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Abstract. In this paper, we present a novel deep learning framework
that derives discriminative local descriptors for 3D surface shapes. In
contrast to previous convolutional neural networks (CNNs) that rely on
rendering multi-view images or extracting intrinsic shape properties, we
parameterize the multi-scale localized neighborhoods of a keypoint into
regular 2D grids, which are termed as ‘geometry images’. The benefits of
such geometry images include retaining sufficient geometric information,
as well as allowing the usage of standard CNNs. Specifically, we leverage
a triplet network to perform deep metric learning, which takes a set of
triplets as input, and a newly designed triplet loss function is minimized
to distinguish between similar and dissimilar pairs of keypoints. At the
testing stage, given a geometry image of a point of interest, our network
outputs a discriminative local descriptor for it. Experimental results for
non-rigid shape matching on several benchmarks demonstrate the supe-
rior performance of our learned descriptors over traditional descriptors
and the state-of-the-art learning-based alternatives.
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1 Introduction

Designing local descriptors for 3D surface points is within common interests in
both computer vision and computer graphics communities. Typically, a local
descriptor refers to an informative representation stored in a multi-dimensional
vector that describes the local geometry of the shape around a keypoint. It plays
a crucial role in a variety of vision tasks, such as shape correspondence [1, 2],
object recognition [3], shape matching [4, 5], shape retrieval [6, 7], and surface
registration [8], to name a few.

Over the last decades, a large number of local descriptors have been actively
investigated by the research community. Despite the recent interests, however,
designing discriminative and robust descriptors is still a non-trivial and challeng-
ing task. Early works focus on deriving shape descriptors based on hand-crafted
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Fig. 1. Our non-rigid shape matching results using a set of landmark points (red and
green spheres). The Dog shapes (21 correct matches from 22 keypoints) are from
TOSCA [9] and Face shapes (13 correct matches from 15 keypoints) are from [10].
The incorrect correspondences are drawn using red lines.

features, including spin images [11], curvature features [12], heat kernel signa-
tures [13], etc. Although these descriptors can represent the local behavior of
the shape effectively, the performance of these methods is still largely limited by
the representation power of the hand-tuned parameters.

Recently, convolutional neural networks (CNNs) have achieved a significant
performance breakthrough in many image analysis tasks. Inspired by the re-
markable success of applying deep learning in many fields, recent approaches
have been proposed to learn local descriptors for 3D shapes in an either ex-
trinsic or intrinsic manner. The former usually takes multi-view images [14] or
volumetric representations [15] as input, but is suffers from strong requirements
on view selection and low voxel resolutions. While the latter kind of methods
generalizes the CNN paradigm to non-Euclidean manifolds [16], they are able
to learn invariant shape signatures for non-rigid shape analysis. However, since
these methods learn information relating to shape types and structures that vary
from different datasets, their generalization ability is defective. As a result, these
methods perform unstable on different domains.

In this paper, we propose another novel approach for local descriptors learn-
ing, that can capture the local geometric essence of a 3D shape. We draw in-
spiration from the recent work of [17] which used geometry images for learning
global surface features for shape classification. Different from their work, we con-
struct a small set of geometry images from multi-scale local patches around each
keypoint on the surface. Then, the fundamental low-level geometric features can
be encoded into the pixels of these regular geometry images, on which standard
CNNs can be applied directly. More specifically, we train a well-known triplet
network [18, 19] with a pre-training phase and an improved triplet loss function.
The objective is to learn a descriptor that minimizes the corresponding points
distance while maximizes the non-corresponding points distance in descriptor
space. In summary, our main contributions are the following:

– We develop a new 3D keypoint descriptor based on specially designed triplet
networks, which is dedicated to processing local geometry images encoding
very low-level geometric information.
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– We design a novel triplet loss function that can control the dispersion of
anchor-positive descriptor distance, thus improving the performance of our
descriptor effectively.

– We show that the proposed concise framework has better generalization ca-
pability across different datasets than existing descriptors.

2 Related Work

A large variety of 3D local feature descriptors have been proposed in the litera-
ture. These approaches can be roughly classified into two categories: traditional
hand-crafted descriptors and learned local descriptors.

Hand-crafted local descriptors. Early works focus on deriving shape de-
scriptors based on hand-crafted features[20, 21]. A detailed survey is out of the
scope of this paper, so we briefly review some representative techniques. For rigid
shapes, some successful extrinsic descriptors have been proposed, for example,
spin images (SI)[11], 3D shape context (3DSC)[22], MeshHOG descriptor[23],
signature of histogram of orientations (SHOT)[24], rotational projection statis-
tics (RoPS)[25]. Obviously, these approaches are invariant under rigid Euclidean
transformations, but not under deformations. To deal with isometric deforma-
tions, there have been some intrinsic descriptors based on geodesic distances[26]
or spectral geometry. Such descriptors include heat kernel signature (HKS)[13],
wave kernel signatures (WKS)[27], intrinsic shape context (ISC) [28] and optimal
spectral descriptors (OSD)[29]. However, both extrinsic and intrinsic descriptors
rely on a limited predefined set of hand-tuned parameters, which are tailored for
task-specific scenarios.

