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Abstract. In this paper, we focus on exploring modality-temporal mu-
tual information for RGB-D action recognition. In order to learn time-
varying information and multi-modal features jointly, we propose a novel
deep bilinear learning framework. In the framework, we propose bilinear
blocks that consist of two linear pooling layers for pooling the input
cube features from both modality and temporal directions, separately.
To capture rich modality-temporal information and facilitate our deep
bilinear learning, a new action feature called modality-temporal cube is
presented in a tensor structure for characterizing RGB-D actions from a
comprehensive perspective. Our method is extensively tested on two pub-
lic datasets with four different evaluation settings, and the results show
that the proposed method outperforms the state-of-the-art approaches.
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1 Introduction

Recognizing human actions based on low-cost depth camera has attracted in-
creasing attention recently. Compared to RGB cameras, the Kinect, as one widely
used depth camera, has many advantages. Firstly, it can capture depth maps,
which was shown useful for geometric modeling [32]. Secondly, it can output 3D
human poses (skeletons) in real-time, which also benefits action recognition [30].

Recent works have shown that the RGB, depth, and skeleton data captured
by depth cameras can complement to each other for describing human actions;
integrating them together can largely improve the system performance [37, 12,
39]. Specifically, in [37], the features extracted from different modalities and body
parts are combined by a multi-kernel learning model. In [12, 28], features from
various modalities are pooled together by explicitly mining the shared-specific
components. However, the systems in these works only consider features from
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Fig. 1. Action snapshots with multi-modalities, showing actions can be recognized from
sequences of different modalities and of different progress levels (the length of action
history sequence (AHS, which will be discussed in detail in Section) 3.1.)

different modalities, all extracted from full action sequence. Relatively few works
have explored the action context at different temporal levels, i.e, the time-varying
information of sequences involving partial action executions.

Indeed, partial action executions in multi-modal sequences could contain in-
formative action contexts from recognition perspective. Taking the action pre-
sented in Figure 1 for example, we can recognize that the person is drinking by
observing any of the RGB, depth, or skeleton sequences. Meanwhile, the action
can also be recognized by only observing the first 80% of the full sequence (i.e.,
|AHS| = 4), which means that sequences with partial action executions and
of various modalities can be exploited in recognition. The use of time-varying
information for action recognition could be traced back to the early work of
motion history images (MHI) [2], where the history of motion is encoded in a
single static image. Each MHI corresponds to one sequence at a certain progress
level. However, few work has yet considered to deeply encode and learn the
time-varying information together with the modalities. In this paper, we present
a novel tensor-structured cube feature, and propose to learn time-varying infor-
mation from multi-modal action history sequences for RGB-D action recognition.

The multi-modal sequences with temporal information can be regarded as a
tensor, structured with two different dimensions (temporal and modality). Learn-
ing and pooling the tensor is a rather challenging task, due to the complexity
of the arriving sequences, which are of varied progress levels and modalities.
For the sequences at a certain progress level, since different modalities depict
action from different perspectives, the features of varied modalities can comple-
ment to each other for describing actions context. While for a certain modality,
sequences of various progress levels encode the temporal dynamics. And the time-
varying information depicted in the sequences varies for different modalities. The
time-varying information together with multi-modal features can give a compre-
hensive picture of the action, but how to learn the modality-temporal mutual
information from highly structured sequence (tensor) remains a challenge.

In this paper, we address this challenge by proposing a novel deep bilinear
framework, where a bilinear block consisting of two linear pooling layers (modal-
ity pooling layer and temporal pooling layer) is defined to pool the input tensor
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Fig. 2. Graphic illustration of our recognition system. Our system consists of two parts:
cube feature construction and deep bilinear learning. The cube construction part is to
extract multiple temporal feature maps for representing RGB-D actions. And the deep
bilinear learning part is used to mine informative action representation for recognition.

along the modality and temporal directions, separately. In this way, the struc-
tures along the temporal and modal dimensions are both preserved. By stacking
the proposed bilinear blocks and other network layers (e.g., Relu and softmax),
we develop our deep bilinear model to jointly learn the action history and modal-
ity information in videos. Results have shown that learning modality-temporal
mutual information is beneficial for the recognition of RGB-D actions.

