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Abstract. Effectively measuring the similarity between two human motions is

necessary for several computer vision tasks such as gait analysis, person identi-

fication and action retrieval. Nevertheless, we believe that traditional approaches

such as L2 distance or Dynamic Time Warping based on hand-crafted local pose

metrics fail to appropriately capture the semantic relationship across motions and,

as such, are not suitable for being employed as metrics within these tasks. This

work addresses this limitation by means of a triplet-based deep metric learning

specifically tailored to deal with human motion data, in particular with the prob-

lem of varying input size and computationally expensive hard negative mining

due to motion pair alignment. Specifically, we propose (1) a novel metric learn-

ing objective based on a triplet architecture and Maximum Mean Discrepancy; as

well as, (2) a novel deep architecture based on attentive recurrent neural networks.

One benefit of our objective function is that it enforces a better separation within

the learned embedding space of the different motion categories by means of the

associated distribution moments. At the same time, our attentive recurrent neural

network allows processing varying input sizes to a fixed size of embedding while

learning to focus on those motion parts that are semantically distinctive. Our ex-

periments on two different datasets demonstrate significant improvements over

conventional human motion metrics.

1 Introduction

In image-based human pose estimation, the similarity between two predicted poses can

be precisely assessed through conventional approaches that either evaluate the distance

between corresponding joint locations [8, 28, 43] or the average difference of corre-

sponding joint angles [24, 37]. Nevertheless, when human poses have to be compared

across a temporal set of frames, the assessment of the similarity between two sequences

of poses or motion becomes a non-trivial problem. Indeed, human motion typically

evolves in a different manner on different sequences, which means that specific pose

patterns tend to appear at different time instants on sequences representing the same

human motion: see, e.g., the first two sequences in Fig. 1, which depict two actions be-

longing to the same class. Moreover, these sequences result also in varying length (i.e.,

a different number of frames), this making the definition of a general similarity measure

* Equal contribution
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Fig. 1. When asked to measure the similarity to a query sequence (“Walking”, top), both the

L2 and the DTW measures judge the unrelated sequence (“Standing”, bottom) as notably more

similar compared to a semantically correlated one (“Walking”, middle). Conversely, our learned

metric is able to capture the contextual information and measure the similarity correctly with

respect to the given labels.

more complicated. Nevertheless, albeit challenging, estimating the similarity between

human poses across a sequence is a required step in human motion analysis tasks such

as action retrieval and recognition, gait analysis and motion-based person identification.

Conventional approaches deployed to compare human motion sequences are based

on estimating the L2 displacement error [23] or Dynamic Time Warping (DTW) [42].

Specifically, the former computes the squared distance between corresponding joints in

the two sequences at a specific time t. As shown by Martinez et al. [23], such measure

tends to disregard the specific motion characteristics, since a constant pose repeated

over a sequence might turn out to be a better match to a reference sequence than a visu-

ally similar motion with a different temporal evolution. On the other hand, DTW tries

to alleviate this problem by warping the two sequences via compressions or expansions

so to maximize the matching between local poses. Nevertheless, DTW can easily fail in

appropriately estimating the similarity when the motion dynamic in terms of peaks and

plateaus exhibits small temporal variations, as shown in [18]. As an example, Fig. 1

illustrates a typical failure case of DTW when measuring the similarity among three

human motions. Although the first two motions are visually similar to each other while

the third one is unrelated to them, DTW estimates a smaller distance between the first

and the third sequence. In general, neither the DTW nor the L2 metrics can comprehen-

sively capture the semantic relationship between two sequences since they disregard

the contextual information (in the temporal sense), this limiting their application in the

aforementioned scenarios.

The goal of this work is to introduce a novel metric for estimating the similarity

between two human motion sequences. Our approach relies on deep metric learning

that uses a neural network to map high-dimensional data to a low-dimensional em-

bedding [31, 33, 35, 45]. In particular, our first contribution is to design an approach

so to map semantically similar motions over nearby locations in the learned embedding

space. This allows the network to express a similarity measure that strongly relies on the

motion’s semantic and contextual information. To this end, we employ a novel objec-

tive function based on the Maximum Mean Discrepancy (MMD) [14], which enforces

motions to be embedded based on their distribution moments. The main advantage with

respect to standard triplet loss learning is represented by the fact that our approach,

being based on distributions and not samples, does not require hard negative mining to
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converge, which is computationally expensive since finding hard negatives in a human

motion datasets requires the alignment of sequence pairs, which has an O(n2) complex-

ity (n being the sequence length). As our second main contribution, we design a novel

deep learning architecture based on attentive recurrent neural networks (RNNs) which

exploits attention mechanisms to map an arbitrary input size to a fixed sized embedding

while selectively focusing on the semantically descriptive parts of the motion.

