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Abstract. Recently, many graph matching methods that incorporate pairwise

constraint and that can be formulated as a quadratic assignment problem (QAP)

have been proposed. Although these methods demonstrate promising results for

the graph matching problem, they have high complexity in space or time. In this

paper, we introduce an adaptively transforming graph matching (ATGM) method

from the perspective of functional representation. More precisely, under a trans-

formation formulation, we aim to match two graphs by minimizing the discrep-

ancy between the original graph and the transformed graph. With a linear rep-

resentation map of the transformation, the pairwise edge attributes of graphs are

explicitly represented by unary node attributes, which enables us to reduce the

space and time complexity significantly. Due to an efficient Frank-Wolfe method-

based optimization strategy, we can handle graphs with hundreds and thousands

of nodes within an acceptable amount of time. Meanwhile, because transforma-

tion map can preserve graph structures, a domain adaptation-based strategy is

proposed to remove the outliers. The experimental results demonstrate that our

proposed method outperforms the state-of-the-art graph matching algorithms.

Keywords: Graph matching · Transformation representation · Frank-Wolfe method

1 Introduction

Graph matching is widely used in a wide range of computer vision and pattern recog-

nition tasks [1,9,36,31,12,29,33] to find correspondence between two graph-structured

feature sets. The general idea behind graph matching solutions is to minimize objective

functions composed of unary, pairwise [22,5,19] or higher-order [21,35,19,37] poten-

tials to preserve the structure alignment between two graphs.

Under pairwise constraint, graph matching can be formulated as a quadratic as-

signment problem (QAP) [27], which is NP-complete [11], and only approximate so-

lutions can be found in polynomial time. Although the past decade has witnessed re-

markable progress on graph matching [34,23,5,6,40], there are still some challenges

in computational complexity and matching performance. For instance, a costly affinity

matrix often needs to be computed or factorized [23,22,40], which results in high space
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Fig. 1: ATGM vs. general graph matching. General graph matching between two

graphs GX and GY with nodes X = {Xi}
3
i=1 and Y = {Yj}

4
j=1, shown in (a), often

involves computing a pairwise affinity matrix W with a size of 12 × 12, as displayed

in (b). In contrast, our proposed ATGM matches GX to GY by transforming each node

Xi to X̄i with an optimal transformation map through minimizing two objectives FXY

and GX̄Y , as shown in (c). ATGM preserves the pairwise structure alignments by min-

imizing the differences between two edge attribute matrices wX and wX̄ with a smaller

size of 3× 3, as shown in (d) and (e). ATGM can also remove the outliers, i.e., Y1 here,

naturally according to the distance matrix DX̄Y between GX̄ and GY , as shown in (f).

complexity–especially with large-scale complete graphs. Because of the combinatorial

nature of QAP, the objective function is difficult to solve for obtaining binary solu-

tions [23,35,20]. Although with relaxation, the discrete constraint can be approximated

by a continuous one that is easier to solve, this approach requires extra effort to achieve

a global optimum or satisfy the binary constraint [38,40,25,15]. Moreover, matching

unequal-sized graphs often suffer from outliers [6,38]. Thus, it is of great interest to

reduce the computational complexity and to be as robust as possible to outliers.

This paper introduces a method for graph matching from the perspective of func-

tional representation. The main idea is illustrated by a toy example in Fig. 1. Under

this perspective, one graph is transformed into the space spanned by the second graph,

and then, a desired correspondence can be reformulated as an optimal transformation

map between graphs. To pursue such a map, we construct two functionals to measure

the discrepancy between graphs and minimize them with the Frank-Wolfe method [18].

Using the transformation map, the pairwise edge attributes of graphs can be explic-

itly represented by node attributes, which enables us to significantly reduce the space

and time complexity. We also propose a domain adaptation-based strategy to remove

outliers leveraging the fact that transformation maps can preserve graph structures.

Our work is distinguished in following aspects:

- We present a new perspective for graph matching that explicitly represents the pair-

wise edge attributes of graphs using unary node attributes. Therefore, the space

complexity is reduced in form from O(m2n2) to O(mn) and the objective func-

tion can be optimized efficiently with O(Tn3) time complexity. Benefiting from

this simplification, we can match large-scale graphs, even with complete graphs.

- We propose a domain adaptation-based method for outlier removal using the trans-

formation map. This technique can be used as a pre-processing step to improve

graph matching algorithms.
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2 Related Work

Over the past few decades, both exact and inexact (error-tolerant) graph matching have

been extensively studied to measure either (dis-)similarity [9,28,30,2] or find correspon-

dence [13,23,5,35,40] between graphs. We focus on inexact graph matching to find cor-

respondence as the work on exact graph matching and measuring similarity (e.g., graph

edit distance) is beyond the scope of this paper.

