the output of the edge detector, the filtered edge map, and the
edge-filtering function.
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in Figure 3 (right). The figure also visually demonstrates the effect of application
of the filtering. The weak edges are removed on the background and the result
appearance is closer to a rough sketch, while the uncertainty in edges is still
preserved.

Fine tuning. The CNN is trained with Stochastic Gradient Descent in a Siamese
fashion with contrastive loss [51]. The positive training pairs are edge maps of
matching images (similarity of the edge maps is not considered), while the neg-
ative pairs are similar edge maps (according to the current state of the network)
of non-matching images.

Given a pair of vectors x and y, the loss is defined as their squared Euclidean
distance ||x — y||? for positive examples, and as max{(m — ||x — y||)?,0} for
negative examples. Hard-negative mining is performed several times per epoch
which has been shown to be essential [2,48].

Training data. The training images for fine tuning the network are collected in
a fully automatic way. In particular, we use the publicly available dataset used
in Radenovic et al. [2] and follow the same methodology, briefly reviewed in
the following. A large unordered image collection is passed through a 3D recon-
struction system based on local features and Bag-of-Words retrieval [52,53]. The
outcome consists of a set of 3D models which mostly depict outdoor landmarks
and urban scenes. For each landmark, a maximum of 30 six-tuples of images are
being selected. The six-tuple consists of: one image as the training query, then
one matching image to the training query, and five similar non-matching images.
This gives arise to one positive and five negative pairs. The geometry of the 3D
models, including camera positions, allows to mine matching images, i.e. those
that share adequate visual overlap. Negative-pair mining is facilitated by the 3D
models, too: negative images are chosen only if they belong to a different model.

Data augmentation. A standard data-augmentation, i.e. random horizontal
flipping (mirroring) procedure is applied to introduce further variance in the
training data and to avoid over-fitting. The training query and the positive ex-
ample are jointly mirrored with 50% probability. Negative examples are sought
after eventual flipping. We propose an additional augmentation technique for
the selected training queries. Their edge map responses are thresholded with
a random threshold uniformly chosen from [0,0.2] and the result is binarized.
Matching images (in positive examples) are left unchanged; negative images are
selected after the transformation. This augmentation process is applied with a
probability of 50%. It offers a level of shape abstraction and mimics the asym-
metry of sketch-to-edge map matching. The randomized threshold can be also
seen as an approximation of the stroke removal in [22].

3.2 Representation, Search and Classification

We use the trained network to extract image and sketch descriptors capturing
the underlying shapes, which are then used to perform cross-modal image re-
trieval, in particular sketch-based, and object recognition via transfer learning,
in particular domain generalization.
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Representation. The input to the descriptor extraction process is always re-
sized to a maximum dimensionality of 227 x 227 pixels. A multi-scale represen-
tation is performed by processing at 5 fixed scales, i.e., re-scaling the original
input by a factor of Y%, %z, 1, /2, 2, and, with the additional mirroring, 10
final instances are produced. Images undergo edge detection and the resulting
edge map [13] is fed to the CNN*. Sketches come in the form of strokes, thin line
drawings, or brush drawings, depending on the input device or the dataset. To
unify the sketch input, a simple morphological filter is applied to a binary sketch
image. Specifically, a morphological thinning followed by dilation is performed.
After the pre-processing, the sketch is treated as an edge map. As a consequence
of the rescaling and mirroring, an image/sketch is mapped to 10 high dimen-
sional vectors. We refer to these £ normalized vectors as EdgeMAC descriptors.
They are subsequently sum-aggregated or indexed separately, depending on the
evaluation benchmark, see Section 4 for more details.

Search. An image collection is indexed by simply extracting and storing the
corresponding EdgeMAC descriptors for each image. Search is performed by
nearest-neighbors search of the query descriptor in the database. This makes
retrieval compatible with approximate methods [54,55] that can speed up search
and offer memory savings.

