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Abstract. We propose a Spatiotemporal Sampling Network (STSN)
that uses deformable convolutions across time for object detection in
videos. Our STSN performs object detection in a video frame by learn-
ing to spatially sample features from the adjacent frames. This naturally
renders the approach robust to occlusion or motion blur in individual
frames. Our framework does not require additional supervision, as it op-
timizes sampling locations directly with respect to object detection per-
formance. Our STSN outperforms the state-of-the-art on the ImageNet
VID dataset and compared to prior video object detection methods it
uses a simpler design, and does not require optical flow data for training.

1 Introduction

In recent years, deep convolutional networks have achieved remarkable results in
many computer vision tasks [1–8], including object detection in images [9–19].
However, directly applying these image-level models to object detection in video
is difficult due to motion blur, video defocus, unusual poses, or object occlusions
(see Figure 1). Despite these challenges, it is natural to assume that video ob-
ject detectors should be more powerful than still image detectors because video
contains richer information about the same object instance (e.g., its appear-
ance in different poses, and from different viewpoints). The key challenge then
is designing a model that effectively exploits temporal information in videos.

Prior work [20–23] has proposed to exploit such temporal information in
videos by means of various post-processing steps aimed at making object de-
tections coherent across time. However, since temporal coherence is enforced in
a second stage, typically these methods cannot be trained end-to-end. To over-
come this limitation, recent work [24] has introduced a flow-based aggregation
network that is trainable end-to-end. It exploits optical flow to find correspon-
dences across time and it then aggregates features across temporal correspon-
dences to smooth object detections over adjacent frames. However, one of the
downsides of this new model is that in addition to performing object detection,
it also needs to predict motion. This is disadvantageous due to the following rea-
sons: 1) designing an effective flow network architecture is not trivial, 2) training
such a model requires large amounts of flow data, which may be difficult and
costly to obtain, 3) integrating a flow network and a detection network into a
single model may be challenging due to factors such as different loss functions,
differing training procedures for each network, etc.
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Fig. 1: An illustration of the common challenges associated with object detection in
video. These include video defocus, motion blur, occlusions and unusual poses. The
bounding boxes denote the objects that we want to detect in these examples.

To address these shortcomings, in this work, we introduce a simple, yet ef-
fective Spatiotemporal Sampling Network (STSN) that uses deformable convo-
lutions [25] across space and time to leverage temporal information for object
detection in video. Our STSN learns to spatially sample useful feature points
from nearby video frames such that object detection accuracy in a given video
frame is maximized. To achieve this, we train our STSN end-to-end on a large set
of video frames labeled with bounding boxes. We show that this leads to a bet-
ter accuracy compared to the state-of-the-art on the ImageNet VID dataset [26],
without requiring complex flow network design, or the need to train the network
on large amounts of flow data.

2 Related Work

2.1 Object Detection in Images

Modern object detectors [9–19] are predominantly built on some form of deep
CNNs [1, 3, 5]. One of the earliest deep CNN object detection systems was R-
CNN [14], which involved a two-stage pipeline where object proposals were ex-
tracted in the first stage, and then each proposal was classified using a CNN. To
reduce the computational burden, the methods in [9], and [13] leveraged ROI
pooling, which led to more efficient learning. Furthermore, to unify the entire
object detection pipeline, Faster R-CNN [12] replaced various region proposal
methods by another network to make the entire system trainable end-to-end. Fol-
lowing this work, several methods [18, 19] extended Faster R-CNN into a system
that runs in real time with small reduction in performance. Additionally, recent
work [17] introduced position sensitive ROI pooling, which significantly improved
the detection efficiency compared to prior object detection systems. Finally, two
recent methods, Mask R-CNN [10], and Deformable CNNs [25], improved object
detection results even further and they represent the current state-of-the-art in
object detection. Whereas Mask-RCNNs use an additional branch that predicts
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a mask for each region of interest, Deformable CNNs employ deformable convo-
lutions, which allow the network to condition discriminatively its receptive field
on the input, and to also model deformations of objects more robustly.

While the aforementioned methods work well on images, they are not de-
signed to exploit temporal relationships in video. Instead, our Spatiotemporal
Sampling Network (STSN), is specifically designed for a video object detection
task. Unlike standard Deformable CNNs [25], which use deformable convolution
in the spatial domain, our STSN learns to sample features temporally across
different video frames, which leads to improved video object detection accuracy.

