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Abstract. Face attribute editing aims at editing the face image with
the given attribute. Most existing works employ Generative Adversar-
ial Network (GAN) to operate face attribute editing. However, these
methods inevitably change the attribute-irrelevant regions, as shown in
Fig. 1. Therefore, we introduce the spatial attention mechanism into
GAN framework (referred to as SaGAN), to only alter the attribute-
speciic region and keep the rest unchanged. Our approach SaGAN con-
sists of a generator and a discriminator. The generator contains an
attribute manipulation network (AMN) to edit the face image, and a
spatial attention network (SAN) to localize the attribute-speciic region
which restricts the alternation of AMN within this region. The discrimi-
nator endeavors to distinguish the generated images from the real ones,
and classify the face attribute. Experiments demonstrate that our ap-
proach can achieve promising visual results, and keep those attribute-
irrelevant regions unchanged. Besides, our approach can beneit the face
recognition by data augmentation.

Keywords: Face Attribute Editing; GAN; Spatial Attention; Data aug-
mentation

1 Introduction

Face attribute editing is the task that alters the face image towards a given
attribute. It has been widely used in facial animation, art, entertainment, and
face expression recognition [1], [2], [3], [4] and has drawn increasing attentions
in recent years. The desired result of face attribute editing (e.g. expression edit-
ing or removing/wearing eyeglasses etc.) is that the attribute-speciic region is
altered to the given attribute while the rest irrelevant region keeps unchanged.

In early years, face attribute editing is treated as a regression problem by us-
ing paired training samples, such as face frontalization or face eyeglasses removal.
Zhu et al. [5] proposed a face frontalization method, which takes as input a face
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Fig. 1. Illustration of Face attribute editing. (a) shows the input face images, and the
attributes to be edited are eyeglass and mouth close, with the corresponding attribute-
speciic region marked in red boxes respectively. (b) shows the residual images and
the attribute edited images from existing methods, where the whole image is altered
although the attribute to be edited is local. (c) shows the expected edited images and
the expected residual images respectively, where only those attribute-speciic region
should be altered and the rest keep unchanged. The residual images are deined as the
diferences between the input face images and the edited face images.

image to regress the desired frontal face image by minimizing the pixel-wise im-
age reconstruction loss. To remove the eyeglasses from a face image, Zhang et
al. [6] trained a model of multi-variable linear regression with training samples
collected from face images with eyeglasses and their corresponding face images
without eyeglasses. The performance of these methods heavily depends on the
paired training datas, which are however quite diicult to acquire.

Recently, Generative Adversarial Network (GAN), proposed by Goodfellow
et al. [7], has achieved great progress in image generation [8], [9], [10], image
super resolution [11] and neural style transfer [12], [13]. Face attribute edit-
ing also beneits a lot from GAN, which treats the face attribute editing as an
unpaired image-to-image translation task. The conventional GAN framework
consists of a generator and a discriminator. The discriminator learns to distin-
guish the generated images from the real ones, while the generator manages to
fool the discriminator to produce photo-realistic images. The GAN approaches
take the original face image as input and generate the edited face image with
the given attribute. An extension for speciic generation is conditional GANs
(cGANs) [14], which allows to generate speciic images given a conditional sig-
nal. Furthermore, IcGAN [15] introduces an encoder to the cGANs forming an
invertible conditional GANs (IcGAN) for face attribute editing, which maps the
input face image into a latent representation and an attribute vector. The face
image with new attributes is generated with the altered attributes vector as the
condition. For better generation in the absence of paired samples, dual learning
has been introduced into GAN-based methods [12]. In [12], an efective unpaired
image translation method CycleGAN is proposed by coupling the generation and
its inverse mapping under a cycle consistency loss. CycleGAN is used in a wide
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range of applications, including style transfer, object transiguration, attributes
transfer and photo enhancement. A recent work, StarGAN [16], also adopts cycle
consistency loss, but diferently the generator of StarGAN takes an image and a
domain manipulation vector as input, which allows to translate images between
multiple domains using only a single model with promising results.