Classification. We extract EdgeMAC descriptors from labeled images and train
a multi-class linear classifier [56] to perform object recognition. This is espe-
cially useful for transfer learning when the training domain is different from the
target/testing one. In this case, no labeled images of the training domain are
available during the training of our network and no labeled images of the target
domain are available during classifier training.

3.3 Implementation details

In this section we discuss implementation details. The training dataset used to
train our network is presented. We train a single network, which is then used for
different tasks. Training sets provided for specific tasks are not exploited.

Training data. We use the same training set as in the work of Radenovic et
al. [2])? which comprises landmarks and urban scenes. There are around 8k tuples.
Due to the overlap of landmarks contained in the training set and one of the
test sets involved in our evaluation, we manually excluded these landmarks from
our training data. We end up with with 5,969 tuples for training and 1,696 for
validation. Hard negatives are re-mined 3 times per epoch [2] from a pool of
around 22k images.

Training implementation. We use the MatConvNet toolbox [57] to implement
the learning. We initialize the convolutional layers by VGG16 [15] (results in
512D EdgeMAC descriptor) trained on ImageNet and sum the filters of the first

1 'We perform zero padding by 30 pixels to avoid border effects.
2 Training data available at cmp.felk.cvut.cz/cnnimageretrieval
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layer over the feature maps dimension to accommodate for the 2D edge map
input instead of the 3D image. The edge-filtering layer is initialized with values
p=0.5, 7 =0.1 and $ is fixed and equal to 500 so that it always approximates
hard thresholding. Additionally, the output of the egde-filtering layer is linearly
scaled from [0, 1] to [0, 10]. Initial learning rate is [o = 0.001 with an exponential
learning rate decay lpexp(—0.1j) over epoch j; momentum is 0.9; weight decay
is 0.0005; contrastive loss margin is 0.7; and batch size is equal to 20 training
tuples. All training images are resized so that the maximum extent is 200 pixels,
while keeping the original aspect ratio.

Training time. Training is performed for at most 20 epochs and the best net-
work is chosen based on the performance on validation tuples. The whole training
takes about 10 hours on a single GeForce GTX TITAN X (Maxwell) GPU with
12GB of memory.

4 Experiments

We evaluate EdgeMAC descriptor on domain generalization and sketch-based
image retrieval. We train a single network and apply it on both tasks proving
the generic nature of the representation.

4.1 Domain Generalization through Shape Matching

We extract EdgeMAC descriptors from labeled images, sum-aggregate descrip-
tors of rescaled and mirrored instances and ¢ normalize to produce one descrip-
tor per image, and train a linear classifier [50] to perform object recognition. We
evaluate on domain generalization to validate the effectiveness of our represen-
tation on shape matching.

PACS dataset was recently introduced by Li et al. [39]. It consists of images
coming from 4 domains with varying level of abstraction, namely, art (painting),
cartoon, photo, and sketch. Images are labeled according to 7 categories, namely,
dog, elephant, giraffe, guitar, horse, house, and person. Each time, one domain
is considered unseen, otherwise called target or test domain, while the image of
the other 3 are used for training. Finally, multi-class accuracy is evaluated on
the unseen domain. In our work, we additionally perform classifier training using
a single domain and then test on the rest. We find this scenario to be realistic,
especially in the case of training on photos and testing on the rest. The domain
of realistic photos is the richest in terms of annotated data, while others such as
sketches and cartoons are very sparsely annotated.

Baselines. We are interested in translation invariant representations and con-
sider the two following baselines. First, MAC [50] descriptors extracted using a
network that is pre-trained on ImageNet. Second, MAC descriptors extracted by
a network that is fine-tuned for image retrieval in a siamese manner [2]. These
two baselines have the same descriptor extraction complexity as ours. They are
extracted on RGB images, while ours on edge maps. Note, that we treat all



Deep Shape Matching 9

Table 1. Multi-class accuracy on PACS dataset for 4 different descriptors. The com-
bined descriptor (pre-trained + ours) is constructed via concatenation. A: Art, C:
Cartoon, P: Photo, S: Sketch, 3: all 3 other domains.