2.2 Object Detection in Videos

Up until the introduction of the ImageNet VID challenge [26], there were no
large-scale benchmarks for video object detection. Thus, there are only few meth-
ods that we can compare our work to. T-CNNs [20, 21] use a video object detec-
tion pipeline that involves predicting optical flow first, then propagating image-
level predictions according to the flow, and finally using a tracking algorithm to
select temporally consistent high confidence detections. Seq-NMS [22] constructs
a temporal graph from overlapping bounding box detections across the adjacent
frames, and then uses dynamic programming to select bounding box sequences
with the highest overall detection score. The work of Lee et al. [23] treats a video
object detection task as a multi-object tracking problem. Finally, the method of
Feichtenhofer et al. [27] proposes a ConvNet architecture that solves detection
and tracking problems jointly, and then applies a Viterbi algorithm to link the
detections across time.

The approach most similar to our work is the method of Zhu et al. [24], who
proposed an end-to-end trainable network that jointly estimates optical flow and
also detects objects in video. This is accomplished by using the predicted optical
flow to align the features from the adjacent frames. The aggregated features are
then fed as input to the detection network.

Our method is beneficial over the methods that use optical flow CNNs such as
the method of Zhu et al. [24]. First, we note that pretrained optical flow CNNs do
not always generalize to new datasets, which may hinder video object detection
performance. In contrast, our method has a learnable spatiotemporal sampling
module that is discriminatively trained from object detection labels, and thus, it
does not suffer from this issue. Furthermore, our STSN can be trained for video
object detection in a single stage end-to-end. In comparison, methods that rely
on optical flow require an additional stage to train an optical flow CNN, which
renders the training procedure more cumbersome and lengthy. For example, we
note that it would take about four days to train an optical flow CNN of FGFA [24]
from scratch and then four additional days to train FGFA [24] for video object
detection, making it eight days of total training time. In contrast, our STSN is
trained in a single stage in only 4 days. Finally, we point out that our STSN also
yields a gain —albeit moderate— in video object detection accuracy.
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3 Background: Deformable Convolution

Before describing our method, we first review some background information on
deformable convolution [25], which is one of the key components of our STSN.
Let us first note that a standard 2D convolution is comprised of two steps: 1)
sampling locations on a uniformly-spaced grid R, and 2) performing a weighted
summation of sampled values using weights w. For example, if we consider a
standard 2D convolution with a 3× 3 kernel, and a dilation factor of 1, the grid
R is defined as R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}. Under a standard 2D
convolution, to compute a new value at pixel location p0 in the output feature
map y, we would perform the following operation on the input feature map x:

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn), (1)

Instead, in a deformable 2D convolution, the grid R is augmented with data-
conditioned offsets {∆pn|n = 1, . . . , N}, where N = |R|. We can then compute
a deformable convolution as:

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn +∆pn) (2)

Since the offset ∆pn is typically fractional, the operation above is imple-
mented using bilinear interpolation. Note that the offsets are obtained by apply-
ing a separate convolutional layer to the activation tensor containing the feature
map x. This yields an offset map that has the same spatial resolution as the input
feature map. Also, note that the offsets are shared across all feature channels of
a given activation tensor. During training, the weights for the deformable convo-
lution kernel, and the offsets kernel are learned jointly by propagating gradients
through the bilinear interpolation operator. We refer the reader to the original
work that introduced deformable convolutions [25] for further details.

4 Spatiotemporal Sampling Network

Our goal is to design a network architecture that incorporates temporal infor-
mation for object detection in video.

Let us denote with It the frame at time t in the video. Let us consider one
of the scenarios depicted in Figure 1, e.g., a setting where It is blurry, contains
an object in an unusual pose, or perhaps an occlusion. But let us assume that
a nearby frame It+k includes the same object clearly visible and in a relatively
standard pose. If we only had access to It, accurate object detection would be
very challenging. However, leveraging information from It+k may enable more
robust detection in the frame It . Thus, the main challenge in this setting is
incorporating object-level information from the supporting frame It+k for an im-
proved object detection accuracy in the reference frame It. Note that in our
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Fig. 2: Our spatiotemporal sampling mechanism, which we use for video object detec-
tion. Given the task of detecting objects in a particular video frame (i.e., a reference
frame), our goal is to incorporate information from a nearby frame of the same video
(i.e., a supporting frame). First, we extract features from both frames via a backbone
convolutional network (CNN). Next, we concatenate the features from the reference
and supporting frames, and feed them through multiple deformable convolutional lay-
ers. The last of such layers produces offsets that are used to sample informative features
from the supporting frame. Our spatiotemporal sampling scheme allows us to produce
accurate detections even if objects in the reference frame appear blurry or occluded.