Many existing works of pairwise graph matching have addressed reducing the high

computational complexity of the QAP formulation. In the path-following method pro-

posed in [38], the author rewrote the graph matching problem as an approximate least-

squares problem on the set of permutation matrices. A factorization-based method [40]

was proposed to factorize the affinity matrix with high space complexity into a Kro-

necker product of smaller matrices. An efficient sampling heuristic has been proposed

in [39] to avoid the high space complexity of the affinity matrix. However, the methods

in [38,40] suffer from huge time consumption in practice, and the ability to reduce space

complexity of the works [40,39] is limited by complete graphs. As a comparison, our

functional representation-based method can reduce the space complexity by two orders

of magnitude with a lower time complexity and runs faster in practice.

Considering looking for global optimal solutions with binary property for graph

matching, the approaches in [38,40,25,26] constructed objective functions in both con-

vex and concave relaxations that were controlled by a continuation parameter. However,

these approaches are often time consuming in reaching an ideal solution. Moreover, to

ensure binary solutions, an integer-projected fixed point algorithm [23] solving a se-

quence of first-order Taylor approximations had been proposed, and the author of [35]

took an adaptive and dynamic relaxation mechanism for optimization in the discrete

domain directly. In our method, we separately construct non-convex and convex relax-

ations and obtain (nearly) binary solutions in a faster way with high matching accuracy.

In addition, several spectral matching methods [22,7] were introduced based on the

rank-1 approximation of the affinity matrix. The graduated assignment method [13] iter-

atively solved a series of convex approximations of the objective. The decomposition-

based works in [32] and [19] decomposed the original complex graphs and took de-

composition of the matching constraints,respectively. Probability-based [39,10] and

learning-based [3,24] methods gave further interpretations of the graph matching prob-

lem. A random walk view [5] of the problem was introduced by simulating random

walks with re-weighting jumps. A max-pooling based strategy has been also proposed

in [6] to address the presence of outliers. These two works [5,6] are both robust to out-

liers due to their re-weighting procedure during iterations. In contrast, our proposed

outlier-removal strategy removes the outliers by explicitly relying on the global struc-

ture of graphs, and it can be applied to other methods as a pre-processing step.

3 General Graph Matching

Given an undirected graph GX = {X, EX} with m nodes Xi ∈ X, i = 1, . . . ,m, we

denote each edge as Xi1i2 , (Xi1 , Xi2) ∈ EX , where EX is the edge set consisting

of M edges. Matching the two graphs GX and GY , with m,n nodes and M,N edges,
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respectively, yields a binary correspondence P ∈ {0, 1}m×n
, such that Pij = 1 when

the nodes Xi and Yj are matched and Pij = 0 otherwise.

The graph matching problem is often solved by maximizing an objective function

that measures the node and edge affinities between GX and GY . Under pairwise con-

straints, the objective function typically consists of a unary potential wv(Xi, Yj) and a

pairwise potential we(Xi1i2 , Yj1j2), which measure the similarity between the nodes Xi

and Yj and the edges Xi1i2 and Yj1j2 , respectively. These two types of similarities are

usually integrated by an affinity matrix W ∈ R
mn×mn, the diagonal element Wij,ij

of which corresponds to the unary potential wv(Xi, Yj) and the non-diagonal element

Wi1j1,i2j2 of which corresponds to the pairwise potential we(Xi1i2 , Yj1j2). Thus, the

objective function for graph matching can be written as

P
T
v WPv =

∑

Pij=1

wv(Xi, Xj) +
∑

Pi1j1
=1

Pi2j2
=1

we(Xi1i2 , Yj1j2), (1)

where Pv is the column-wise vectorized replica of P.

For graph matching under one-to-(at most)-one constraints, the feasible field P is

composed of all (partial) permutation matrices (where m ≤ n), i.e.

P ,

{

P ∈ {0, 1}m×n
;PIn = Im,PT

Im ≤ In

}

, (2)

where Im is a m× 1 unit vector. Then, the graph matching problem can be approached

by finding the optimal assignment matrix P
∗ by maximizing

max
P∈P

P
T
v WPv. (3)

Eq.(3) is the so-called (QAP), which is known to be NP-complete. Usually, an ap-

proximate solution of it can be found by relaxing the discrete feasible field P into a

continuous feasible filed P̂ as:

P̂ ,
{

P ∈ [0, 1]m×n;PIn = Im,PT
Im ≤ In

}

, (4)

which is known as the doubly-stochastic relaxation. Unfortunately, (1) the affinity ma-

trix W results in high space complexity–especially with complete graphs, and (2)

achieving global optimal or binary solutions of Eq.(3) is often highly time consuming.