One advantage of our approach is that, unlike DTW, we do not need any explicit

synchronization or alignment of the motion patterns appearing on the two sequences,

since motion patterns are implicitly and semantically matched via deep metric learning.

In addition, our approach can naturally deal with varied size input thanks to the use

of the recurrent model, while retaining the distinctive motion patterns by means of

the attention mechanism. An example is shown in Fig. 1, comparing our similarity

measure to DTW and L2. We validate the usefulness of our approach for the tasks

of action retrieval and motion-based person identification on two publicly available

benchmark datasets. The proposed experiments demonstrate significant improvements

over conventional human motion similarity metrics.

2 Related work

In recent literature, image-based deep metric learning has been extensively studied.

However, just a few works focused on metric learning for time-series data, in particular

human motion. Here, we first review metric learning approaches for human motion,

then follow up with recent improvements in deep metric learning.

Metric learning for time series and human motion. We first review metric learning

approaches for time series, then focus only on works related on human motion analysis.

Early works on metric learning for time series approaches measure the similarity in a

two steps process [4, 9, 30]. First, the model determines the best alignment between two

time series, then it computes the distance based on the aligned series. Usually, the model

finds the best alignment by means of the DTW measure, first by considering all possible

alignments, then ranking them based on hand-crafted local metric. These approaches

have two main drawbacks: first, the model yields an O(n2) complexity; secondly, and

most importantly, the local metric can hardly capture relationship in high dimensional

data. In order to overcome these drawbacks, Mei et al. [25] propose to use LogDet

divergence to learn a local metric that can capture the relationship in high dimensional

data. Che et al. [5] overcome the hand crafted local metric problem by using a feed-

forward network to learn local similarities. Although the proposed approaches [5, 25]

learn to measure the similarity between two given time series at time t, the relationship

between two time steps is discarded. Moreover, finding the best alignment requires to

search for all possible alignments. To address these problems, recent work focused on

determining a low dimensional embedding to measure the distance between time series.

To this goal, Pei et al. [29] and Zheng et al. [46] used a Siamese network which learns

from pairs of inputs. While Pei et al. [29] trained their network by minimizing the

binary cross entropy in order to predict whether the two given time series belong to

the same cluster or not, Zheng et al. [46] propose to minimize a loss function based



4 H. Coskun, D. J. Tan, S. Conjeti, N. Navab, F. Tombari

on the Neighbourhood Component Analysis (NCA) [32]. The main drawback of these

approaches is that the siamese architecture learns the embedding by considering only

the relative distances between the provided input pairs.

As for metric learning for human motion analysis, they mostly focus on directly

measuring the similarity between corresponding poses along the two sequences. Lopez et

al. [22] proposed a model based on [10] to learn a distance metric for two given human

poses, while aligning the motions via Hidden Markov Models (HMM) [11]. Chen et

al. [6] proposed a semi-supervised learning approach built on a hand-crafted geomet-

ric pose feature and aligned via DTW. By considering both the pose similarity and the

pose alignment in learning, Yin et al. [44] proposed to learn pose embeddings with an

auto-encoder trained with an alignment constraint. Notably, this approach requires an

initial alignment based on DTW. The main drawback of these approaches is that their

accuracy relies heavily on the accurate motion alignment provided by HMM or DTW,

which is computationally expensive to obtain and prone to fail in many cases. More-

over, since the learning process considers only single poses, they lack at capturing the

semantics of the entire motion.

Recent improvements in deep metric learning. Metric learning with deep networks

started with Siamese architectures that minimize the contrastive loss [7, 15]. Schroff et

al. [33] suggest using a triplet loss to learn the embeddings on facial recognition and

verification, showing that it performs better than contrastive loss to learn features. Since

they conduct hard-negative mining, when the training set and the number of different

categories increase, searching for hard-negatives become computationally inefficient.