Note that the use of bilinear pooling has also been explored in [9, 10] for
pooling pair of features. However, their bilinear layer is defined as the outer
product of two input features, which aims at pooling two vectors to a higher
dimensional feature representation. These approaches are developed for pooling
1D vectors. In contrast, our objective is to integrate the input modality-temporal
tensors from different dimensions, in order to preserve the tensor structures of
the input. Our bilinear block is constructed based on the bilinear map, which
learns the time-varying dynamics and multi-modal information in the sequences
iteratively, and thus is more suitable for learning RGB-D sequences with complex
tensor structures in the temporal and modality directions.

To encode rich modality-temporal information in the sequences and facilitate
our deep bilinear learning, we further present a novel action descriptor called
modality-temporal cube to characterize RGB-D actions from a comprehensive
perspective. Our cube includes five feature maps, each of which is extracted from
the sequences of various progress levels within a certain modality and describes
actions from a certain perspective. Our experiments show that the proposed
modality-temporal features fit the proposed deep bilinear model and can com-
plement well to each other.

In summary, our contributions are: 1) a novel deep bilinear framework for
learning multiple modality-temporal features; 2) a modality-temporal cube de-
scriptor for characterizing RGB-D actions. Extensive experimental analysis and
evaluations on two public benchmark RGB-D action sets, with four different
evaluation settings, showing our method achieves state-of-the-art performances.
A graphical illustration of our system is presented in Figure 2.
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Fig. 3. Illustration of generating composite action GIST frames from original se-
quences.

2 Related work

In the following, we briefly review the approaches (depth or skeleton based and
RGB-D based) for action recognition with Kinect, which are closely related to
our work. We also outline the bilinear pooling techniques and the methods that
learn multi-modal features and time-varying information for action recognition.

Depth or skeleton based action recognition. The geometric information
depicted in depth sequences can be used to characterize action [24, 36, 42, 26,
18]. For instance, the histograms of oriented normal within each spatio-temporal
depth cube was used to describe actions in [26, 42]. These methods mainly de-
velop their systems based on the observed depth sequences. On the other hand,
human action can also be characterized by the dynamics of human poses (or
skeletons). The temporal dynamics of each skeleton joint [15, 40, 5, 33] and joint
pairs [41, 25, 20, 43, 29] are explored for mining the structure motions depicted
in the skeleton sequences. However, each of the modalities has its own insuffi-
ciency for characterizing complex actions involving objects and interactions. In
comparison, our method explores the collaboration among different modalities,
and thus the weakness of losing contextual information by only using depth or
skeleton features can be overcome by working colloborately with RGB features.

RGB-D based action recognition. Recent works show that combining RGB,
depth, and skeleton together can improve the system performance [37, 12, 39, 28,
19]. For instance, [13] proposed a joint learning framework to mine the structures
shared and specified by different modal features. A deep shared-specific structure
learning method is explored in [28]. Different from these works that choose to
combine multi-modal features extracted from full sequences, in this paper, we
formulate a deep learning approach to learn features from various modalities and
progress levels. Thus the modality-temporal mutual structures are explored.