4 Adaptively transforming graph matching

This section presents our ATGM algorithm starting with a definition of the linear rep-

resentation map of transformation from one graph to the space spanned by another

graph. Basically, the transformation map models the correspondence between graphs.

On this basis, we first measure the edge discrepancy between two graphs to derive the

sub-optimal transformation map. Then, we incorporate the shifting vectors of the trans-

formed nodes to obtain the final optimal transformation map. Finally, we address the

unequal size cases in graph matching by proposing a domain adaptation-based outlier

removal strategy.
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4.1 Linear representation of transformation

Given two undirected graphs GX = {X, EX} and GY = {Y, EY }, we formulate graph

matching as transformation from node set X = {Xi}
m

i=1 to the space spanned by Y =
{Yj}

n

j=1. Because X,Y are discrete sets, we first define the continuous space spanned

by Y as CY =
∑n

i=1 αjYj . Transformation T from X to CY is defined as

T : X → CY , Xi 7→ T (Xi). (5)

According to linear algebra, T (Xi) can be represented as T (Xi) ,
∑n

j=1 PijYj .

Then, P ∈ R
m×n is a linear representation (i.e., a transformation map) of T . By the

constraint Eq.(4) that P ∈ P̂ , each node T (Xi) lies in the convex hull of Y . Therefore,

we redefine CY as the convex hull of Y for graph matching problem. Whenever P

reaches an extreme point of the feasible field P̂ , it is a binary assignment matrix, and

consequently, Xi is transformed to (i.e., matches) a Yj′ where Pij′ = 1,Pi,j 6=j′ = 0.

By this representation formulation, the transformed graph X̄ , T (X) = PY is

determined by specified P and Y . The more P is binary, the more X̄ is similar to Y .

Therefore, we can replace GY by GX̄ when we attempt to minimize the disagreement

between GX and GY by forcing P to be binary. With notation X̄i1i2 , (X̄i1 , X̄i2), we

construct the functional w.r.t. P to measure disagreement between GX and GX̄ as

F(P) =
∑

(i,j)

fv(Xi, Yj)Pij +
∑

(i1,i2)

fe(Xi1i2 , X̄i1i2), (6)

where the unary potential fv(Xi, Yj) denotes the disagreement between nodes Xi and

Yj , and the pairwise potential fe(Xi1i2 , X̄i1i2) denotes the discrepancy between edge

Xi1i2 and its transformed edge X̄i1i2 . Using this formulation, the costly affinity matrix

W ∈ R
mn×mn used in general graph matching is replaced by the node disagreement

matrix {fv(Xi, Yj)} ∈ R
m×n and the edge discrepancy matrix

{

fe(Xi1i2 , X̄i1i2)
}

∈
R

m×m, which consequently reduces the space complexity from O(m2n2) to O(mn).
To obtain a desired assignment matrix P

∗ given graphs GX and GY , we can con-

struct a specified functional F(P) and minimize it to preserve the structure alignments

between GX and GX̄ in a optimization-based way:

P
∗ ∈ arg min

P∈P̂
F(P). (7)

In the rest of this section, we introduce two functionals w.r.t. P as our objective

functions to model the pairwise graph matching problem.

4.2 Edge discrepancy

In the case where graphs are embedded in Euclidean space R
d, the function fe men-

tioned above can be defined in some simple but effective forms to incorporate the edge

length (or orientations),

fe(Xi1i2 , X̄i1i2) = (||Xi1i2 || − ||X̄i1i2 ||)
2, (8)
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[X,Y]: [12 8]

Index: 0.06422
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(b)
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(c)

[X,Y]: [12 8]

Index: 0.9536

[R,G,B]: [0.9569 0.9216 0.09412]

(d)

Fig. 2: (a) Nodes shift after being transformed by minimizing FXY (P) in a 20-vs-30

case. The lines in blue are the shifting vectors, and the points in green are transformed

nodes
{

X̄i

}m

i=1
. (b) Transformation map (top) and their post-discretization (bottom)

corresponding to (a). (c) Nodes transformed by minimizing GX̄Y (P) with almost no

shifting. (d) Transformation map (top) and their post-discretization (bottom) corre-

sponding to (c). In (b) and (d), red points mark the groundtruth.

where ||Xi1i2 || is the l2 norm of Xi1i2 .

Thus, the pairwise potential of our first objective function is defined as,

FXY (P) =
∑

(i1,i2)

Si1i2(||Xi1i2 || − ||X̄i1i2 ||)
2, (9)

=
∑

(i1i2)

Si1i2(||X̄i1i2 ||
2 − 2||Xi1i2 || ||X̄i1i2 ||) + c,

where c is a constant and Si1i2 measures the weight of (||Xi1i2 || − ||X̄i1i2 ||)
2 if we

have priors. We denote S , {Si1i2} ∈ R
m×m.