Since then, research mostly focus on carefully constructing batches and using all sam-

ples in the batch. Song et al. [36] proposed the lifted loss for training, so to use all

samples in a batch. In [35], they further developed the idea and propose an n-pair loss

that uses all negative samples in a batch. Other triplet-based approaches are [26, 40].

In [31], the authors show that minimizing the loss function computed on individual

pairs or triplets does not necessarily enforce the network to learn features that represent

contextual relations between clusters. Magnet Loss [31] address some of these issues

by learning features that compare the distributions rather than the samples. Each clus-

ter distribution is represented by the cluster centroid obtained via k-means algorithm.

A shortcoming of this approach is that computing cluster centers requires to interrupt

training, this slowing down the process. Proxy-NCA [27] tackle this issue by designing

a network architecture that learns the cluster centroids in an end-to-end fashion, this

avoiding interruptions during training. Both the Magnet Loss and the Proxy-NCA use

the NCA [32] loss to compare the samples. Importantly, they both represent distribu-

tions with cluster centroids which do not convey sufficient contextual information of

the actual categories, and require to set a pre-defined number of clusters. In contrast,

we propose to use a loss function based on MMD [14], which relies on distribution

moments that do not need to explicitly determine or learn cluster centroids.

3 Metric learning on human motion

The objective is to learn an embedding for human motion sequences, such that the

similarity metric between two human motion sequences X := {x1, x2, ..., xn} and
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Y := {y1, y2, ..., ym} (where xt and yt represent the poses at time t) can be expressed

directly as the squared Euclidean distance in the embedding space. Mathematically, this

can be written as

d(f(X), f(Y )) = ‖f(X)− f(Y )‖
2

(1)

where f(·) is the learned embedding function that maps a varied-length motion se-

quence to a point in a Euclidean space, and d(·, ·) is the squared Euclidean distance.

The challenge of metric learning is to find a motion embedding function f such that

the distance d(f(X), f(Y )) should be inversely proportional to the similarity of the

two sequences X and Y . In this paper, we learn f by means of a deep learning model

trained with a loss function (defined in Sec. 4) which is derived from the integration of

MMD with a triplet learning paradigm. In addition, its architecture (described in Sec. 5)

is based on an attentive recurrent neural network.

4 Loss function

Following the standard deep metric learning approach, we model the embedding func-

tion f by minimizing the distance d(f(X), f(Y )) when X and Y belong to the same

category, while maximizing it otherwise. A conventional way of learning f would be to

train a network with the contrastive loss [7, 15]

Lcontrastive = (r)
1

2
d+ (1− r)

1

2
[max(0, αmargin − d)]2 (2)

where r ∈ {1, 0} indicates whether X and Y are from the same category or not, and

αmargin defines the margin between different category samples. During training, the con-

trastive loss penalizes those cases where different category samples are closer than

αmargin and when the same category samples have a distance greater than zero. This

equation shows that the contrastive loss only takes into account pairwise relationships

between samples, thus only partially exploiting relative relationships among categories.

Conversely, triplet learning better exploit such relationships by taking into account three

samples at the same time, where the first two are from the same category while the third

is from a different one. Notably, it has been shown that exploiting relative relationships

among categories play a fundamental role in terms of the quality of the learned em-

bedding [33, 45]. The triplet loss enforces embedding samples from the same category

with a given margin distance with respect to samples from a different category. If we

denote the three human motion samples as X , X+ and X−, the commonly used ranking

loss [34] takes the form of

Ltriplet = max(0, ‖f(X)− f(X+)‖
2
− ‖f(X)− f(X−)‖

2
+ αmargin) (3)

where X and X+ represent the motion samples from the same category and X− rep-

resents the sample from a different category. In literature X , X+, and X− are often

referred to as anchor, positive, and negative samples, respectively [31, 33, 35, 45].

However, one of the main issue with the triplet loss is the parameterization of

αmargin. We can overcome this problem by using the Neighbourhood Components Anal-
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ysis (NCA) [32]. Thus, we can write the loss function using NCA as

LNCA =
exp(−‖f(X)− f(X+)‖

2
)

∑

X−∈C exp(−‖f(X)− f(X−)‖
2
)

(4)

where C represents all categories except for that of the positive sample.