Pre-trained (RGB) Siamese [2] (RGB) Ours (edge map) Pre-trained4+Ours
Test = A C P S A C P S A C P S A C P S

Train A N/A N/A 42.9 N/A [5519761.2
51.6 | 45.2 N/A 57.3

Train C 61.0 N/A

Train P 66.0 38.0 N/A 31.9 454 423 |N/A 46.3 34.0 N/A 27.61
Train S 42.5 N/A 387 49.3 44.4 N/A 348 [6310]43.3 N/A 33.7 .
Train 3 78.0 68.0 944 47.1 715 64.3 85.1 56.0 53.8 67.9 64.5 74.7 80.0 68.7 93.7 62.7
Mean 3 71.9 69.2 65.2 76.2

Unseen domain: Art

100 [ — e — B
50 - -
0 mean dog elephant giraffe guitar  horse house  Person
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Fig. 4. Classification accuracy on PACS dataset with different descriptors. Testing is
performed on 1 unseen domain each time, while training is performed on the other 3.

domains as images with our approach and extract edge maps, i.e. we do not
perform any special treatment on sketches as in the case of sketch retrieval.

Performance comparison. We evaluate our descriptor, the two baselines, and
the concatenated version of ours and the descriptor of the pre-trained baseline
network, and report results in Table 1. Our representation significantly improves
sketch recognition while training on a single or all seen domains. Similar improve-
ments are observed for cartoon recognition when training on photos or sketches,
while when training on artwork the color information appears to be beneficial.
We consider the case of training only on photos and testing on other domains
to be the most interesting and realistic one. In this scenario, we provide im-
provements, compared to the baselines, for sketch recognition (15% and 22%)
and cartoon recognition (4% and 9%). Finally, the combined descriptor reveals
the complementarity of the representations in several cases, such as artwork and
cartoon recognition while training on all seen domains, or training on single do-
main when artwork is involved, e.g.. train on P (or A) and test on A (or C). The
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Fig. 5. Visualization of PACS images with t-SNE (more overlap is better).
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best reported score on PACS is 69.2 [39] by fine-tuning AlexNet on PACS. The
achieved score by our descriptor with fine-tuned VGG (PACS not used during
network training) is 76.2, which is significantly higher. The same experiment
with AlexNet achieves 70.9. Performance is reported per category in Figure 4.
Our descriptor achieves significant improvements on most categories for sketch
recognition, while the combined is a safe choice in several cases. Interestingly, our
experiments reveal that the siamese baseline slightly improves shape matching,
despite being trained on RGB images.

Visualization with t-SNE. We use t-SNE [58] to reduce the dimensional-
ity of descriptors to 2 and visualize the result for the pre-trained baseline and
our descriptor in Figure 5. The different modalities are brought closer with our
descriptor. Observe how separated is the sketch modality with the pre-trained
network that receives an RGB image for input.

4.2 Sketch-based Image Retrieval

We extract EdgeMAC descriptors to index an image collection, treat sketch
queries as described in Section 3.2 and perform sketch-based image retrieval via
simple nearest neighbor search.

Test datasets and evaluation protocols. The method is evaluated on two
standard sketch-based image retrieval benchmarks.

Flickr15k [11] consists of 15k database images and 330 sketch queries that are
related to 33 categories. Categories include particular object instances (Brussels
Cathedral, Colosseum, Arc de Triomphe, etc.), generic objects (airplane, bicycle,
bird, etc.), and shapes (circle shape, star shape, heart, balloon, etc.). The per-
formance is measured via mean Average Precision (mAP) [1]. We sum-aggregate
descriptors of rescaled and mirrored instances and ¢, normalize to produce one
descriptor per image. Search is performed by a cosine similarity nearest-neighbor
search.