The gradient of FXY (P) w.r.t. P can be computed using the chain rule,

∇FXY (P) = 2(LX + L
∗
X)(PY )Y T , (10)

where LX = diag(SIm)−S is the Laplacian of GX , and L
∗
X = diag(S∗

Im)−S
∗ with

S∗
i1i2

, Si1i2 ||Xi1i2 || ||X̄i1i2 ||
−1. To avoid numerical instabilities as in [4], a small

ǫ > 0 is added to ||X̄i1i2 ||
−1, i.e., (||X̄i1i2 || + ǫ)−1. Naturally, we can reconstruct

FXY (P) by adding a unary potential such as
∑

ij fv(Xi, Yj)Pij + λFXY (P).

Due to the non-convexity of FXY (P), its minimizer P∗ ∈ P̂ , which is regarded

as an optimal transformation map from GX to GX̄ , often reaches a local minimum and

is not binary; see Fig.2 (b) for illustration. Consequently, the transformed node X̄i is

usually not exactly equal to a Yj′ ∈ Y , and there is often a shift between X̄i and its

correct match Yσi
. Fig.2 (a) displays this shift phenomena, where each X̄i shifts from

the correct match Yσi
to some degree.

4.3 Node shifting

Benefiting from the property of FXY (P) that preserves the edge alignment between

GX and GX̄ , the shifting vectors of adjacent nodes have similar directions and norms,
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as shown in Fig.2 (a). Consequently, in order to reduce the node shifting from X̄i to its

correct match Yσi
, denoted by

−−−→
X̄iYσi

= Yσi
− X̄i,

we minimize the sum of the differences between adjacent shifting vectors, i.e.,

GX̄Y (P) =
∑

(i1i2)

S̄i1,i2 ||(
¯̄Xi1 − X̄i1)− ( ¯̄Xi2 − X̄i2)||

2
2

= Tr
(

(PY − X̄)TLX̄(PY − X̄)
)

, (11)

where LX̄ = diag(S̄Im) − S̄. We denote ¯̄X = PY as the transformed nodes of X̄ . In

our method, the weight matrix S̄ is set to be positive and symmetric, therefore, LX̄ is

positive definite and GX̄Y (P) is convex.

Sparse regularization Because GX̄Y (P) is convex, its minimizer is often an inner

point rather than an extreme point of the feasible field P̂ . In order to approach a binary

solution, we first add a sparse regularization term, i.e., the l1 norm of P to GX̄Y (P).
We denote Dij , d(X̄i, Yj) as the distance between X̄i and Yj . Benefiting from the

solution of FXY (P), the norms of shifting vectors
−−−→
X̄iYσi

are relatively small, and ele-

ments Di,σi
are much smaller than Di,j 6=σi

, as shown in Fig.1 (f). Thus, we also add a

unary term DX̄Y = {Dij} ∈ R
m×n to improve the sparsity of the minimizer.

Finally, GX̄Y (P) can be summarized as

GX̄Y (P) = 〈P,DX̄Y 〉+ λ1||P||
1
1 + λ2Tr

(

(PY − X̄)TLX̄(PY − X̄)
)

,

where 〈P,DX̄Y 〉 =
∑

ij PijDij . The gradient of GX̄Y (P) is then

∇GX̄Y (P) = DX̄Y + λ1 + 2λ2LX̄(PY − X̄)Y T . (12)

With this sparse regularization, the function GX̄Y (P) is always solved with a (nearly)

binary solution, which significantly improves the matching accuracy. See Fig. 2 (c) and

(d) for examples.

4.4 Outlier removal via domain adaptation

Matching graphs GX and GY of different sizes with m < n is more complicate. In this

situation, the outliers occurring in graph GY usually affect the matching results. Thanks

to the transformation map P
∗ achieved by minimizing FXY (P), the structure of GX̄ is

similar to that of GX . In some sense, the operation X̄ = P
∗Y can be seen as a domain

adaptation [8] from the source domain X to the target domain Y . We propose a method

to remove outliers adaptively by using the transformation map alternately minimized

from FXY (P) and GXY (P), where GXY (P) is defined by replacing X̄ with X in the

pairwise potential of GX̄Y (P):

GXY (P) =
∑

(i1,i2)

Si1i2 ||(X̄i1 −Xi1)− (X̄i2 −Xi2)||
2
2 (13)

=
∑

(i1,i2)

Si1i2 ||(Xi2 −Xi1)− (X̄i2 − X̄i1)||
2
2, (14)
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Graph X with 46 nodes 46 inliers with 40 outliers Iteration = 1 Iteration = 2 Iteration = 3 Iteration = 4

Fig. 3: Outlier removal with a transformation map P
∗ obtained by alternately minimiz-

ing FXY (P) and GXY (P). In each iteration, the red dots are inliers and the green plus

signs are the nodes remaining after removal.

which depicts the edge-vector differences between the original graph GX and the trans-

formed graph GX̄ . The orientation of edge has also been used in many graph matching

methods [19,32,40] to construct the non-diagonal element of the affinity matrix as:

Wi1j1,i2j2 = exp

(

−
1

2
(||Xi1i2 || − ||Yj1j2 ||)

2 −
1

2
(θi1i2 − θj1j2)

2

)

, (15)

where θi1i2 is the angle between edge Xi1i2 and the horizontal line.