system each frame in the video is treated in turn as a reference frame in order to
produce object detection in every frame of the video. Furthermore, in practice
we use 2K supporting frames for detection in the reference frame, by taking
the K preceding frames and the K subsequent frames as supporting frames, i.e.
{It−K , It−(K−1), . . . , It−1, It+1, . . . , It+(K−1), It+K}. However, for ease of expla-
nation we introduce our STSN by considering a single supporting frame It+k.

To effectively integrate temporal information we need two things: 1) powerful
object-level features from an image-level network, and 2) an ability to sample
useful object-level features from the supporting frames for the reference frame.
We achieve the former by employing a state-of-the-art backbone network. For the
latter, we design a spatiotemporal sampling scheme, which we describe below.

Our STSN can be summarized in four steps. First, a backbone convolutional
network computes object-level features for each video frame individually. Then,
spatiotemporal sampling blocks are applied to the object-level feature maps in
order to sample relevant features from nearby frames conditioned on the input
reference frame. Next, the sampled features from each video frame are temporally
aggregated into a single feature tensor for the reference frame using a per-pixel
weighted summation. Finally, the feature tensor is provided as input to the
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detection network to produce final object detection results for the given reference
frame. We note that our framework integrates these conceptually-distinct four
steps into a single architecture, which we train end-to-end.

Backbone Architecture. Our backbone network is applied to each frame
of the video. As backbone network, we use a Deformable CNN [25] based on
the ResNet-101 [5] architecture, which is one of the top-performing object de-
tection systems at the moment. Similarly to [25], our backbone network employs
6 deformable convolutional layers. We also note that even though we use a De-
formable CNN architecture, our system can easily integrate other architectures
and thus it can benefit from future improvements in still-image object detection.

Spatiotemporal Feature Sampling. Our main contribution is the design
of a spatiotemporal sampling mechanism, which seamlessly integrates temporal
information in a given video. As a first step, we feed the reference frame It and
the supporting frame It+k through our image-level backbone network, which
produces feature tensors ft and ft+k, respectively. Note that ft, ft+k ∈ R

c×h×w

where c, h, and w are the number of channels, the height, and the width of the
activation tensor. The feature tensors ft, and ft+k are then concatenated into a
new feature tensor ft,t+k ∈ R

2c×h×w. Note that this tensor ft,t+k now has twice
as many channels as our initial tensors, and that it now contains object-level
information from both the reference and the supporting frame.

Next, we use the tensor ft,t+k to predict (x, y) location offsets, which are
then used to sample the supporting tensor ft+k. The sampling mechanism is
implemented using a deformable convolutional layer, which takes 1) the predicted
offsets, and 2) the supporting tensor ft+k as its inputs, and then outputs a
newly sampled feature tensor gt,t+k, which can be used for object detection in
the reference frame. We use subscript t, t+ k to denote the resampled tensor
because, although g is obtained by resampling the supporting tensor, the offset
computation uses both the reference as well as the supporting frame. A detailed
illustration of our spatiotemporal sampling scheme is presented in Figure 2.

In practice, our spatiotemporal sampling block has 4 deformable convolution
layers (only 2 are shown in Figure 2). This means that the initially predicted
offsets o

(1)
t,t+k and the concatenated temporal features ft,t+k are first used as

inputs to a deformable convolution layer that outputs a new feature map g
(1)
t,t+k.

Next, we use g
(1)
t,t+k to predict offsets o

(2)
t,t+k, and a new feature map g

(2)
t,t+k. This

continues for 2 more layers until we obtain offsets o
(4)
t,t+k, which are then used

to sample the points out of the supporting feature map ft+k. The final sampled
feature map g

(4)
t,t+k is obtained via another deformable convolutional layer that

takes as inputs offsets o
(4)
t,t+k and the original supporting feature map ft+k.