In the ideal scenario, when iterating over triplets of samples, we expect that the

samples from the same category will be grouped in the same cluster in the embedding

space. However, it has been shown that most of the formed triplets are not informative

and visiting all possible triplet combinations is infeasible. Therefore, the model will

be trained with only a few informative triplets [31, 33, 35]. An intuitive solution can

be formulated by selecting those negative samples that are hard to distinguish (hard

negative mining), although searching for a hard negative sample in a motion sequence

dataset is computationally expensive. Another issue linked with the use of triplet loss

is that, during a single update, the positive and negative samples are evaluated only

in terms of their relative position in the embedding: thus, samples can end up close

to other categories [35]. We address the aforementioned issue by pushing/pulling the

cluster distributions instead of pushing/pulling individual samples by means of a novel

loss function, dubbed MMD-NCA and described next, that is based on the distribution

differences of the categories.

4.1 MMD-NCA

Assuming that given two different distributions p and q, the general formulation of

MMD measures the distance between p and q while taking the differences of the mean

embeddings in Hilbert spaces, written as

MMD[k, p, q]2=‖µq − µp‖
2=Ex,x′ [k(x, x′)]−2Ex,y[k(x, y)]+Ey,y′ [k(y, y′)] (5)

where x and x′ are drawn IID from p while y and y′ are drawn IID from q, and k

represents the kernel function

k(x, x
′

) =

K
∑

q=1

kσq
(x, x

′

) (6)

where kσq
is a Gaussian kernel with bandwidth parameter σq , while K (number of

kernels) is a hyperparameter. If we replace the expected values from the given samples,

we obtain

MMD[k,X, Y ]2=
1

m2

m
∑

i=1

m
∑

j=1

k(xi, x
′
j)−

2

mn

m
∑

i=1

n
∑

j=1

k(xi, yj)+
1

n2

n
∑

i=1

n
∑

j=1

k(yi, y
′
j)

(7)

where X := {x1, x2, . . . xm} is the sample set from p and Y := {y1, y2, . . . yn} is the

sample set from q. Hence, (7) allows us to measure the distance between the distribution

of two sets.
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Fig. 2. (a) The proposed architecture for sequence distance learning. (b) The proposed attention-

based model that uses layer normalization.

We formulate our loss function in order to force the network to decrease the distance

between the distribution of the anchor samples and that of the positive samples, while

increasing the distance to the distribution of the negative samples.

Therefore, we can rewrite (4) for a given number N of anchor-positive sample pairs

as {(X1, X
+

1 ), (X2, X
+

2 ), . . . , (XN , X+

N )} and N ×M negative samples from the M

different categories C = {c1, c2, . . . , cM} as {X−

c1,1
, X−

c1,2
, . . . , X−

c1,N
, . . . , X−

cM ,N};
then,

LMMD-NCA =
exp(−MMD[k, f(X), f(X+)])

∑M

j=1
exp(−MMD[k, f(X), f(X−

cj )])
(8)

where X and X+ represent motion samples from the same category, while Xcj repre-

sents samples from category cj ∈ C. Our single update contains M different negative

classes randomly sampled from the training data.

Since the proposed MMD-NCA loss minimizes the overlap between different cate-

gory distributions in the embedding while keeping the samples from the same distribu-

tion as close as possible, we believe it is more effective for our task than the triplet loss.

We demonstrate this quantitatively and qualitatively in Sec. 7.

5 Network architecture

Our architecture is illustrated in Fig. 2. This model has two main parts: the bidirectional

long short-term memory (BiLSTM) [16] and the self-attention mechanism. The reason

for using the long short-term memory (LSTM) [16] is to overcome the vanishing gra-

dient problem of the recurrent neural networks. In [12, 13], they show that LSTM can

capture long term dependencies. In the next sections, we briefly describe the layer nor-

malization mechanism and attention mechanism that used in our architecture.
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5.1 Layer normalization

In [7, 26, 27, 36], they have shown that batch normalization plays a fundamental role

on the triplet model’s accuracy. However, its straightforward application to LSTM ar-

chitectures can decrease the accuracy of model [19]. Due to this, we used the layer

normalized LSTM [3].