Bilinear pooling. Bilinear pooling has been introduced to combine features
extracted by two CNN models [21, 9, 10]. In [9], for example, a deep architecture
with bilinear pooling is developed for improving question answering. However
in these works, bilinear pooling is defined as the outer product of two features
in order to produce a higher dimensional feature. While in our work, bilinear
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is defined as an operation block consisting of two linear operators pooling ten-
sor features along modality and temporal dimensions, separately, which has the
advantage of preserving tensor structures.
Multi-modal action recognition. Integrating multi-modal features can im-
prove the recognition performance. A straightforward way to combine features
is to directly concatenate them together [46, 31]. To mine more interactive infor-
mation among multi-modal features, lots of methods are proposed to explicitly
learn shared-specific structures among features [11, 13, 28]. However, these works
do not explore the time-varying information among the multiple modal features
extracted from sequences of different progress levels.
Time-varying information for action recognition. Studies show that ex-
plicitly capturing time-varying information in sequences is beneficial. Intuitively,
the time-varying information can be captured by a non-parametric model like
mean or max pooling [16] and Fourier transform [13] etc. Learning time-varying
information by data-driven approaches [7, 8, 35] can generalize better to unseen
sequences. For example, [7] used a ranking machine to encode the dynamics
among the sequential features. Note that the TSN [38] also intends to learn
time-varying information within sequences of varies modalities. However, they
modeled the time-varying and modality-varying information isolately. The time-
varying information mined from each modality is empirically summarized, which
makes their method less applicable for modelling temporal-modality mutual in-
formation. In contrast, we develop a flexible learning framework for learning the
dynamics among sequences of various modalities and temporal lengths jointly.

3 Approach

We aim to explore the time-varying and modality-varying information for RGB-
D action recognition by proposing a novel deep bilinear framework, which aims
to integrate modality-temporal cubes in the modality and temporal directions.
We also present a cube descriptor for characterizing RGB-D actions.

3.1 Modality-temporal Cube Construction

Here, we describe how to construct our modality-temporal cube for representing
RGB-D actions. Our cube includes temporal feature maps extracted from the
sequences of various progress levels within a certain modality (skeleton, RGB or
depth), each of which characterizes actions from a certain perspective.
Action History Sequence. For extracting temporal features, we uniformly
divide each sequence into D segments and consider the sequence including the
first d segments as an action history sequence (AHS) with length d (|AHS| = d).
Therefore, we have a total ofD AHSs, whose lengths range from 1 toD. Then, for
each sequence of skeleton, RGB, or depth, we extract temporal features from the
corresponding AHSs, which forms the base to capture time-varying information.
Skeleton Temporal Feature Map. We employ a sequence-sequence RNN
to extract temporal features from each skeleton sequence, where the AHSs are
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encoded by the dynamic skeleton descriptor (DS) [13]. Thus, the dependencies
among the DS features of consecutive AHSs are modeled. Then, we use the
outputs of RNN as our feature map, which can capture some dynamic skeleton
information depicted in each sequence.

RGB and Depth Temporal Feature Maps. Inspired by [13], where the
visual features extracted from local image patches around each skeleton joint
are used to represent human action, we also consider extracting our temporal
feature maps in a similar way. Here, for each RGB/D image frame, we collect
the local image patches around each skeleton joint, and tile them to compose a
new image, which we termed as action gist image, a compact representation of
the action frame as illustrated in Figure 3. Therefore, an action gist sequence
are formed by pooling its GIST frames sequentially. Noted that local patches
corresponding to the same (tracked) skeleton joint are tiled at the same spatial
location in the frame, but across time, forming a trajectory-based patch sequence
in the temporal dimension. There are two merits of using such a composition: 1)
it enables efficient training of trajectory-based CNN as we don’t need to train a
CNN for each trajectory-based patch sequence; and 2) it captures the dynamics
of patch appearances along each trajectory. In Figure 3, we have presented some
examples about the composite action GIST frames. As can be seen, the gist
image frames condense most of the action context and automatically remove the
irrelated information, such as background. Patches at the same spatial location
correspond to a long-term trajectory of a joint. In this end, our work could be
among the family of trajectory-based action recognition [34].

Then, we construct our RGB and depth temporal feature maps by extracting
K-channel CNN5 descriptors from all the composite action gist AHSs, respec-
tively. To train K-channel CNN, we selected K ordered action GIST frames for
each training sequence. Specifically, the temporal location of the u-th selected
frame is given by max(1, 1 + (u − 1) ls

K
+ δ), where ls indicates the length of

sequence and perturbation δ is a random integer obeying uniform distribution
U(− ls

2K , ls
2K ). In our experiments, two different settings (K = 1 and K = 16)

are used. The feature map extracted from K = 1 can capture static appearance
information, while the map from K = 16 characterizes dynamic appearance.