Our proposed spatiotemporal sampling mechanism learns, which object-level
features in the supporting frame are useful for object detection in the reference
frame. Conceptually, it replaces the optical flow used in [24] to establish tem-
poral correspondences with a learnable module that is discriminatively trained
from object detection labels. In our experimental section, we show that such a
sampling scheme allows us to improve video object detection performance over
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the still-image baseline and the flow-based method of Zhu et al. [24] without
training our model on optical flow data.

Feature Aggregation. The spatiotemporal sampling procedure is applied
for all the supporting frames in the selected range. Note, that this includes a
special case, when the reference frame is treated as a supporting frame to itself to

produce g
(4)
t,t , which is a feature tensor computed from only the reference frame.

The resulting feature tensors have the following form: g
(4)
t,t+k ∈ R

c(4)×h×w.
These feature tensors are aggregated into an output feature tensor gaggt ∈ R

c(4)×h×w

for the reference frame. This tensor captures information from the reference
frame, its K preceding frames and its K subsequent frames. The output tensor
value g

agg
t (p) for frame t at pixel p is computed as a weighted summation:

g
agg
t (p) =

K
∑

k=−K

wt,t+k(p) g
(4)
t,t+k(p) (3)

Inspired by strong results presented in [24], we use their proposed feature
aggregation method where the weights w indicate the importance of each sup-
porting frame to the reference frame. To compute the weights w, we attach a

3-layer subnetwork S(x) to the features g
(4)
t,t+k and then compute their intermedi-

ate feature representations S(g
(4)
t,t+k). We then obtain the weights w by applying

an exponential function on the cosine similarity between each corresponding
feature point in a reference frame and a supporting frame:

wt,t+k(p) = exp

(

S(g
(4)
t,t )(p) · S(g

(4)
t,t+k)(p)

|S(g
(4)
t,t )(p)||S(g

(4)
t,t+k)(p)|

)

(4)

Finally, all weights w are fed into the softmax layer, to ensure that the weights
sum up to 1 at each pixel location p (i.e.,

∑K

k=−K wt,t+k(p) = 1 ∀p).
Object Detection. Finally, the aggregated feature tensor g

agg
t is used as

input to the detection network, which outputs the final bounding box predictions
and their object class probabilities. We describe more details related to the
detection network in the next section along with other implementation details.

4.1 Implementation Details

For our experiments we use the MXNet [28] library. Below we provide details
related to our STSN architecture, and our training and inference procedures.

Architecture. For our backbone network we adopt a state-of-the-art De-
formable CNN [25] based on the ResNet-101 [5] architecture. Our spatiotempo-
ral sampling block consists of four 3 × 3 deformable convolutional layers each
with 1024 output channels. In addition, it also has four 3×3 convolutional layers
predicting (x, y) offsets. To implement a subnetwork S(x) that predicts feature
aggregation weights, we use a sequence of 1 × 1, 3 × 3 and 1 × 1 convolutional



8 G. Bertasius, L. Torresani, J. Shi

layers with 512, 512 and 2048 output channels respectively. Our detection net-
work is implemented based on the deformable R-FCN design [17, 29, 25]. When
feeding the aggregated feature g

agg
t to the detection network, we split its 1024

channels into two parts, and feed the first and the last 512 channels to the
RPN and R-FCN sub-networks respectively. For the RPN, we use 9 anchors and
300 proposals for each image. Furthermore, for the R-FCN, we use deformable
position-sensitive ROI pooling with 7× 7 groups.

Training. Our entire STSN model is fully differentiable, and thus, trainable
end-to-end. During training, we resize all input images to a shorter side of 600
pixels, and use T = 3 frames to train our model (i.e., K = 1). More specifically,
we randomly sample one supporting frame before and one supporting frame after
the reference frame. We observed that using more supporting frames in training
does not lead to a higher accuracy.

For the rest of our training procedure, we follow the protocol outlined in [24].
Specifically, we train our model in two stages. First, we pre-train our full model
on the Imagenet DET dataset using the annotations of the 30 object classes
that overlap with the Imagenet VID dataset. Note that Imagenet DET dataset
contains only images, and thus, we cannot sample meaningful supporting frames
in this case. Therefore, in the case of images, we use the reference frames as our
supporting frames. Afterwards, the entire model is trained for 120K iterations on
4 Tesla K40 GPUs with each GPU holding a single mini-batch. The learning rate
is set to 0.001 and 0.0001 for the first 80K and the last 40K iterations respec-
tively. Afterwards, we finetune the entire model on the Imagenet VID dataset
for 60K iterations with a learning rate of 0.001 and 0.0001 for the first 40K and
the last 20K iterations respectively. Note that in the second stage of training
we sample the supporting frames randomly within a certain neighborhood of a
reference frame (as described above).