However, all above methods directly operate on the whole image, and thus in-
evitably change the rest attribute-irrelevant region besides the attribute-speciic
region. To avoid change the whole images, Shen et al. [17] models the face at-
tribute editing as learning a sparse residual image, which is deined as the dif-
ference between the input face image and the desired manipulated image. This
method is referred to as ResGAN in this work for short. Compared with op-
erating on the whole image, learning the residual image avoids changing the
attribute-irrelevant region by restraining most regions of the residual image as
zero. This work is quite insightful to enforce the manipulation mainly concen-
trate on local areas especially for those local attributes. However, the location
and the appearance of target attributes are modeled in single sparse residual
image which is actually hard for a favorable optimization than modeling them
separately, and this can be seen from the Fig. 4 in [17], where the response of
the residual image scattered the whole image although the strong response of
the residual image mainly concentrate on the local areas, even for the eyeglass
attribute.

Inspired by the ResGAN [17], in this work we introduce the spatial attention
mechanism into GAN for more accurate face attribute editing. Spatial atten-
tion mechanism allows one to select those prior part and ignore the rest for
further faster or more accurate processing, which has performed successfully in
image classiication [18], [19], [20], and semantic segmentation [21], etc. For face
attribute editing, spatial attention mechanism can be used to restrict the ma-
nipulation only within the attribute-speciic regions. The proposed GAN with
spatial attention (referred to as SaGAN) consists of a generator and a discrimi-
nator. The generator aims at generating face images with target attribute for an
input image. The generator is made up of two networks, an attribute manipula-
tion network (AMN) to edit the face image with the given attribute and a spatial
attention network (SAN) to localize the attribute-speciic region which restricts
the alternation of AMN within this region. As adversary of the generator, the
discriminator distinguishes the generated images from the real ones, and classi-
ies the face attribute. Compared with the ones operating on the whole image or
learning a sparse residual image, the proposed SaGAN can precisely localize the
attribute-speciic region for editing by utilizing the spatial attention mechanism.
Experiments demonstrate that the proposed SaGAN achieves promising visual
results and further beneits the face recognition by data augmentation.

In brief, our contribution can be summarized in three-folds:

– The spatial attention is introduced to the GAN framework, forming an end
-to-end generative model for face attribute editing (referred to as SaGAN),
which can only alter those attribute-speciic region and keep the rest irrele-
vant region remain the same.
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Fig. 2. An overview of our proposed SaGAN, consisting of a generator G and a dis-
criminator D. G consists of an attribute manipulation network (AMN) to edit the face
image with the given attribute, and a spatial attention network (SAN) to localize the
attribute-speciic region which restricts the alternation of AMN within this region. D
learns to distinguish the generated images from the real ones, and classify the face
attribute.

– The proposed SaGAN adopts single generator with attribute as conditional
signal rather than two dual ones for two inverse face attribute editing.

– The proposed SaGAN achieves quite promising results especially for those
local attributes with the attribute-irrelevant details well preserved. Besides,
our approach also beneits the face recognition by data augmentation.

2 Generative Adversarial Network with Spatial Attention

In this section, we will irst describe the details of the generative adversarial
network with spatial attention (SaGAN) method; and then give a detailed dis-
cussion about the diference from the existing methods.

An overview of SaGAN is shown in Fig. 2. For a given input image I and
an attribute value c, the goal of face attribute editing is to translate I into an
new image Î, which should be realistic, with attribute c and look the same as
the input image excluding the attribute-speciic region. The SaGAN consists of
a generator G and a discriminator D in adversarial manner.

2.1 Discriminator

The discriminator D, as adversary of generator, has two objectives, one to dis-
tinguish the generated images from the real ones, and another to classify the at-
tributes of the generated and real images, as shown in Fig. 2. The two classiiers
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are both designed as a CNN with softmax function, denoted as Dsrc and Dcls

respectively. Generally, the two networks can share the irst few convolutional
layers followed by distinct fully-connected layers for diferent classiications.

The output of real/fake classiier Dsrc(I) means the probability of an image
I to be a real one, and that of attribute classiier Dcls(c|I) means the probability
of an image I with the attribute c. Here, c ∈ {0, 1} is a binary indicator of with
or without an attribute. The input images can be real ones or generated ones.