Feature Cube Construction. Finally, we concatenate all the feature maps
along the modality dimension to construct the modality-temporal cube, whose
size is modality number×AHS number×feature dimension. In total, our cube
descriptor contains five temporal feature maps, with two from RGB AHSs (1-
channel CNN and 16-channel CNN), two from depth AHSs ((1-channel CNN
and 16-channel CNN), and one from the skeleton AHSs (RNN), each of which
characterizes actions at different AHS lengths from a specific modality. The
combination of them can form a comprehensive action representation.

Note that for constructing the temporal feature for the AHS of a specific
modality and temporal length, we use the output of the final layer of CNN
(or RNN for skeleton AHSs), whose size is the same as the number of action

5 The input of K-channel CNN is K gray images concatenated along the channel
dimension. Thus, it is a CNN whose input size is 224 × 224 ×K.
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Fig. 4. Pooling by element-wise fully connected vs. plane-wise fully connected layer.

classes. Those features can be considered as soft classification scores (i.e., before
the use of softmax operator). Thus, the third dimension of our cube encodes
the classification information, and the elements along this dimension are highly
related with each other. We call this feature dimension as the class dimension.

3.2 Deep Bilinear Learning

Our cube descriptor includes multiple temporal features extracted from RGB-D
AHSs, making most of the existing multi-modal feature learning methods not
applicable to learn an informative action representation. As each element in
the (cube) class dimension corresponds to the confidence of assigning the given
sample to a certain action class, pooling the confidences of different classes does
not make much sense. Moreover, our experimental results in Table 5 confirm that
merging elements of different classes is not the best for our framework. In the
following, we introduce a novel deep learning framework to pool the modality
and temporal information, while keeping the class dimension unchanged. We call
our framework deep bilinear as it is inspired by the formulation of bilinear map.
Bilinear Map Revisited. In mathematics, a bilinear map is a function com-
bining elements of two vector spaces to yield an element of a third vector space.
The formulation of a widely used bilinear function in the community is

f(x,y) = xTAy (1)

where A ∈ Rm×n, x ∈ Rm, and y ∈ Rn. As can be seen, f(x,y) is linear with
respect to each of the variables x and y.

It is straightforward to extend the above formulation in the matrix form as

f(X,Y ) = XTAY (2)

where A ∈ Rm×n, X ∈ Rm×p, and Y ∈ Rn×q. This formula can be considered
as a combination of two linear operators. The first operator L = XTA is to
combine the rows of A using the weights indicated by the columns of X. It
pools the rows of the input matrix, while holding the column dimension constant.
We call it row-pooling operator. And the second operator LY (named column-

pooling operator) is to calculate the weighted summation of all the columns in
the latent matrix L, where the combining weights are indicated by the rows of
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Y . It is used to pool the columns of L. The combination of the row-pooling and
column-pooling transforms the m× n-sized A to a matrix of p× q.
Bilinear Block. Given a modality-temporal cube, here we would define a block,
named bilinear block, to pool it in the modality and temporal dimensions, sepa-
rately, based on the bilinear map (2). Therefore, the tensor structures along the
modality and temporal dimensions are preserved during feature pooling. Note
that the block would keep the class dimension constant. Our bilinear block is
consisted of two neural layers (i.e., temporal pooling layer and modality pooling
layer), each of which corresponds to one operator in the bilinear function.
Modality pooling layer. This layer is defined to pool the input cube in the
modality dimension. We formulate it as a plane-wise linear combination problem:

L(:, :, c) = XTA(:, :, c), c = 1, 2, ..., C (3)

where X ∈ RMA×ML is the model parameter to be learned, where MA and ML

are the modality dimension of cube A and L. Specially, ML is a parameter to be
specified by the user. A ∈ RMA×T×C is the input cube and L is the output cube,
whose size is ML × T × C. The layer defined by Equation (3) pools the modality
dimension from MA to ML. Let’s denote the layer as fM for simplification.