Shoes/Chairs/Handbags [22,32] datasets contain images from one category
only, i.e. shoe/chair /handbag category respectively. It consists of pairs of a photo
and a corresponding hand-drawn detailed sketch of this photo. There are 419,
297, and 568 sketch—photo pairs of shoes, chairs, and handbags, respectively.
Out of these, 304, 200, and 400 pairs are selected for training, and 115, 97,
and 168 for testing shoes, chairs, and handbags, respectively. The performance
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Table 2. Performance evaluation of the different components of our method on
Flickr15k dataset. Network: off-the-shelf (O), fine-tuned (F).

Network

Component

0) O F F F F F F
Train/Test: Edge filtering ] u u ] u u ]
Train: Query binarization ] ] ] ] [ ]
Test: Mirroring [ ] ] [ ]
Test: Multi-scale [ ] [ ]
Test: Diffusion ]

[ mAP [25.9 [ 27.9[38.4[41.9 434456 [ 46.1 [ 68.9 |

is measured via the matching accuracy at the top K retrieved images, denoted
by acc.@QK. The underlying task is quite different compared to Flickr15k. The
photograph used to generate the sketch is to be retrieved, while all other im-
ages are considered false positives. The search protocol used in [22] is as follows:
Descriptors are extracted from 5 image crops (corners and center) and their hor-
izontally mirrored counterparts. This holds for database images and the sketch
query. During search, these 10 descriptors are compared one-to-one and their
similarity is averaged. For fair comparison, we adopt this protocol and do not
use a single descriptor per image/sketch for this benchmark. However, instead
of image crops, we extract descriptors at 5 image scales and their horizontally
mirrored counterparts, as these are defined in Section 3.2.

Impact of different components. Table 2 shows the impact of different
components on the final performance of the proposed method as measured on
Flickr15k dataset. Direct application of the off-the-shelf CNN on edge maps al-
ready outperforms most prior hand-crafted methods (see Table 3). Adding the
edge-filtering layer to the off-the-shelf network improves the precision. The ini-
tial parameters for filtering are used. Fine-tuning brings significant jump to 38.4
mAP, which is already the state-of-the-art on this dataset. Random training-
query binarization and multi-scale with mirroring representation further improve
the mAP score to 46.1. Finally, we boost the recall of our sketch-based retrieval
by global diffusion, as recently proposed by Iscen et al. [59]. We construct the
neighborhood graph by combining kNN-graphs built on two different similari-
ties [60,61]: edge map similarity with EdgeMAC and image similarity with CroW
descriptors [62]. This increases the performance to 68.9.

Performance evolution during learning. We report the performance of the
fine-tuned network at different stages (epochs) of training. The same network is
evaluated for all datasets as we train a single network for all tasks. The perfor-
mance is shown in Figure 6 for both benchmarks. On all datasets, the fine-tuning
significantly improves the performance already from the first few epochs.

As a sanity check, we also perform a non-standard sketch-to-sketch evalu-
ation. On the Flickr15k dataset, each of the 330 sketches is used to query the
other 329 sketches (the query sketch is removed from the evaluation), which
attempts to retrieve sketches of the same category. The evolution of the perfor-
mance shows similar behavior as the sketch-to-image search, i.e., the learning on
edge maps improves the performance on sketch-to-sketch retrieval, see Figure 6.
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Fig. 6. Performance evaluation of the fine-tuned network over training epochs for the
single-scale representation. All shown datasets and their evaluation protocols are de-
scribed in Section 4.2.

Comparison with the state of the art. We extensively compare our method
to the state-of-the-art performing methods on both benchmarks. Whenever code
and trained models are publicly available, we additionally evaluate them on test
sets they were not originally applied on. In cases that the provided code is used
for evaluation on Flickrl5k we center and align the sketches appropriately in
order to achieve high scores, while our method is translation invariant so there
is no such need. First we give a short overview of the best performing and most
relevant methods to ours. Finally, a comparison via quantitative results is given.