The loss for optimizing the real/fake classiier is formulated as a standard
cross-entropy loss as below:

LD
src = EI [logDsrc(I)] + E

Î
[log(1−Dsrc(Î))], (1)

where I is the real image and Î is the generated image. Similarly, the loss for
optimizing the attribute classiier is also formulated as a standard cross-entropy
loss as below:

LD
cls = EI,cg [− logDcls(c

g|I)], (2)

where cg is the ground truth attribute label of the real image I.
Finally, the overall loss function for discriminator D is formulated as follows:

min
Dsrc,Dcls

LD = LD
src + LD

cls. (3)

By minimizing Eq.(3), the obtained discriminator D can well separate the
real images from those fake ones, and correctly predict the probability that an
image I is with the attribute c.

2.2 Generator

The generator G endeavors to translate an input face image I into an edited face
image Î conditioned on an attribute value c, formulated as follows:

Î = G(I, c), (4)

G contains two modules, an attribute manipulation network (AMN) denoted as
Fm and a spatial attention network (SAN) denoted as Fa. AMN focuses on how
to manipulate and SAN focuses on where to manipulate.

The attribute manipulation network takes a face image I and an attribute
value c as input, and outputs an edited face image Ia, which is formulated as

Ia = Fm(I, c). (5)

The spatial attention network takes the face image I as input, and predict a
spatial attention mask b, which is used to restrict the alternation of AMN within
this region, formulated as below:

b = Fa(I), (6)
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Ideally, the attribute-speciic region of b should be 1, and the rest regions should
be 0. In practice, the values may be any continuous number between 0 and 1
after the optimization. Therefore, those regions with non-zeros attention values
are all regarded as attribute-speciic region, and the rest with zero attention
values are regarded as attribute-irrelevant region.

Guided by the attention mask, in the inal edited face image Î, the attribute-
speciic regions are manipulated towards the target attribute while the rest re-
gions remain the same, formulated as below:

Î = G(I, c) = Ia · b+ I · (1− b), (7)

A favorable attribute edited image should be realistic, correctly with target at-
tribute c, and also with modest manipulation, i.e. keep those attribute-irrelevant
regions unchanged. So naturally, three kinds of losses are needed to ensure the
achieving of these goals.

Firstly, to make the edited face image Î photo-realistic, an adversarial loss is
designed to confuse the real/fake classiier following most GAN-based methods:

LG
src = E

Î
[− logDsrc(Î)]. (8)

Secondly, to make Î be correctly with target attribute c, an attribute classii-
cation loss is designed to enforce the attribute prediction of Î from the attribute
classiier approximates the target value c as below:

LG
cls = E

Î
[− logDcls(c|Î)]. (9)

Last but not least, to keep the attribute-irrelevant region unchanged, a re-
construction loss is employed similar as CycleGAN [12] and StarGAN [16], which
is formulated as follows:

LG
rec = λ1EI,c,cg [(∥I −G(G(I, c), cg)∥1] + λ2EI,cg [(∥I −G(I, cg)∥1], (10)

where cg is the original attribute of input image I, λ1 and λ2 are two balance
paramters. The irst term is dual reconstruction loss. In this loss, when an at-
tribute edited image Î = G(I, c) is translated back to the image G(G(I, c), cg)
with the original attribute cg, it is expected to be the same as the original im-
age I. The second term is identity reconstruction loss, which guarantees that an
input image I is not modiied when edited by its own attribute label cg. Here,
the L1 norm is adopted for more clear reconstruction.

Finally, the overall objective function to optimize G is achieved as below:

min
Fm,Fa

LG = LG
adv + LG

cls + LG
rec. (11)

For the whole SaGAN network, the generator G and the discriminator D can
be easily optimized in an adversarial way, following most existing GAN-based
and CNN-based methods.
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2.3 Discussions

Diferences with CycleGAN [12]. In terms of loss function, CycleGAN and
our SaGAN are similar as they both adopt the adversarial loss, the dual re-
construction loss and the identity reconstruction loss, but they difer in the
way of generating the attribute editing images. The CycleGAN operates on the
whole image to produce an edited image and couples the counter editing of
an attribute as a cycle architecture. Diferently, our SaGAN introduces spa-
tial attention mechanism to enforce the attribute manipulation only within the
attribute-speciic regions for more precise attribute editing, and achieves two
counter editing via single model but with diferent conditional signal.