It is worth noting that the modality pooling layer (3) can be rewritten as

L(mL, :, :) =
∑

mA=1,2,...,MA

X(mA,mL)A(mA, :, :),mL = 1, 2, ...,ML (4)

which means that elements corresponding to the same modality are weighted
by the same parameter. That is, the cube is pooled in a plane-wise manner. An
alternative way is to pool it in an element-wise manner, where each element is
weighted by a specific parameter, as illustrated in Figure 4. However, this would
introduce a large number of learnable parameters, making the model easily fall
into over-fitting. We will demonstrate it in the experiment section (5).
Temporal pooling layer. The temporal pooling layer is defined to pool the
input 3D cube in the temporal dimension. Specifically, it can be formulated as

Z(:, :, c) = L(:, :, c)Y , c = 1, 2, ..., C (5)

here,Z and Y indicate the output cube and the pooling parameters, respectively.
We would like to point out that the temporal pooling layer can be equiva-

lently calculated using the modality pooling layer if we permute the temporal
dimension and modality dimension of the input cubes. In the following, we use
fT to indicate the temporal pooling layer. To improve the generalization capa-
bility, we additionally constrain the model parameters X (Y ), corresponding to
each layer in the block, by L2-norm and L1-norm constraint. The L1-norm is
employed to penalize non-zero elements in X (Y ), which could result in a sparse
solution. The L2-norm serves as a decay term.

Then the bilinear block can be defined by b = fT ◦fM (A). Here, we construct
our bilinear block based on the modality pooling and temporal pooling layers,
pooling the cube from one dimension to another, separately.
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Fig. 5. Graphic illustration of the employed deep architecture.

Deep Bilinear Architecture.Given a set ofM × T × C-sized modality-temporal
cubes, our goal is to learn an underlying mapping f , which merges all the cube
elements into a robust representation y ∈ RC . In other word, the objective is to
find a mapping that pools the modality dimension and temporal dimension of
the input cube to 1. In this paper, we define the mapping f as a stack of bilinear
blocks, Relu, and softmax operators, i.e., f = g1 ◦ g2 ◦ ...gn...(•), where gn refers
to one of the above operators or bilinear block.

The form of our deep bilinear architecture is flexible. Experiments in this
paper involve a deep architecture with three bilinear blocks, three Relu layers
and a softmax layer, while more layers are possible. In the architecture, each
bilinear block is followed by a Relu layer to map the outputs of the block non-
linearly. A graphic illustration for the employed deep architecture can be found
in Figure 5. Please refer to the experiment section for more details.
Optimization. We optimize our deep bilinear by stochastic gradient descent
(SGD) with momentum, where the gradients are determined by back propagation
algorithm. We use the logistic loss as our loss function. For the gradient of L1-
norm ofX (Y ), we use the generalized gradientX./|X| ( Y ./|Y | ) for simplicity.

4 Experiment

We evaluated our methods on two public benchmark 3D action datasets: NTU
RGB+D Dataset [22] and SYSU 3D HOI dataset [14], with two different evalu-
ation protocols employed in each set. In the following, we will briefly introduce
the implementation details and then describe our experimental results.

4.1 Implementation Details

Following the observation in [13], we extract the 64 × 64 patches around the
skeleton joints to form our composite action GIST frames6. For extracting tem-
poral feature maps from RGB and Depth videos on the NTU RGB+D set, we

6 The gist images are linearly resized to 224 × 224.
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Table 1. Recognition results (accuracies) on the NTU RGB+D set. ’—’ indicates that
the performance is not reported in the literature.