Suppose that n time steps of motion X = (x1, x2, . . . , xn) are given, then the layer

normalized LSTM is described by

f t = σ(Wfhht−1 +Wfxxt + bf ) (9)

it = σ(Wihht−1 +Wixxt + bi) (10)

ot = σ(Wohht−1 +Woxxt + bo) (11)

c̃t = tanh(Wchht−1 +Wcxxt + bc) (12)

ct = f t ⊙ ct−1 + it ⊙ c̃t (13)

mt =
1

H

H
∑

j

c
j
t ,vt =

√

√

√

√

1

H

H
∑

j

(cjt −mt)2 (14)

ht = ot ⊙ tanh(
γt

vt
⊙ (ct −mt) + β) (15)

where ct−1 and ht−1 denotes the cell memory and cell state which comes from the

previous time steps, xt denotes the input human pose at time t. σ(·) and ⊙ represent

the element-wise sigmoid function and multiplication respectively, and H denotes the

number of hidden units in LSTM. The parameters W·,·, γ and β are learned while γ and

β has the same dimension of ht. Contrary to the standard LSTM, the hidden state ht is

computed by normalizing the cell-memory ct.

5.2 Self-attention mechanism

Intuitively, in a sequence of human motion, some poses are more informative than oth-

ers. Therefore, we use the recently proposed self-attention mechanism [21] to assign a

score for each pose in a motion sequence. Specifically, assuming that the sequence of

states S = {h1, h2, . . . , hn} computed from a motion sequence X that consists of n

time steps with (9) to (15), we can effectively compute the scores for each of them by

r = Ws2 tanh(Ws1S
⊤) and ai = − log

(

exp(ri)
∑

j exp(rj)

)

(16)

where ri is i-th element of the r while Ws1 and Ws2 are the weight matrices in Rk×l and

Rl×1, respectively. ai is the assigned score i-th pose in the sequence of motion. Thus,

the final embedding E can be computed by multiplying the scores A = [a1, a2, . . . , an]
and S, written as E = AS. Note that the final embedding size only depends on the

number of hidden states in the LSTM and Ws2. This allows us to encode the varying

size LSTM outputs to a fixed sized output. More information about the self-attention

mechanism can be found in [21].
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6 Implementation details

We use the TensorFlow framework [2] for all deep metric models that are described

in this paper. Our model has three branches as shown in Fig. 2. Each branch consists

of an attention based bidirectional layer normalized LSTM (LNLSTM) (see Sec. 5.1).

Bidirectional LNLSTM follows a forward and backward passing of the given sequence

of motion. We then denote st = [st,f , st,b] such that st,f =
−−−−−−→
LNLSTM(wt, xt) for

t ∈ [0, N ] and st,b =
←−−−−−−
LNLSTM(wt, xt) for t ∈ [N, 0].

Given n time steps of a motion sequence X , we compute S = (s1, s2, . . . , sn)
where st is the concatenated output of the backward and forward pass of the LNLSTM

which has 128 hidden units. The bidirectional LSTM is followed by the dropout and the

standard batch normalization. The output of the batch normalization layer is forwarded

to the attention layer (see Sec. 5.2), which produces the fixed size of the output. The

attention layer is followed by the structure: {FC(320,), dropout, BN, FC(320), BN,

FC(128), BN, l2 Norm}, where FC(m) means fully connected layer with m as the

hidden units and BN means batch normalization. All the FC layers are followed by

the rectified linear units except for the last FC layer. The self-attention mechanism is

derived from the implementation of [21]. Here, the Ws1 and Ws2 parameters from (16)

have the dimensionality of R200×10 and R10×1, respectively. We use the dropout rate

of 0.5. The same dropout mask is used in all branches of the network in Fig. 2. In

our model, all squared weight matrices are initialized with random orthogonal matrices

while the others are initialized with uniform distribution with zero mean and 0.001

standard deviation. The parameters γ and β in (15) are initialized with zeros and ones,

respectively.

Kernel designs. The MMD-NCA loss function is implicitly associated with a family of

characteristic kernels. Similar to the prior MMD papers [20, 38], we consider a mixture

of K radial basis functions in (6). We fixed K = 5 and σq to be 1, 2, 4, 8, 16.