After minimizing FXY (P) or GXY (P), we obtain the transformed nodes X̄ =
P

∗Y . Consequently, GX̄ has a structure similar to that of the original graph GX and lies

in the same coordinate system of GY with relatively small shifts. Then, we can remove

outliers adaptively using a ratio test technique. Given two point sets X̄ and Y , we

compute the Euclidean distance dij between all the pairs (X̄i, Yj). For each node X̄i,

we find the closest node Yj∗ and remove all the nodes Yj when dij > k ·dij∗ for a given

k > 0. If the number of remaining nodes l is smaller than m, m− l nodes are selected

from the removed nodes that are closer to X̄ and are added. The experimental results

show that after several iterations of alternately minimizing FXY (P) and GXY (P) most

outliers are removed (see Fig.3).

Our ATGM algorithm with outlier-removal is summarized in Algorithm 1.

Algorithm 1 P
∗ ← ATGM(X,Y, k0)

Input : X, Y, k0 and S, S̄ if available.

Output: P∗

while k ≤ k0 do

P
∗ ← argmin GXY via Eq.(16) and Eq.(17);

Y ← removing outliers of Y with P
∗;

P
∗ ← argmin FXY via Eq.(16) and Eq.(17);

Y ← removing outliers of Y with P
∗;

k ← k + 1;

end while

P
∗ ← argmin FXY via Eq.(16) and Eq.(17);

X̄ ← P
∗Y ;

P
∗ ← argmin GX̄Y with P

∗ as initialization.

P
∗ ← post-discretization of P∗ by the Hungarian method.
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5 Numerical implementation and analysis

As presented above, we construct two objective functions, namely, a non-convex FXY (P)
and a convex GX̄Y (P). Previous methods, e.g., [38,40,25], relaxed their objective func-

tions in both convex and concave forms as Jv and Jc, respectively, and solved a series

of combined functions Jλ = λJc + (1 − λ)Jv controlled by a parameter λ increas-

ing from 0 to 1. In contrast, we solve our objective functions FXY (P) and GX̄Y (P)
separately by the Frank-Wolfe (FW) method [38,40], which is simple but efficient.

Given that g is a convex and differentiable function, and given that P̂ is a convex

set, the FW method iterates the following steps until it converges:

P̃
(k+1) ∈ argmin

P∈P̂

〈∇g(P(k)),P〉, (16)

P
(k+1) = P

(k) + α(k)(P̃(k+1) −P
(k)), (17)

where α(k) is the step size of the iteration k obtained by a line search procedure [14],

and ∇g is computed using the Eq.(10) and Eq.(12).

In Eq.(16), the minimizer P̃(k+1) ∈ P̂ is theoretically an extreme point of P̂ (so

is binary). This means that P̃(k+1) ∈ P . Therefore, Eq.(16) is a linear assignment

problem (LAP) that can be efficiently solved by approaches such as the Hungarian [17],

LAPJV [16] algorithm. Moreover, since P̃
(k+1) is binary in each iteration, the final

solution P
∗ is (nearly) binary after minimizing GX̄Y (P).

Convergence The FW method ensures an at least sublinear convergence rate [18],

which may result in large iterations for solving the non-convex function FXY (P). How-

ever, minimizing FXY (P) within 200 iterations is sufficient because its solution will

be applied as the initialization for minimizing GX̄Y (P), which is strong convex and

stronger convergence can be achieved. In our experiments, GX̄Y (P) always converges

at a 10−7 tolerance within k ≤ 100 iterations. Compared to the path-following method

that solves the two relaxed objective functions combined together in [38,40,25], our

optimization strategy is faster with higher matching accuracy.

Local optimal vs. global optimal The FW method can guarantee obtaining only

a local optimum of the non-convex objective FXY (P). However, as discussed above,

the local optimum for FXY (P) is applied as an initialization for solving the convex

objective GX̄Y (P), which allows us to reach a global optimum.

Computational complexity For our method, the space complexity is O(mn), which

is considerably smaller than the size O(m2n2) of most of other methods with complete

graphs. The time complexity is O(Tn3), where T is the number of iterations in the FW

method. This complexity can be calculated as O (T (τf + τl) + τs), where τs = O(m2)
is the cost of the edge attribute matrices of GX . In each iteration of the FW method,

τf = O(m2n) is the cost to compute the gradient, function value and step size at P(k),

and τl = O(n3) is the cost to minimize Eq.(16) using the Hungarian algorithms.