Method Data Used Cross-subject Cross-view

Skeletal Quads [6] SKL 38.6% 41.4%
Dynamic Skeletons [12] SKL 60.2% 65.2%
Part-aware LSTM [27] SKL 62.9% 70.3%
ST-LSTM [22] SKL 69.2% 77.7%
GCA-LSTM network [23] SKL 74.4% 82.8%
Deep multi modal [28] RGB+DEP+SKL 74.9% —
MTLN [17] SKL 79.6% 84.8%
View-adaption LSTM [44] SKL 79.4% 87.6%
Pose-attention [1] RGB+SKL 82.5% 88.6%

Deep Bilinear

RGB+DEP 79.2% 81.1%
RGB+SKL 83.0% 87.1%
DEP+SKL 83.3% 89.5%

RGB+DEP+SKL 85.4% 90.7%

trained a set of K-channel VGG-16 networks without pre-training on other aux-
iliary datasets7, where we set the momentum factor and dropout rate as 0.9 and
0.7, respectively. While for the SYSU 3D HOI dataset, since we do not have
enough data to train CNN, we chose to finetune the models trained on the NTU
RGB+D set. For the training of RNN on both sets, we used the back propagation
through time (BPTT) algorithm with momentum for optimization, where the
momentum rate was set as 0.9. The neuron number in the hidden layer of RNN
was set as 256. To speed up the optimization of RNN, we used PCA to reduce
the dimension of the extracted DS features, where 98% of variance is retained.

In the following experiments, our deep bilinear learning model is defined as
a stack of three bilinear blocks, three Relu layers and one softmax layer, unless
stated otherwise. The detailed architecture is modality pooling layer M−→2M,
temporal pooling layer T−→T/2, modality pooling layer 2M−→M, temporal
pooling layer T/2−→T/4, Relu, modality pooling layer M−→1, temporal pool-
ing layer T/4−→1, Relu, softmax , which is illustrated in Figure 5. Here modality
pooling layer 2M−→M means the layer pools the cube in the modality dimen-
sion from 2M to M. T, C, M indicate the temporal length, class number, and
modality number, respectively. We empirically found that upscaling the modal-
ity dimension can produce better recognition results in our experiments. It might
be because that features of different modalities have large variations and upscal-
ing modality dimension can produce meta-modal features with better expressive
power, which is in line with the basic idea of developing kernel tricks. The model
parameters are initialized by an altered xavier algorithm, where the random
weights are produced by an uniformly distribution rather than a Gaussian dis-
tribution. We experimentally find that initializing the network in this way can
significantly reduce the time of training. Temporal feature maps extracted from
AHSs containing 70%-100% of the full sequence (i.e., |AHS|=7, 8, 9, 10) are

7 Indeed, we do not observe a significant improvement in the recognition performance
by pre-training the network on the imageNet set.
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Table 2. Recognition results (accuracies) on the SYSU 3D HOI set. ’—’ indicates that
the performance is not reported in the literature.

Method Data Used setting-1 setting-2

HON4D [13, 26] DEP 73.4% 79.2%
HFM [13, 4] RGB+DEP+SKL 75% 76.7%
ST-LSTM [22] SKL 76.5% —
View-adaption LSTM [44] SKL 76.9% 77.5%
MPCCA [13, 3] RGB+DEP+SKL 76.3% 80.7%
MTDA [13, 45] RGB+DEP+SKL 79.2% 84.2%
JOULE [13] RGB+DEP+SKL 79.6% 84.9%

Deep Bilinear

RGB+DEP 77.2% 83.1%
RGB+SKL 81.5% 86.2%
DEP+SKL 82.6% 84.8%

RGB+DEP+SKL 84.8% 88.9%

used to construct the cube descriptor in most of the experiments. The learning
rate is initialized as 10−3 and it would drop to 10−4 after several iterations.

4.2 NTU RGB+D Dataset

The NTU RGB+D dataset was specifically collected for the researches of large
scale RGB-D human action recognition. For collecting this set, 40 subjects were
asked to perform 60 different actions and the complete action executions were
captured from three different views using a Kinect v2. In total, it contains more
than 56K action samples for both training and testing. Compared to most of the
existing dataset, this set is very challenging and larger in terms of the number
of action classes, views, and samples with large intra-class variations [13, 37].
For experiment, we follow exactly the same evaluation settings specified in [22],
where two different training-testing splits ( i.e. cross-subject and cross-view) are
used to evaluate the recognition performances. In the cross-subject setting, the
sequences performed by 20 subjects are used to train, and the rest to test. While
in the cross-view setting, samples for two views (camera 2 and camera 3) are
used as training set, and the other samples form the testing set.