Shoes/Chairs/Handbags networks [22,32] are trained from scratch based on
the Sketch-a-Net architecture [63]. This is achieved by the following steps [22]*:
(i) Training with classification loss for 1k categories from ImageNet-1K data with
edge maps input. (ii) Training with classification loss for 250 categories of TU-
Berlin [64] sketch data. (iii) Training a triplet network with shared weights and
ranking loss on TU-Berlin sketches and ImageNet images. (iv) Finally, training
separate networks for fine-grain instance-level ranking using the Shoes/Chairs/
/Handbags training datasets. This approach is later improved [32] by adding an
attention module with a coarse-fine fusion (CFF) into the architecture, and
by extending the triplet loss with a higher order learnable energy function
(HOLEF). Such a training involves various datasets, with annotation at different
levels, and a variety of task-engineered loss functions. Note that the two models
available online achieve higher performance than the ones reported in [22], due
to parameter retuning. We compare our results to their best performing models.

Sketchy network [23] consists of two asymmetric sketch and image branches,
both initialized with GoogLeNet. The training involves the following steps®:
(i) Training for classification on TU-Berlin sketch dataset. (ii) Separate training
of the sketch branch with classification loss on 125 categories of Sketchy dataset
and training of the image branch with classification loss on the same categories
with additional 1000 Flickr photos per category. (iii) Training both branches in
a triplet network with ranking loss on the Sketchy sketch—photo pairs. The last
part involves approximately 100k positive and a billion negative pairs.

3 Networks/code available at github.com/seuliufeng/DeepSBIR
4 Network/code available at github.com /janesjanes /sketchy


https://github.com/seuliufeng/DeepSBIR
https://github.com/janesjanes/sketchy
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Table 3. Performance comparison via mean Average Precision (mAP) with the state-
of-the-art sketch-based image retrieval on the Flickr15k dataset. Best result is high-
lighted in red, second best in bold. Query expansion methods are shown below the
horizontal line and are highlighted separately. Our evaluation of the methods that do
not originally report results on Flickr15 is marked with T.

CNN-based methods
Hand-crafted methods

Method Di AP
[ Method [Dim [mAP] | T T [51‘2“(; [f; ol
GF-HOG [11] n/al 122 etch-a-Net+EdgeBox [20] :
S-HELO [12] 1296 | 12.4 Shoes network [22] 256 | 29.9
HLR+S+C+R [14] n/a 17:1 Chairs network [22]" 256 | 29.8
GF-HOG extended [15] | n/a|18.2 Sketchy network [23]" 1024 | 34.0
PerceptualEdge [16] 3780 | 18.4 Quadruplet network [24] 1024 | 32.2
LKS [17] 1350 | 24.5 Triplet no-share network [20] 128 |36.2
AFM [19] 243 |30.4| | * EdgeMAC 512]46.1
AFM+QE [10] 755 [ 57.9 Sketch-a-Net+EdgeBox+GraphQE [20] | n/a|32.3
* EdgeMAC+Diffusion n/a|68.9
Quadruplet network [24] tackles the problem in a similar way as Sketchy net-

work, however, they use ResNet-18 [65] architecture with shared weights for both
sketch and image branches. The training involves the following steps: (i) Training
with classification loss on Sketchy dataset. (ii) Training a network with triplet
loss on Sketchy dataset, while mining three different types of triplets.

Triplet no-share network [26] consists of asymmetric sketch and image branches
initialized by Sketch-a-Net and AlexNet [3], respectively. The training involves:
(i) Separate training of the sketch branch with classification loss on TU-Berlin
and training of the image branch with classification loss on ImageNet. (ii) Train-
ing a triplet network with ranking loss on TU-Berlin sketches augmented with
25k corresponding photos harvested from the Internet. (iii) Training a triplet
network with ranking loss on the Sketchy dataset.

Performance comparison. We compare our network with other methods on
both benchmarks. Methods that have not reported scores on a particular datasets
are evaluated by ourselves while using the publicly available networks.

Results on the Flickr15k dataset are presented in Table 3, where our method
significantly outperforms both hand-crafted descriptors and CNN-based that
are learned on a variety of training data. This holds for both plain search with
the descriptors, and for methods using re-ranking techniques, such as query
expansion [66] and diffusion [59].