Inference. During inference, we use T = 27, meaning that we consider
K = 13 supporting frames before and after the reference frame. To avoid GPU
memory issues, we first extract features from the backbone network for each
image individually, and then cache these features in the memory. Afterwards,
we feed all these features into our spatiotemporal sampling block. At the end,
standard NMS with a threshold of 0.3 is applied to refine the detections. To
handle the first and the last K = 13 frames in the video —two boundary cases
that require sampling the neighboring frames beyond the video start and end,
we pad the start of a video with K copies of the first frame, and the end of a
video with K copies of the last frame.

5 Experimental Results

In this section, we evaluate our approach for video object detection on the Im-
ageNet VID [26] dataset, which has 3, 862 and 555 training and testing video
clips respectively. Each video is annotated with bounding boxes. The frames
from each video are extracted at 25 − 30 fps. The dataset contains 30 object
categories that are a subset of the 200 categories in the ImageNet DET dataset.
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Methods
D&T [27] Our SSN FGFA [24] Our STSN D&T+ [27] Our STSN+

No FlowNet? ✓ - ✗ ✓ ✓ ✓

Not Using Flow Data? ✓ - ✗ ✓ ✓ ✓

No Temporal Post-Processing? ✓ - ✓ ✓ ✗ ✗

mAP@0.5 75.8 76.0 78.8 78.9 79.8 80.4

Table 1: We use the ImageNet VID [26] dataset to compare our STSN to the state-of-
the-art FGFA [24] and D&T [27] methods. Note that SSN refers to our static baseline,
which is obtained by using only the reference frame for output generation (no temporal
info). Also note, that D&T+ and STSN+ refer to D&T and STSN baselines with
temporal post-processing applied on top of the CNN outputs. Based on these results,
we first point out that unlike FGFA, our STSN does not rely on the external optical
flow data, and still yields higher mAP (78.9 vs 78.8). Furthermore, when no temporal
post-processing is used, our STSN produces superior performance in comparison to the
D&T baseline (78.9 vs 75.8). Finally, we demonstrate that if we use a simple Seq-
NMS [22] temporal post-processing scheme on top of our STSN predictions, we can
further improve our results and outperform all the other baselines.

5.1 Quantitative Results

To assess the effectiveness of our method we compare it to several relevant base-
lines, mainly two state-of-the-art methods FGFA [24] and D&T [27]. First, to
verify that using temporal information from video is beneficial, we include a
static image-level variant of our model (SSN) that uses only the reference frame
to make its predictions. Furthermore, we also want to show that our spatiotem-
poral sampling scheme works as effectively as the optical flow network in [24],
but without requiring optical flow supervision. To do so, we replace the optical
flow network from [24], with our spatiotemporal sampling mechanism. The rest
of the architecture and the training details are kept the same for both baselines.
Such an experimental design allows us to directly compare the effectiveness of
our spatiotemporal sampling scheme and the optical flow network of FGFA [24].

Finally, we demonstrate that our method performs better than the D&T [27]
method in two scenarios: 1) when we only use CNN-level outputs for video object
detection, and also 2) when we allow temporal post-processing techniques such
as Seq-NMS to be applied on top of the CNN outputs. We note that in Table 1,
D&T [27] and STSN refer to the CNN-level baselines whereas D&T+ [27] and
STSN+ denote these same methods but with temporal post-processing (i.e. Seq-
NMS [22], object-tube based linking [27], etc) applied on top of the CNN outputs.