6 Experimental analysis

In this section, we evaluate our method ATGM on both synthetic data and real-world

datasets. We compare our method with state-of-the-art methods including GA [13],
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PM [39], SM [22], SMAC [7], IPFP [23], RRWM [5], FGM [40] and MPM [6]. As

suggested in [23], we use the solution of SM as the initialization for IPFP. Also, for

FGM, we use the deformable graph matching method called FGM-D.

In all the experiments, to be able to apply unified parameters λ = 1, λ1 = 103, and

λ2 = 1, we normalize the node coordinates to [0, 1] for our method. For the non-convex

objective functions FXY , we compute its unary term by using Shape Context [1]. For

comparison, the average accuracy for each algorithm is reported. Our objective func-

tions are different from those used by the compared methods, and thus, it does not make

sense to compare the objective scores or objective ratios.

6.1 Results on synthetic data

We perform a comparative evaluation of ATGM on synthesized random point sets fol-

lowing [40,15,5]. The synthetic points of GX and GY are constructed as follows: for the

graph GX , nin inlier points are randomly generated on R
2 with the Gaussian distribu-

tionN (0, 1). The graph GY with noise is generated by adding Gaussian noiseN (0, σ2)
to each Xi ∈ X to evaluate the robustness of the method to deformation noise. Graph

GY with outliers is generated by adding nout additional points on R
2 with a Gaussian

distribution N (0, 1) to evaluate the robustness to outliers.

For the compared methods, as in [40], we set the edge affinity matrix Wi1j1,i2j2 =

exp(−
(||Xi1i2

||−||Yj1j2
||)2

0.15 ) . We set S ∈ R
m×m as Si1i2 = ||Xi1i2 ||

−1
for FXY (P)

an GXY (P) with fully connected GX . For GX̄Y (P), our method performs a Delaunay

triangulation on X to get its edge set ĒX , and then, ĒX is divided into two parts using

k-means by considering the edge length (edges with longer lengths are abandoned).

Memory efficiency As analyzed in Sec.5, the space complexity of our method is

lower than that of compared methods. In this experiment, we try to verify that ATGM

can match graphs with low memory consumption while achieving better accuracy.

Since the compared methods can achieve better accuracy with complete graphs,

for fairness, we first applied all methods to complete graphs with a relative small size

nin = 20. We then enlarged the size to nin = 100 to test the advantages of ATGM in

terms of memory efficiency. Due to the high space complexities of the other methods,

we had to apply them to graphs with Delaunay triangulation. However, our method is

able to use complete graphs due to its lower space complexity O(n2).
As shown in Fig.4 (a) and (b), under the complete graph setting, our method achieves

the highest average accuracy in the case with deformation noise and achieves competi-

tive results in the case with outliers. For graphs of large size, our method outperforms

all the other methods (shown in Fig.4 (c) and (d)). In contrast, using complete graphs

with a large number of nodes with other methods is infeasible in practice. Except for

PM [39], all of the compared methods have to use n2
in(nin + nout)

2 units of memory

, which will be extremely large for nin = 100, nout ≥ 100. This requirement affects

their application to graph matching in practice.

Running time To compare the time consumption of all methods, we tested them in

both equal-size and unequal-size cases, namely, (1) nin = 10, 20, ..., 100, nout = 0,

σ = 0.2 and (2) nin = 100, nout = 10, 20, ..., 100, σ = 0.05. Considering the effect of

the number of edges on time consumption, in equal-size cases, we applied all methods
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Fig. 4: Comparisons of the robustness to noise and outliers. For complete graphs, the

accuracy with respect to the noise and number of outliers are in (a) and (b), respectively.

The results for graphs connected by Delaunay triangulation are shown in (c) and (d).

to both complete and Delaunay triangulation-connected graphs. In unequal-size cases,

we applied our method to complete graphs and the others to Delaunay triangulation-

connected graphs so that ATGM took more edges than the others.

As shown in Fig.5 (a) and (b), where graphs are either complete or connected by

Delaunay triangulation, our method takes an intermediate running time and achieves

the highest average accuracy. As shown in Fig.5 (c), even though ATGM handles more

edges than the other methods, it takes an acceptable time with the highest accuracy.

Compared with GA, SM, PM, SMAC, and IPFP-S, which run faster, ATGM can achieve

higher average accuracy. To match complete graphs, the methods RRWM, FGM, MPM

can achieve competitive accuracy with ATGM. However, the time consumptions of

them rapidly increase and becomes larger than that of ours.