Diferences with StarGAN [16]. Again, the most signiicant diference
between StarGAN and our SaGAN is that StarGAN operates on the whole image
while our SaGAN only focuses on the attribute-speciic region. An advantage of
StarGAN is that it can edit multiple attributes with one model, while our SaGAN
can only edit one attribute which will be our future work.

Diferences with ResGAN [17]. ResGAN and our SaGAN are the only
two methods that aims at manipulating modest region, i.e. attribute-speciic
region, while keeping the rest remain unchanged. They are diferent in how to
achieve this goal. ResGAN models the manipulation of attribute-speciic region
as a sparse residual image, which determines the attribute-speciic region via
the sparsity constraint. The sparsity degree depends on a control parameter but
not the attribute itself. Diferently, our SaGAN determines the attribute-speciic
region via an attention mask predicted from the spatial attention network, which
is adaptive to the attribute, and thus more accurate than that from the simple
sparsity constraint. Besides, ResGAN employs two generators for the counter
editing of one attribute, while our SaGAN adopts a single generator but with
diferent conditional signal.

3 Implementation Details

Optimization. To optimize the adversarial real/fake classiication more stably,
in all experiments the objectives in Eq.(1) and Eq.(8) is optimized by using
WGAN-GP [22], reformulated as

LD
src = −EI [Dsrc(I)] + E

Î
[Dsrc(Î)] + λgpEĨ [(∥∇ĨDsrc(Ĩ)∥2 − 1)2], (12)

LG
src = −E

Î
[Dsrc(Î)], (13)

while Ĩ is sampled uniformly along a straight line between the edited images
Î and the real images I. λgp is the coeicient of the gradient penalty which is
empirically set as λgp = 10.

Network Architecture. The detailed architectures of our SaGAN are shown
in Table 1 and Table 2. For the generator, the two networks of AMN and SAN
share the same network architecture except slight diference in the input and
output: 1) AMN takes as input a four-channel tensor, consisting of an input
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Table 1. The network architecture of generator G. I, O, K, P, and S denote the number
of input channel, the number of output channel, kernel size, padding size and stride
size respectively, and IN denotes the instance normalization.

Layer Attribute Manipulation Network (AMN) Spatial Attention Network (SAN)
L1 Conv(I4,O32,K7,P3,S1),IN,ReLU Conv(I3,O32,K7,P3,S1),IN,ReLU
L2 Conv(I32,O64,K4,P1,S2),IN,ReLU Conv(I32,O64,K4,P1,S2),IN,ReLU
L3 Conv(I64,O128,K4,P1,S2),IN,ReLU Conv(I64,O128,K4,P1,S2),IN,ReLU
L4 Conv(I128,O256,K4,P1,S2),IN,ReLU Conv(I128,O256,K4,P1,S2),IN,ReLU
L5 Residual Block(I256,O256,K3,P1,S1) Residual Block(I256,O256,K3,P1,S1)
L6 Residual Block(I256,O256,K3,P1,S1) Residual Block(I256,O256,K3,P1,S1)
L7 Residual Block(I256,O256,K3,P1,S1) Residual Block(I256,O256,K3,P1,S1)
L8 Residual Block(I256,O256,K3,P1,S1) Residual Block(I256,O256,K3,P1,S1)
L9 Deconv(I256,O128,K4,P1,S2),IN,ReLU Deconv(I256,O128,K4,P1,S2),IN,ReLU
L10 Deconv(I128,O64,K4,P1,S2),IN,ReLU Deconv(I128,O64,K4,P1,S2),IN,ReLU
L11 Deconv(I64,O32,K4,P1,S2),IN,ReLU Deconv(I64,O32,K4,P1,S2),IN,ReLU
L12 Conv(I32,O3,K7,P3,S1),Tanh Conv(I32,O1,K7,P3,S1),Sigmoid

Table 2. The network architecture of discriminator D. I, O, K, P, and S denote the
number of input channel, the number of output channel, kernel size, padding size and
stride size respectively, and IN denotes the instance normalization.