We present our results in Table 1, where we assess each method according to
several criteria. In the first row of Table 1, we list whether a given method re-
quires integrating a separate flow network into its training / prediction pipeline.
Ideally, we would want to eliminate this step because optical flow prediction re-
quires designing a highly complex flow network architecture. We also list whether
a given method requires pre-training on the external optical flow data, which we
would want to avoid since it makes the whole training pipeline more costly.
Additionally, we list, whether a given method uses any external temporal post-



10 G. Bertasius, L. Torresani, J. Shi

0 2 6 10 14 18 22 26 30

Number of Supporting Frames

76

76.5

77

77.5

78

78.5

79

m
A

P

-10 -8 -6 -4 -2 0 2 4 6 8 10

Time Delta w.r.t Reference Frame

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

W
e

ig
h

t 
M

a
g

n
it
u

d
e

Fig. 3: A figure illustrating some of our ablation experiments. Left: we plot mAP as
a function of the number of supporting frames used by our STSN. From this plot, we
notice that the video object detection accuracy improves as we use more supporting
frames. Right: To understand the contribution of each of the supporting frames, we
plot the average weight magnitudes wt,t+k(p) for different values of k. Here, p represents
a point at the center of an object. From this plot, we observe that the largest weights
are associated with the supporting frames that are near the reference frame. However,
note that even supporting frames that are further away from the reference frame (e.g.
k = 9) contribute quite substantially to the final object detection predictions.

processing steps, which we would want to eliminate because they typically make
the training / prediction pipeline disjoint and more complex. Finally, we assess
each method according to the standard mean average precision (mAP) metric
at intersection over union (IoU) threshold of 0.5.

Based on our results in Table 1, we make the following conclusions. First, we
note that our STSN produces better quantitative results than the state-of-the-art
FGFA method (78.9 vs 78.8). We acknowledge that our accuracy improvement
over FGFA is moderate. However, we point out that our STSN operates in a
much more challenging setting than FGFA. Unlike FGFA, our STSN does not
use any optical flow supervision. Instead, it is trained directly for video object
detection. The fact that STSN learns temporal correspondences without direct
optical flow supervision, and still outperforms FGFA is quite impressive. Such
results also show the benefit of discriminative end-to-end training with respect
to the final video object detection task objective.

We next compare our STSN to the D&T baseline [27]. We note that unlike for
the FGFA [24] baseline, it is much harder to make a direct comparison between
STSN and D&T. Whereas our STSN aims to produce powerful spatiotempo-
ral features, the method of D&T [27] is targeted more for smoothing the final
bounding box predictions across time. Thus, we believe that these two methods
are complementary, and it would be possible to integrate them together for the
model that produces both: temporally smooth features, as well as temporally
smooth bounding box predictions. We also note that our STSN and D&T [27]
use slightly different architectures (both based on ResNet-101 though).
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First, we compare STSN and D&T in a setting when no temporal post-
processing (i.e. Seq-NMS [22], object-tube linking [27], etc) is used, and show that
our STSN outperforms the D&T baseline by a substantial margin (78.9 vs 75.8).
These results indicate, that our STSN is able to learn powerful spatiotemporal
features, and produce solid video object detection results even without temporal
post-processing algorithms that link bounding box detections over time.

Afterwards, we show that integrating a simple temporal post-processing algo-
rithm Seq-NMS [22] further improves our STSN’s results. Such a scheme allows
us to outperform the D&T+ baseline (80.4 vs 79.8), which uses a similar Viterbi
based temporal post-processing scheme.

5.2 Ablation Studies

Optimal Number of Supporting Frames. In the left subplot of Figure 3,
we also illustrate how the number of supporting frames affects the video object
detection accuracy. We notice that the performance keeps increasing as we add
more supporting frames, and then plateaus at T = 27.

Increasing the Temporal Stride. We also investigate how the temporal
stride k, at which we sample the supporting frames, affects STSN’s performance.
We report that temporal strides of k = 2 and k = 4, yield mAP scores of 79.0
and 77.9, respectively. Thus, k = 2 yields a slight improvement over our original
78.9 mAP score. However, increasing k to larger values reduces the accuracy.

Feature Aggregation Weight Analysis. To analyze how much each of
the supporting frame contributes to the final object detections, we visualize the
average weight magnitudes wt,t+k(p) for different values of k. This visualization
is presented in the right subplot of Figure 3. We note that in this case, the weight
magnitudes correspond to the point p, which is located at the center of an object.
From this plot, we can conclude that the largest contribution comes from the
supporting frames that are near the reference frame (k = −1, 0, 1). However,
note that even even supporting frames that are further away from the reference
frame (e.g. k = −9, 9) have non-zero weights, and contribute quite substantially
to the final object detection predictions.