Table 1: Average accuracy and running time of ATGM on synthetic data with varying

inliers nin, deformation noise σ and outliers nout.

#Inlier Noise (σ) 0.02 0.04 0.06 0.08 0.10

100
time (s) 0.22 0.51 0.74 0.78 1.01

acc. (%) 99.10 94.15 89.75 84.2 73.9

300
time (s) 3.34 5.43 6.72 7.73 8.02

acc. (%) 96.87 88.33 74.37 60.13 51.33

500
time (s) 23.33 32.47 33.12 33.81 35.24

acc. (%) 94.20 79.96 62.32 48.54 38.72

1000
time (s) 147.15 150.92 156.71 156.99 159.26

acc. (%) 89.43 66.34 45.23 33.47 25.27

#Inlier #Outlier 0.2 0.4 0.6 0.8 1.0

100
time (s) 1.90 3.11 3.81 4.62 5.51

acc. (%) 99.90 99.80 99.90 99.80 99.60

300
time (s) 17.02 22.70 42.92 47.70 55.13

acc. (%) 100.00 99.80 99.67 99.70 99.53

500
time (s) 107.24 123.42 146.99 187.84 185.54

acc. (%) 99.86 99.88 99.64 98.24 81.30

1000
time (s) 563.83 645.11 758.73 882.18 1070.26

acc. (%) 99.84 98.95 88.44 78.17 71.33

Large-scale graph matching. To test the efficiency of our method when applied

to large-scale graphs, we carried out more challenging experiments by setting the num-

ber of inliers as nin = 100, 300, 500, 1000 with deformation noise and outliers. The

number of outliers was set to 20%, 40%, ..., 100% of the number of inliers.

As reported in Tab.1, ATGM is very robust to outliers and less robust to strong noise

with larger graphs. Since the compared methods need to store affinity matrices with size

of approximately n2
in(nin + nout)

2, applying these methods to large-scale graphs with

hundreds or thousands of nodes is infeasible.
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Fig. 5: Comparisons of running time and average accuracy. Graphs in (a) are complete,

and those in (b) are Delaunay triangulation-connected. In (c), only ATGM uses com-

plete graphs, while the others use Delaunay triangulation-connected graphs.

6.2 Results on real-world datasets

We also perform comparative evaluations on real-world datasets, including the CMU

House sequence4 and the PASCAL Cars and Motorbikes pairs [24], which are com-

monly used to evaluate graph matching algorithms.

2726

10

17

 2

 3

24

12

23
25

 6

29

30

 5

28

 7

 9

20

22

16

 1

 2

 3

 4

 5

 6  7

 8

 9 10

11

1213

1415

16
17

18
19

20
21

22
23

24
25

26 27
28

29

30

2726

10

17

 2

 3

24

12

23

25

 6

29

30

 5

28

 7

 9

20

22

16

(a) 20-vs-30 (ATGM: 20/20)

 1

 2

 3
 4

 5 6

 7

 8
 9

10
11

12

13 14

15

16

17

18

1920
21

22 2324

25

26

27

28

 1

 2

 3
 4

 5
 6

 7

 8

 9

10

11

12

13 14

15

16

17

18

1920
21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

 1

 2

 3
 4

 5
 6

 7

 8

 9

10

11

12

13 14

15

16

17

18

1920
21

22
23

24

25

26

27

28

(b) 28-vs-48 (ATGM: 28/28)

 1

 2

 3

 4  5 6
 7

 8

 910

11
12

13

1415

16 17 18 19
20 21

22 23

24
25

26

27
28

29

30

31

32
33

34

35 36

37

38

39
40

41
42

43

44

45
46

 1

 2

 3

 4  5 6

 7

 8

 910

11
12

13

14 15

16 17 18 19 20 21
22 23

24
25 26

27

28

29

30

31

3233

34

35 36

37

38
39

40

41 42

43

44

45
46

47 48 49

50 51

52 53 54

55 56 57 58 59 60

61 62
63 64 65 66 67

68
69 70

71

72

73 74
75 76 77

78 79 80

81 82 83

84 85 86

 1

 2

 3

 4  5 6

 7

 8

 910

11
12

13

14 15

16 17 18 19 20 21
22 23

24
25 26

27

28

29

30

31

3233

34

35 36

37

38
39

40

41 42

43

44

45
46

(c) 46-vs-86 (ATGM: 44/46)

Fig. 6: Examples of matching unequal-size graphs using ATGM on real-world datasets.

The red dots are inliers in GX , and yellow plus signs are both inliers and outliers in GY .

The lines in green are correct matches, while those in red are incorrect.