Layer Discriminator
L1 Conv(I3,O32,K4,P1,S2),Leaky ReLU
L2 Conv(I32,O64,K4,P1,S2),Leaky ReLU
L3 Conv(I64,O128,K4,P1,S2),Leaky ReLU
L4 Conv(I128,O256,K4,P1,S2),Leaky ReLU
L5 Conv(I256,O512,K4,P1,S2),Leaky ReLU
L6 Conv(I512,O1024,K4,P1,S2),Leaky ReLU
L7 src: CONV(I2014,O1,K3,P1,S1) cls: CONV(I1024,O1,K2,P0,S1),Sigmoid

image and a given attribute value, while SAN just takes as input the input im-
age. 2) AMN outputs a three-channel RGB image, while SAN outputs a single
channel attention mask image. 3) AMN uses Tanh as the activation function
for the output layer as the input image has been normalized to [-1,1] like most
existing GAN methods, while SAN adopts Sigmoid as the attention is within [0,
1]. For the discriminator, the same architecture as PatchGAN [23], [12] is used
considering its promising performance.

Training Settings. The parameters of all models are randomly initialized
according to the normal distribution with mean as 0 and standard deviation as
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0.02. During optimization of SaGAN, Adam [24] with β1 = 0.5, β2 = 0.999 and
learning rate lr = 0.0002 is adopted as the optimizer. For all of our experiments,
We set λ1 = 20 and λ2 = 100 in Eq.(10). And the batch size is set to 16. The
generator is updated once, while the discriminator is updated three times.

4 Experiments

In this section, we irstly illustrate the datasets used for experiments; and then
compare our SaGAN against recent methods on face attribute editing in terms
of visual performance; and inally demonstrate that our SaGAN can beneit the
face recognition by data augmentation.

4.1 Datasets

The CelebA [25] dataset contains 202,599 face images of 10,177 celebrities. Each
face image is annotated with 40 binary attributes. The oicial aligned and
cropped version of CelebA are used, and all images are resized to 128 × 128.
The 8,177 people with the most samples are used for training and the rest 2,000
people for testing. In summary, the training data contains 191,649 images, and
the testing data contains 10,950 images for evaluation of both face attribute edit-
ing and face veriication. Besides, LFW [26] dataset is also used for testing the
generalization of the proposed SaGAN. Four attributes are used as exemplars for
editing, including eyeglasses, mouth_slightly_open, smiling and no_beard.

4.2 Visual Comparison on face attribute editing

We irst investigate the results of attribute editing and the attention mask gener-
ated by SaGAN. Then, we compare the proposed SaGAN with the state-of-the-
art methods including CycleGAN [12], StarGAN [16] and ResGAN [17] on face
attribute editing. All these methods are trained with the same training data.
They are tested on both CelebA and LFW.

Investigation of SAN. The spatial attention network (SAN), aiming at
localizing the attribute-speciic region which restricts the face attribute editing
within this region, plays an important role in the proposed SaGAN. Therefore,
we visualize the corresponding spatial attention masks to igure out how SAN
contributes to the performance for face attribute editing. As can be seen in
Fig. 3, the spatial attention masks mainly concentrate on the attribute-speciic
regions, and those attribute-irrelevant regions are successfully suppressed. This
helps to keep the attribute-irrelevant regions unchanged. For local attribute such
as eyeglass, the spatial attention mask only have response around the eyes, while
for the attribute that may involve the movement of global face such as mouth
open and smiling, the spatial attention have response on larger or even the whole
face area. This illustrates that the spatial attention network can adaptively and
efectively determine the attribute-speciic regions according to the attribute to
edit.
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Fig. 3. Face attribute editing of our SaGAN on the CelebA dataset. “Mask” represents
the spatial attention mask generated by SAN, while “Res” denotes the residual images.

Fig. 4. Face attribute eyeglasses editing from diferent methods on the CelebA dataset.