The comparison results are presented in Table 1. As shown, our approach
with deep bilinear learning obtains the best results on this set and outperforms
the state-of-the-art approaches, such as MTLN [17] and View-adaption LSTM
model [44], by a large margin (e.g., ≥ 6% for the cross subject setting). In detail,
our method obtains an accuracy of 85.4% and 90.7% for the cross-subject and
cross-view setting, respectively. We can observe that even for the cross-view set-
ting, our model can still perform better than all the other competitors, and in
particular outperforms the view adaption model [44] by 3.1%, which was specif-
ically designed for recognizing actions across different views. It is interesting to
note that our bilinear framework performs better than the model developed in
[28] (85.4% vs. 74.9%), which also learns features extracted from RGB, depth,
and skeleton by a deep model, however only using full sequences. This demon-
strates the efficacy of our bilinear framework, which aims at exploring AHS with
partial action executions and of different modalities for action recognition.
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We can also observe that even using the temporal feature maps extracted
from two of the RGB, depth, and skeleton data, we can still obtain a good per-
formance, which is comparable to the state-of-the-art models, e.g., Pose-attention
network. This means that explicitly mining some informative modality-temporal
structures with our deep bilinear model is beneficial for recognition. As expected,
the performance is largely improved when we fuse all the features together using
the proposed deep bilinear learning algorithm. This also indicates that the tem-
poral feature maps extracted from different modality sequences can complement
well to each other for obtaining a comprehensive action representation.

4.3 SYSU 3D HOI set

The SYSU 3D HOI set was collected for studying complex actions with human-
object interactions. This set contains 480 samples from 6 pairs of interaction
actions including playing with a cell-phone and calling with a cell-phone, mop-

ping and sweeping etc. This set is challenging because each pair of the considered
interactions contains similar object contexts and interactive motions. For exper-
iments, we employ the two evaluation criterions defined in [14] to test. In the
first setting (named setting-1), for each action class, half of the samples are used
for training and the rest for testing. The second setting (named setting-2) is a
cross-subject setting, where sequences performed by half of the subjects are used
to train the model parameters and the rest to test. For each setting, the mean
accuracies obtained by 30 random training-testing splits are reported.

We report the results in Table 2. As can be seen, in both settings, our deep
bilinear model outperforms the state-of-the-art model JOULE [13], which aims
to learn action representation from the full sequences of different modalities.
Especially for the setting-1, our method has a performance gain of 4.8%. This
indicates that explicitly exploring time-varying information depicted in multiple
modality sequences is beneficial for RGB-D action recognition . The same as
that on NTU RGB+D set, fusing the multiple modality-temporal cube descrip-
tors can obtain much better performances, which illustrates that the our deep
bilinear model can learn a comprehensive action representation from the cubes
for characterizing human actions. We can also observe that the RGB-D based
models (JOULE [13] and our deep bilinear model) obtain better results than the
single modality based methods (e.g. View-adaption LSTM [44], ST-LSTM [22],
and HON4D [26]). This is as expected as only using depth or skeleton data is
intrinsically limited in overcoming the ambiguity caused by appearance changes,
occlusion, cluttered background, etc.

5 Analysis in Depth

Here, we provide more discussions and analysis on the proposed deep bilinear
learning method. All the following conclusions are obtained based on the exper-
iments on NTU RGB+D dataset with the challenging cross-subject setting.
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Table 3. Evaluations on with vs. without temporal modelling.

RGB DEP Skeleton RGB+DEP+SKL

without 72.5% 73.1% 69.8% 83.5%
with 75.3% 75.9% 72.5% 85.4%

Table 4. Evaluations on the lengths of AHSs.