Training. Our single batch consists of randomly selected categories where each cat-

egory has 25 samples. We selected 5 category as negative. Although the MMD [14]

metric requires a high number of samples to understand the distribution moments, we

found that 25 is sufficient for our tasks. Training each batch takes about 10 seconds on a

Titan X GPU. All the networks are trained with 5000 updates and they all converged be-

fore the end of training. During training, analogous to the curriculum learning, we start

training on the samples without noise and then added Gaussian noise with zero mean

and increasing standard deviation. We use stochastic gradient descent with the moment

as an optimizer for all models. The momentum value is set to 0.9, and the learning rate

started from 0.0001 with an exponential decay of 0.96 every 50 updates. We clip the

whole gradients by their global norm to the range of −25 and 25.

7 Experimental results

We compare our MMD-NCA loss against the methods from DTW [42], MDDTW [25],

CTW [47] and GDTW [48], as well as four state-of-the-art deep metric learning ap-

proaches: DCTW [41], triplet [33], triplet+GOR [45], and the N -Pairs deep metric
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loss [14]. Primarily, these methods are evaluated through action recognition task in

Sec. 7.1. In order to look closely into the performance of this evaluation, we analyze the

actions retrieved by the proposed method in the same section and the contribution of the

self-attention mechanism from Sec. 5.2 into the algorithm in Sec. 7.3. Since one of the

datasets [1] labeled the actions with their corresponding subjects, we also investigate the

possibility of performing a person identification task wherein, instead of measuring the

similarity of the pose, we intend to measure the similarity the actors themselves based

on their movement. To have a fair comparison, we only used our attention based LSTM

architecture for all methods and only changed the loss function except the DCTW [41].

Prosed loss function in DCTW [41] requires the two sequences, therefore we remove

the attention layer and use only our LSTM model. Notably, all deep metric learning

methods are evaluated and trained with the same data splits.

Performance Evaluation. We follow the same evaluation protocol as defined in [36,

45]. All models are evaluated for the clustering quality and false positive rate (FPR) on

the same test set which consists of unseen motion categories. We compute the FPR for

90%, 80% and 70% true positive rates. In addition, we also use the Normalized Mutual

Information measure (NMI) and F1score to measure the cluster quality where the NMI

is the ratio between mutual information and sum of class and cluster labels entropies

while the F1score is the harmonic mean of precision and recall.

Datasets and Pre-processing. We tested the models on two different datasets: (1) the

CMU Graphics Lab motion capture database (CMU mocap) [1]; and, (2) the Human3.6M

dataset [17]. The former [1] contains 144 different subjects where each subject performs

natural motions such as walking, dancing and jumping. Their data is recorded with the

mocap system and the poses are represented with 38 joints in 3D space. Six joints are

excluded because they have no movement. We align the poses with respect to the torso

and, to avoid the gimbal lock effect, the poses are expressed in the exponential map [39].

Although the original data runs at 120Hz with different lengths of motion sequences,

we down-sampled the data to 30Hz during training and testing.

Furthermore, the Human3.6M dataset [17] consists of 15 different actions and each

action was performed by seven different professional actors. The actions are mostly

selected from daily activities such as walking, smoking, engaging in a discussion, taking

pictures and talking on the phone. We process the dataset in the same way as the same

as CMU mocap.

7.1 Action recognition

In this experiment, we tested our model on both the CMU mocap [1] and the Hu-

man3.6M [17] datasets for unseen motion categories. We categorize the CMU mocap

dataset into 38 different motion categories where the motion sequences which con-

tain more than one category are excluded. Among them, we selected 19 categories for

training and 19 categories for testing. For the Human3.6M [17], we used all the given

categories, and selected 8 categories for training and 7 categories for testing.

Although our model allows us to train with varying sizes of motion sequence, we

train with a fixed size, since varying sizes slow down the training process. We divided
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CMU Human3.6M

FPR-90 FPR-80 FPR-70 FPR-90 FPR-80 FPR-70

DTW [42] 47.98 42.92 37.62 49.64 47.96 44.38

MDDTW [25] 44.60 39.07 34.04 49.72 45.87 44.51

CTW [47] 46.02 40.96 39.11 47.63 43.10 42.18

GDTW [48] 45.61 39.95 35.24 46.06 42.72 40.04

DCTW [41] 40.56 38.83 26.95 41.39 39.18 36.71

Triplet [33] 39.72 33.82 28.77 42.78 40.15 36.01

Triplet + GOR [45] 40.32 33.97 27.78 42.03 37.61 33.95

N-Pair [35] 40.11 32.35 26.16 40.46 39.56 36.52

MMD-NCA (Ours) 32.66 25.66 20.29 38.42 36.54 33.13

– without Attention 41.22 35.36 30.04 45.03 42.07 41.01

– without LN 37.27 30.21 27.95 44.25 41.69 38.09

– Linear Kernel 39.80 33.92 29.00 46.35 41.68 37.69

– Polynomial Kernel 36.80 30.35 24.98 43.60 40.03 35.62

Table 1. False positive rate of action recognition for CMU mocap and Human3.6M datasets.
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Fig. 3. NMI and F1score for the action recognition task using the (a) CMU Mocap and (b) Hu-