Visual results on CelebA. Fig. 4 and Fig. 5 show the editing results
on CelebA dataset for face attribute eyeglasses and mouth_slightly_open re-
spectively. Compared with CycleGAN and StarGAN, ResGAN and our SaGAN
preserves most attribute-irrelevant regions unchanged which is preferable. How-
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Fig. 5. Face attribute mouth_slightly_open editing from diferent methods on the
CelebA dataset.

Fig. 6. Face attribute no_beard editing from diferent methods on the CelebA dataset.

ever, there are some artifacts on the attribute-speciic regions from ResGAN
especially on the eyeglass attribute. By contrast, our SaGAN achieves favorable
manipulation on the attribute-speciic region and preserve the rest irrelevant re-
gions unchanged as well. The reason lies in that the generator of SaGAN contains
a spatial attention module SAN for explicitly attribute-speciic region detection,
which makes the attribute manipulation network only concentrate on how to
manipulate regardless of where to manipulate. Fig. 6 shows the editing results
of no_beard, and all methods inevitably change the gender of the input face as
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Fig. 7. Face attribute smile editing from diferent methods on the CelebA dataset.

no_beard is correlated with gender (e.g. no woman has beards). Even so, SaGAN
modiies the images modestly, e.g. preserves the most regions beyond cheek and
jaw. Fig. 7 shows the results of global face attribute smile. Not surprisingly,
SaGAN achieves better visual quality again demonstrating the efectiveness of
the proposed method.

Visual results on LFW. To investigate the generalization capability of
SaGAN, the model trained on CelebA is further evaluated on the LFW dataset
as shown in Fig. 9. As can be seen, all methods of CycleGAN, StarGAN and
ResGAN degenerate on this dataset with those distorted results in Fig. 9, e.g.
CycleGAN changes a male image to a female one after removing the beard.
Surprisingly, SaGAN performs almost as good as on the CelebA, illustrating the
robustness of our proposed method.

Fig. 8. Data augmentation on CelebA dataset.
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Fig. 9. Face attribute editing from diferent methods on the LFW dataset.

4.3 Comparison on face recognition

Seeing the favorable visual editing results, a natural idea is whether it is bene-
icial for face recognition by such as data augmentation. To investigate this, we
augment each training sample by modifying the attribute. As shown in Fig. 8,
for each attribute, a single training sample is augmented into three samples,
e.g. the original face image and the two face images with adding and removing
eyeglasses respectively. Actually, a face image edited by its own attribute looks
almost the same as the original one, and the reason of augmenting with its origi-
nal attribute is just for simplicity without the need of classifying the attribute of
an image. The ResNet-18 [27] is used as the face recognition model. The testing
is conducted on the test sets of CelebA and LFW which are the same as that
for face attribute editing. On CelebA, one face image is randomly selected as
target and the rest as query. On LFW, the standard protocol is employed. On
both datasets, the performance is reported in terms of ROC curves.
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Fig. 10. Face veriication on CelebA. Fig. 11. Face veriication on LFW.

Fig. 10 shows the face veriication results evaluated on CelebA. As can be
observed, for each attribute, the model with data augmentation performs bet-
ter than the baseline model without data augmentation, as the augmentation
with accurately attribute editing images from our SaGAN enriches the varia-
tions of the training data leading to more robust model. The face veriication
results evaluated on LFW are shown in Fig. 11. As can be seen, the model with
data augmentation with all face attributes expect smile are much better than
the baseline model without data augmentation similar as that on the CelebA,
demonstrating the beneits of our SaGAN for face veriication. One possible rea-
son for the slightly worse performance of augmentation with smile is that the
smile faces in test data are few and the augmentation with smile makes the
model biased to smile leading to performance degeneration.

5 Conclusions and Future Works

This work introduces the spatial attention mechanism into the GAN framework,
forming a SaGAN method for more accurate face attribute editing. This kind of
spatial attention mechanism ensures the manipulation of attributes only within
the attribute-speciic regions while keep the rest irrelevant regions unchanged.
Experiments on CelebA and LFW, demonstrate that the proposed SaGAN per-
forms better than the existing face attribute editing methods beneitted from
the spatial attention mechanism. Besides, the proposed SaGAN can also beneit
the face recognition through data augmentation. In the future, we will try to
apply the proposed SaGAN to the general image editing tasks.
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