5.3 Qualitative Results

To understand how our STSN exploits temporal information from a given video,
we visualize in Figure 4, the average offsets predicted by the STSN sampling
block. These offsets are used by the STSN to decide, which object-level informa-
tion from the supporting frame should be used to detect an object in the reference
frame. The green square in the reference frame depicts a pixel, for which we want
to compute a convolution output. The red square in the supporting frame repre-
sents an average offset, which is used to determine which feature points from the
supporting frame should be sampled. The yellow arrow indicates object’s mo-
tion between the reference frame and the supporting frame. Note that despite
a relatively large motion between the reference and the supporting frames, our
STSN samples features from the supporting frame right around the center of the
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Reference Frame (t) Supporting Frame (t+9) Reference Frame (t) Supporting Frame (t+9)

Fig. 4: An illustration of our spatiotemporal sampling scheme (zoom-in for a better
view). The green square indicates a point in the reference frame, for which we want
to compute a new convolutional output. The red square indicates the corresponding
point predicted by our STSN in a supporting frame. The yellow arrow illustrates the
estimated object motion. Although our model is trained discriminatively for object
detection and not for tracking or motion estimation, our STSN learns to sample from
the supporting frame at locations that coincide almost perfectly with the same object.
This allows our method to perform accurate object detection even if objects in the
reference frame are blurry or occluded.

object, which is exactly what we want. Such spatiotemporal sampling allows us
to detect objects even if they appear blurry or occluded in the reference frame.

In addition, based on the results in Figure 4, we observe that even without
an explicit optical flow supervision, our STSN learns to accurately capture the
motion of the objects, which is another appealing property of our model. In
fact, in Figure 5, we illustrate several examples of using our STSN to track
objects in a given video. From Figure 5, we observe that despite a relatively
large motion in each sequence, our STSN accurately samples features around
objects in every supporting frame. Such results indicate that we may be able
to use our sampling mechanism for discriminative object tracking. In fact, we
note that the commonly used dense optical flow methods are often redundant
because most applications do not require flow prediction for every single pixel. In
comparison, we point out that our STSN captures a more discriminative form of
motion, which is learned to exclusively benefit a video object detection task. In
our supplementary material, we include more of such results in the video form.

In Figure 6, we also illustrate object detections of the static SSN baseline,
and those of our full STSN model (zoom-in to see the probabilities and class
predictions). In all of these cases, we observe that incorporating temporal in-
formation helps STSN to correct the mistakes made by the static baseline. For
instance, in the third row of Figure 6, a static SSN baseline incorrectly labels
an object in the reference frame as a bird, which happens due to the occluded
head of the lizard. However, STSN fixes this mistake by looking at the support-
ing frames, and by sampling around the lizard body and its head (See Row 3,
Column 1 in Figure 6). Furthermore, in the last row, a static SSN baseline fails
to detect one of the bicycles because it is occluded in the reference frame. STSN
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Reference Frame (t)Supporting Frame (t-9) Supporting Frame (t-4) Supporting Frame (t+4) Supporting Frame (t+9)

Fig. 5: An illustration of using our spatiotemporal sampling scheme in action. The
green square indicates a fixed object location in the reference frame. The red square
depicts a location in a supporting frame, from which relevant features are sampled.
Even without optical flow supervision, our STSN learns to track these objects in video.
In our supplementary material, we include more of such examples in the video format.

fixes this error, by sampling around the missed bicycle in the supporting frame
where the bicycle is more clearly visible. Similar behavior also occurs in other
cases where STSN successfully resolves occlusion and blurriness issues.

6 Conclusion

In this work, we introduced the Spatiotemporal Sampling Network (STSN) which
is a new architecture for object detection in video. Compared to the state-of-the-
art FGFA [24] method, our model involves a simpler design, it does not require
optical flow computation and it produces higher video object detection accuracy.
Our model is fully differentiable, and unlike prior video object detection methods,
it does not necessitate optical flow training data. This renders our model easy to
train end-to-end. Our future work will include experimenting with more complex
design of spatiotemporal sampling blocks.
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SSN (Static) STSN (Ours)
Sampled Points in the  

   Supporting Frame

Fig. 6: A figure illustrating object detection examples where our spatiotemporal sam-
pling mechanism helps STSN to correct the mistakes made by a static SSN baseline
(please zoom-in to see the class predictions and their probabilities). These mistakes
typically occur due to occlusions, blurriness, etc. STSN fixes these errors by using
relevant object level information from supporting frames. In Column 1 we illustrate
the points in the supporting frame that STSN considers relevant when computing the
output for a point denoted by the green square in Column 2.
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