The CMU House sequence consists of 111 frames of a synthetic house. Each image

contains 30 feature points that are manually marked with known correspondences. In

this experiment, we matched all the image pairs separated by 10, 20,.., 90 frames. The

unequal-size cases are set as 20-vs-30 and 25-vs-30. For the compared methods, we set

the edge-affinity to Wi1j1,i2j2 = exp(−
(||Xi1i2 ||−||Yj1j2 ||)

2

2500 ) as the same as [40].

4 http://vasc.ri.cmu.edu//idb/html/motion/house/index.html

http://vasc.ri.cmu.edu//idb/html/motion/house/index.html
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Fig. 7: Comparison of average accuracy on the House sequence in both equal-size and

unequal-size cases.
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Fig. 8: Comparison on cars (left) and motorbikes (right) image pairs with outliers.

The PASCAL dataset for graph matching consists of 30 pairs of car images and

20 pairs of motorbike images. Each pair contains both inliers (approximately 30–60

feature points) with groundtruth labels and randomly marked outliers. In the unequal-

size matching case, we added 5, 10, 15, 20 outliers to GY . For the compared methods,

we set the edge affinity matrix as Eq.(15) which was used in [40].

Average accuracy For the CMU House sequence, as shown in Fig.7, our method

achieves a higher accuracy in both equal-size and unequal-size cases. Meanwhile, our

method outperforms all the compared methods on the PASCAL datasets because our

method can remove the outliers automatically. The results are shown in Fig.8.

Effect of objective functions As we discussed in Sec.4, the objective function GX̄Y

has effects on both the sparsity and matching accuracy. First, to evaluate the sparsity of

P ∈ [0, 1]m×n, we define an index Sr(P) =
∑

i
I(Pij≥r)

m
where I is the indicator func-

tion. We evaluated Sr(P) on the House sequence with r = 0.9. As shown in Tab.2,

the optimal representation map P
∗ of GX̄Y is (nearly) binary in all cases. Then, we

evaluated the average accuracy in two cases: (1) minimizing FXY only and (2) apply-

ing GX̄Y after FXY is minimized. As shown in Tab.2, the average accuracy is highly

improved especially in unequal-size cases due to GX̄Y . This results shows that GX̄Y

can enhance the sparsity of the assignment matrix and reduce the node shifting.

Effectiveness on outlier removal Finally, our proposed outlier removal strategy is

not restricted to our approach. It can be applied to any other method. To evaluate the
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Table 2: Effect of objective functions FXY and GX̄Y on both the sparsity of the assign-

ment matrix P
∗ and the average matching accuracy of the house sequence dataset.

Size #Separation 10 20 30 40 50 60 70 80 90

m=20

n=30

Sparsity 98.18 97.98 97.59 96.11 95.15 89.63 90.79 79.58 80.90

acc. (F) 59.60 58.89 57.78 56.18 55.38 54.05 53.52 51.90 51.39

acc. (F&G) 98.25 97.86 96.84 93.97 92.11 88.37 85.66 79.37 77.67

m=25

n=30

Sparsity 99.92 100.00 100.00 99.72 99.42 98.35 98.42 96.63 92.43

acc. (F) 81.25 80.24 78.15 76.56 75.80 74.93 73.25 71.05 68.92

acc. (F&G) 99.92 99.71 99.42 98.66 97.70 96.05 94.63 91.63 89.08

m=30

n=30

Sparsity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

acc. (F) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.68

acc. (F&G) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 3: Effectiveness of outlier removal strategy. This strategy improves the average

matching accuracy by more than 10% for almost all the methods.

Data Out.Re. GA [13] PM [39] SM [22] SMAC [7] IPFP-S [23] RRWM [5] FGM-D [40] MPM [6] ATGM

Cars
w/o 34.50 37.04 38.04 38.53 26.74 53.84 49.05 58.02 -

w/ 61.93 60.71 63.55 49.54 65.55 70.37 70.62 63.44 71.83

Motor.
w/o 45.97 43.56 47.13 43.84 34.90 65.64 67.31 65.73 -

w/ 66.53 61.91 67.43 52.06 75.80 72.61 76.76 69.46 74.75

generality of our outlier removal strategy, we applied it as a pre-processing step, and

then executed the other methods with the pre-processed input. As shown in Tab.3, the

average accuracy of all the methods is improvement greatly, and almost all the methods

improve their performance by more than 10%.

7 Conclusions

In this paper, we presented a new approach from a functional representation perspec-

tive for the graph matching problem by redefining the assignment matrix as a linear

representation map. Our approach reduces both the space and time complexity sig-

nificantly. Thus, our method is suitable for matching complete graphs with hundreds

and thousands of nodes. In addition to the transformation map, we presented a do-

main adaptation-based method for outlier removal that improves the performance of all

methods. In future work, we plan to study graph matching on more general manifolds

(or metric spaces) and hyper-graph matching with lower computational complexity.
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