man3.6M datasets; and, (b) for person identification task.

the motion sequences into 90 consecutive frames (i.e. approximately 3 seconds) and

leave a gap of 30 frames. However, at test time, we divided the motion sequences only

if it is longer than 5 seconds by leaving a 1-second gap; otherwise, we keep the original

motion sequence. We found this processing effective since we observe that, in sequence

of motions longer than 5 seconds, the subjects usually repeat their action. We also con-

sider training without clipping but it was not possible with available the GPU resources.

False Positive Rate. The FPR at different percentages on CMU mocap and Human3.6M

are reported in Table 1. With a true positive rate of 70%, the learning approaches [33,



12 H. Coskun, D. J. Tan, S. Conjeti, N. Navab, F. Tombari

Query
Cartwheel

motion

-1st-
Jumping

motion

-2nd-
Laughing

motion

-3rd-
Laughing

motion

-4th-
Standing

motion

DTW

-1st-
Cartwheel

motion

-2nd-
Cartwheel

motion

-3rd-
Cartwheel

motion

-4th-
Cartwheel

motion

Ours

Fig. 4. Comparison of cartwheel motion query on the CMU mocap dataset between our approach

and DTW [42]. The motion in the first row is query and the rest are four nearest neighbors for

each method, which are sorted by the distance.

41, 45, 35] including our approach achieve up to 17% improvement in FPR relative to

DTW [42], MDDTW [25], CTW [47] and GDTW [48]. Moreover, our approach further

improves the results up to 6% and 0.8% for CMU mocap and Human3.6m datasets,

respectively, against the state-of-the-art deep learning approaches [33, 41, 45, 35].

NMI and F1score. Fig. 3(a) plots the NMI and F1score with varying size of embedding

for the CMU mocap dataset. In both the NMI and F1metrics, our approach produces

the best clusters at all the embedding sizes. Compared to other methods, the proposed

approach is less sensitive to the changes of the embedding size. Moreover, Fig. 3(b)

illustrates the NMI and F1score on Human3.6M dataset where we observe similar per-

formance as the CMU mocap dataset and acquire the best results.

Action retrieval. In order to investigate further, we query a specific motion from the

CMU mocap test set, and compare the closest action sequences that our approach and

DTW [42] retrieve based on their respective similarity measure. In Fig. 4, we demon-

strate this task as we query the challenging cartwheel motion (see first row). Our ap-

proach successfully retrieves the semantically similar motions sequences, despite the

high variation on the length of sequences. On the other hand, DTW [42] fails to match

the query to the dataset because the distinctive pose appears on a small portion of the

sequence. This implies that the large portion, where the actor stands, dominates the

similarity measure. Note that we do not have the same problem due to the self-attention

mechanism from Sec. 5.2 (see Sec. 7.3 for the evaluation).
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FPR-95 FPR-90 FPR-85 FPR-80 FPR-75 FPR-70

DTW [42] 46.22 43.19 38.70 32.36 27.61 22.85

MDDTW [25] 49.67 45.89 40.36 35.46 31.69 28.44

CTW [47] 45.23 40.14 35.69 29.50 25.91 20.35

GDTW [48] 44.65 40.54 35.03 28.07 24.31 19.32

DCTW [41] 32.45 20.24 18.15 15.91 13.78 10.31

Triplet [33] 22.58 18.13 11.30 9.63 8.36 6.51

Triplet + GOR [45] 28.37 16.69 10.27 8.64 7.28 4.38

N-Pair [35] 22.84 15.31 8.94 5.69 4.82 4.56

MMD-NCA (Ours) 19.31 10.42 8.26 5.62 3.91 2.55

– without Attention 36.10 26.15 22.48 20.94 19.21 16.78

– without LN 26.63 18.43 12.81 10.27 8.58 7.36

– Linear Kernel 35.75 30.97 25.93 15.13 11.93 10.42

– Polynomial Kernel 27.25 21.18 17.91 10.93 8.97 5.93

Table 2. False positive rate of person identification for CMU mocap dataset.