Results on the fine-grained Shoes/Chairs/Handbags benchmark are shown
in Table 4. In this experiment, we also report the performance after applying
descriptor whitening which is learned in a supervised way [2] by using the descrip-
tors of the training images of this benchmark. A single whitening transformation
is learned for all three datasets. Such a process takes only a few seconds once
descriptors are given. It is orders of magnitude faster than using the training set
to perform network fine-tuning. We achieve the top performance in 2 out of 3
categories and the second best in the other one. The approach of [22] and [32]
train a separate network per category (3 in total), which is clearly not scalable
to many objects. In contrast our approach uses a single generic network. An
additional drawback is revealed when we evaluate the publicly available Shoes
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Table 4. Performance comparison via accuracy at rank K (acc.@K) with the state-
of-the-art sketch-based image retrieval on the Shoes/Chairs test datasets. Best result
is highlighted in red, second best in bold. Note that [22] and [32] train a separate
network per object category. TWe evaluate the publicly available networks, because the
performance is higher than the one originally reported in [22].

. Shoes Chairs Handbags
LMCthOd L Dim lLaucc.@l Lacc.@lo% lLabcc.@l Lacc.@lo% lLabcc.@l Lacc%@lO%

BoW-HOG + rankSVM [22] 500 17.4 67.8 28.9 67.0 2.4 10.7
Dense-HOG 4+ rankSVM [22] 200K 24.4 65.2 52.6 93.8 15.5 40.5
Sketch-a-Net + rankSVM [22] 512 20.0 62.6 47.4 82.5 9.5 44.1
CCA-3V-HOG + PCA [18] n/al| 15.8 | 63.2 53.2 | 90.3 - -
Shoes  net [22]F 256 || 52.2 | 92.2 65.0 | 92.8 23.2 | 59.5
Chairs net [ }T 256 30.4 75.7 72.2 99.0 26.2 58.3
Handbags net [32] 256 - - - - 39.9 82.1
Shoes net + CFF + HOLEF [32] 512 61.7 94.8 - - - -
Chairs net + CFF + HOLEF [ ] 512 — - 81.4 95.9 — -
Handbags net + CFF + HOLEF [32] 512 - - - - 49.4 82.7
*x EdgeMAC 512 40.0 76.5 85.6 95.9 35.1 70.8
* EdgeMAC + whitening 512 54.8 92.2 85.6 97.9 51.2 85.7

and Chairs networks on the category they were not trained on. We observe a
significant drop in performance, see Table 4.

The number of parameters. Our reported results use the VGG16 network
stripped off the fully connected layers (FC), leaving ~15M parameters. The
number of parameters of Sketch-A-Net [63] is ~8.5M parameters, while when
used for SBIR in two different branches (Shoes, Chairs, Handbags [22]) there is
~17M parameters. Triplet no-share network [26] uses two branches (Sketch-a-Net
with additional FC layer and AlexNet [3]) leading to ~115M, and Sketchy [23]
uses 2Xx GoogLeNet leading to ~26M parameters. Our network has the smallest
number of parameters from the competing methods.

5 Conclusions

We have introduced an approach to learn shape matching by training a CNN
with edge maps of matching images. The training stage does not require any
manual annotation, achieved by following the footsteps of image retrieval [2],
where image pairs are automatically mined from large scale 3D reconstruction.
The generic applicability of the representation is proven by validating on a
variety of cases. It achieves state-of-the-art results on standard benchmarks for
sketch-based image retrieval, while we have further demonstrated the applica-
bility beyond sketch-based image retrieval. Promising results were achieved for
queries with different modality (artwork) and significant change of illumination
(day-night retrieval). The descriptor is shown beneficial for object recognition
via transfer learning, especially to classify images of unseen domains, such as
cartoons and sketches, where the amount of annotated data is limited. Remark-
ably, the same network is applied in all the different tasks. Training data, trained
models, and code are publicly available at cmp.felk.cvut.cz/cnnimageretrieval.
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