AHS lengths ≥ 1 ≥ 3 ≥ 5 ≥ 7 ≥ 9

Accuracy 84.1% 84.1% 84.3% 85.4% 84.3%

Evaluations on the temporal modelling. Our deep bilinear model learns
dynamics from modality-temporal cubes. Here, we study the influence of the
temporal dimension by only using the features corresponding to full sequences.
The detailed results are presented in Table 3. As shown, with temporal dynamic
modelling, we can see a valuable improvement (about 1.5-3% in the term of
accuracy), which demonstrates the efficacy of learning time-varying information
among AHSs of varied lengths for action recognition.

Here, we further study the influence of the lengths of the AHSs. We test on
the AHSs whose lengths are larger than or equal to 1, 3, 5, 7, 9, respectively. The
results are presented in Table 4. We can observe that our system obtains the
best result when the length is larger than or equal to 7. The accuracy would drop
when the length goes smaller. This is because the AHSs with small length do
not contain enough action context for characterizing actions. Introducing short
AHSs could add more noise to the learning.

Comparison with other fusion and bilinear schemes. Here, we compare
our bilinear learning framework with other fusion and bilinear schemes. Specifi-
cally, we test different settings in which cube are pooled by max pooling (max),
mean pooling (mean), linear SVM, and multi-modal compact bilinear (MCB [9])
models. We also replace the plane-wise connected pooling in our bilinear block
(denoted by Ours in Table 5) by the element-wise FCN (see Figure 4 for details)
and compare their performances. The comparison results are presented in Table
5. As can be seen, our model offers distinct advantages over the hard-coded non-
learning fusion methods (e.g., max and mean). This is because each layer of block
in our model is specifically driven by either modality or temporal variate. Thus
our bilinear model offers learning capability towards better fusion. While these
hard-coded methods lack this key point. By examining the results obtained by
the data-driven fusion schemes (e.g., FCN, linear-SVM, MCB and multi-kernel

Table 5. Comparison with other fusion schemes, which used our feature netowrks.

Method max mean Linear SVM FCN MCB [9] MKL Ours

Parameter No. 0 0 72K 6.7M 16K ≈ 72K 115
Accuracy 77.5% 83.0% 83.5% 76.3% 84% 84.1% 85.4%
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Table 6. Evaluations on the number of bilinear blocks used in deep bilinear model.

Block number 1 2 3 4 5

Accuracy 83.8% 84.4% 85.4% 85.1% 84.9%

learning (MKL)), we can see that data-driven fusion can achieve better results
than the hard-coded ones. The best result among them is achieved by MKL, with
an accuracy of 84.3%, which outperforms all other methods in the table except
ours. It is also noted that if we use element-wise FCN to pool cube descriptor
instead of the plane-wise one, the performance decreases. This is as expected, as
FCN has a large number of parameters to be learned, which makes the model
easily fall into over-fitting. And the more parameters the model has, the worse
performance is observed. Our method also outperforms the MCB [9] by 1.4%,
which pools the features by an out-product bilinear operator without exactly
considering the tensor structures in different dimensions. This demonstrates that
learning temporal-modality mutual information in an iterative manner with our
bilinear model can help to enhance recognition performance.
Effect of bilinear depth and pooling order. Our deep bilinear is constructed
by stacking a set of bilinear blocks and other network layers. Here, we evaluate
the influence of the number of bilinear blocks (depth). The results are listed in
Table 6. It could be observed that when the number of blocks is small, increasing
the depth will increase the performance (e.g., 85.4% vs. 83.8%); when the number
gets larger (e.g., larger than 3), performance tends to saturate, being insensitive
to the increase of depth. Our method is also not sensitive to the order of fusion.
For example, if we fuse the temporal dimension first and then fuse over modality
in each bilinear block, the recognition accuracy drops slightly (85.0% vs. 85.4%).

6 Conclusion

We present a novel deep bilinear learning framework to learn modality-temporal
information (i.e., time-varying information across varies modalities) for RGB-D
action recognition. In the framework, a bilinear block consisting of two linear
pooling layers is constructed to extract the mutual information from modality
and temporal directions, respectively. Furthermore, we present a new action fea-
ture representation to encode the action context in a tensor structure, named
modality-temporal cube. Extensive experiments have been reported to demon-
strate the efficacy of the proposed framework.
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