7.2 Person identification

Since the CMU mocap dataset also includes the specific subject associated to each mo-

tion, we explore the potential application of person identification. In contrast to the ac-

tion recognition and action retrieval from Sec. 7.1 where the similarity measure is calcu-

lated based on the motion category, this task tries to measure the similarity with respect

the actor. In this experiment, we construct the training and test set in the same way as

Sec. 7.1. We included the subjects which have more than three motion sequences, which

resulted in 68 subjects. Among them, we selected 39 subjects for training and the rest

of the 29 subjects for testing.

Table 2 shows the FPR for the person identification task for varying percentages of

true positive rate with embedding size of 64. Here, all deep metric learning approaches

including our work significantly improve the accuracy against the DTW, MDDTW,

CTW and GDTW. Overall, our method outperforms all the approaches for all FPR with

a 20% improvement against DTW [42], MDDTW [25], CTW [47] and GDTW [48],

and a 2% improvement compared to the state-of-the-art deep learning approaches [33,

41, 45, 35]. Moreover, when we evaluate the NMI and the F1score for the clustering

quality in different embedding sizes, Fig. 3(c) demonstrates that our approach obtains

the state-of-the-art results with a significant margin.

7.3 Attention visualization

The objective of the self-attention mechanism from Sec. 5.2 is to focus on the poses

which are the most informative about the semantics of the motion sequence. Thus, we

expect our attention mechanism to focus on the descriptive poses in the motion, which

allows the model to learn more expressive embeddings. Based on the peaks of A which

is composed of ai from (16), we illustrate this behavior in Fig. 5 where the first two

rows belong to the basketball sequence while the third belong to the bending sequence.

Notably, all the sequences have different lengths.
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(a)

(b)

(c)

Fig. 5. Attention visualization: the poses in red show where the model mostly focused its atten-

tion. Specifically, we mark as red those frames associated with each column-wise global max-

imum in A, together with the previous and next 2 frames. For visualization purposes, the se-

quences are subsampled by a factor of 4.

Despite the variations in the length of the motion, the model focuses when the ac-

tor throws the ball which is the most informative part of the motion for Fig. 5(a-b);

while, for the bending motion in Fig. 5(c), it also focuses on the distinctive regions of

the motion sequence. Therefore, this figure illustrate that the self-attention mechanism

successfully focuses on the most informative part of the sequence. This implies that the

model discards the non-informative parts in order to embed long motion sequences to a

low dimensional space without losing the semantic information.

8 Ablation study

We evaluate our architecture with different configurations to better appreciate each of

our contributions separately. All models are trained with MMD-NCA loss and with an

embedding of size 128. Tables 1 and 2 show the effect of the layer normalization [3],

the self-attention mechanism [21] and the kernel selection in terms of FPR. We use the

same architecture for linear, polynomial, and MMD-NCA and only change the kernel

function in (6). Notably, the removal of the self-attention mechanism yields the biggest

drop in NMI and F1on all the datasets. In addition, Both the layer normalization and

the self-attention improve the resulting FPR by 7% and 10%, respectively. In terms

of kernel selection, the results shows that selecting the kernel which takes into account

higher moments yields better results. Comparing the two tasks, the person identification

is the one that benefits from our architecture the most.

9 Conclusion

In this paper, we propose a novel loss function and network architecture to measure

the similarity of two motion sequences. Experimental results on the CMU mocap [1]

and Human3.6M [17] datasets show that our approach obtain state-of-the-art results. We

also have shown that metric learning approaches based on deep learning can improve the

results up to 20% against metrics commonly used for similarity among human motion

sequences. As future work, we plan to generalize the proposed MMD-NCA framework

to time-series, as well as investigate different types of kernels.



Human Motion Analysis with Deep Metric Learning 15

References

1. Carnegie mellon university - cmu graphics lab - motion capture library.

http://mocap.cs.cmu.edu/ (2010), (Accessed on 03/11/2018)

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,

Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
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