Deep-learned local descriptors. Recently, deep learning based methods have
attracted large attention because they tend to automatically learn features from
raw input data, so as to avoid manually engineered features. Wei et al.[30] em-
ploye a CNN architecture to learn invariant descriptors in arbitrary complex
poses and clothings, where their system is trained with a large dataset of depth
maps. Zeng et al.[15] present another data-driven 3D keypoint descriptor for
robustly matching local RGB-D data. Since they use 3D volumetric CNNs, this
voxel-based approach is limited to low resolutions due to the high memory and
computational cost. Qi et al. [31] propose a deep net framework, named Point-
Net, that can directly learn point features from unordered point sets to compute
shape correspondences. Khoury et al. [32] present an approach to learn local
compact geometric features (CGF) for unstructured point clouds,by mapping
high-dimensional histograms into low-dimensional Euclidean spaces. Huang et
al.[14] recently introduce a new local descriptor by taking multiple rendered
views in multiple scales and processing them through a classic 2D CNN. While
this method has been successfully used in many applications, it still suffers from
strong requirements on view selection, as a result the 2D projection images are
not geometrically informative. In addition, whether this approach can be used
for non-rigid shape matching is somewhat elusive.
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Fig. 2. Overview of our local descriptor training framework. We start with extracting
local patches around the keypoints (shown in purple color), and generate geometry
images for them. Then a triplet is formed and further processed through a triplet
network, where we train this network using an objective function (triplet loss function).

Another family of methods are based on the notion of geometric deep learn-

ing [33], where they generalize CNN to non-Euclidean manifolds. Various frame-
works have been introduced to solve descriptor learning or correspondence learn-
ing problems, including localized spectral CNN (LSCNN)[34], geodesic CNN
(GCNN)[35], Anisotropic CNN (ACNN)[36], mixture model networks (MoNet)[16],
deep functional maps (FMNet)[37], and so on. Different from this kind of meth-
ods, our work utilizes geometry images to locally flatten the non-Euclidean patch
to the 2D domain so that standard convolutional networks can be used.

3 Methodology Overview

Given a keypoint (or any point of interest) p on a surface shape S ⊂ R
3, our

goal is to learn a non-linear feature embedding function f(p) : R3 → R
d which

outputs a d−dimensional descriptor Xp ∈ R
d for that point. The embedding

function is carefully designed such that the distance between descriptors of ge-
ometrically and semantically similar keypoints is as small as possible. In this
paper, we use the L2 Euclidean norm as the similarity metric between descrip-
tors: D(Xpi

, Xpj
) = ||Xpi

−Xpj
||2.

Geometry image. Due to space limitations, here we just briefly review the
concept of the geometry image, which is a new kind of mesh representation
technique introduced by Gu et al. [38]. It represents an irregular mesh as a 2D
image by parametrizing it onto a square domain. Using this parametrization, the
geometric properties of the original mesh can be resampled and encoded into the
pixels of an image. In order to parametrize arbitrary mesh onto a square, the
mesh should be firstly cut into a topological disk.
Pipeline. The core part of our approach is a newly proposed learning frame-
work as illustrated in Fig. 2. At off-line training phase, we propose to learn the
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descriptors by utilizing a triplet network, which are composed of three identical
convolutional networks (“ConvNet” for simplicity) sharing the same architecture
and parameters. We feed a set of triplets into the ConvNet branches to character-
ize the descriptor similarity relationship. Here, a triplet t = (I(p), I(p+), I(p−))
contains an anchor point p, a positive point p+, and a negative point p−, where
I(p) represents a geometry image encoding the local geometric context around
p. By “positive” we mean that p and p+ are correspondingly similar keypoints,
and by “negative” we mean p− is dissimilar to the anchor point p. Based on
the training data, we optimize the network parameters by using a minimized-
deviation triplet loss function to enforce that, in the final descriptor space, the
positive point should be much closer to the anchor point than any other negative
points. Once trained, we could generate a 128-d local descriptor for a keypoint
by applying the individual ConvNet on one input geometry image.

4 CNN Architecture and Training

In this section, we describe the details of our network architecture and how it
can be trained automatically and efficiently to learn the embedding function.

4.1 Training Data Preparation

A rich and representative training dataset is the key to the success of CNN-based
methods. For our non-rigid shape analysis purpose, a good local descriptor should
be invariant with respect to noise, transformations, and non-isometric deforma-
tions. To meet above requirements, we choose the most recent and particularly
challenging FAUST dataset [39], which contains noisy, realistically deforming
meshes of different people in a variety of poses. Furthermore, full-body ground-
truth correspondences between the shapes are known for all points.

However, note that our proposed approach is generalizable, that is to say,
our network is trained on one dataset, but can be applied to other datasets. In
Sec. 5, we will demonstrate the generalization ability of our method.
Keypoints annotation. To detect the keypoints, we propose a semi-automatic
approach. First, candidate keypoint locations can be determined by leveraging
any 3D interest point detectors (e.g., 3D-Harris [40]). Then we manually ad-
just them by removing unsuitable candidates or adding some missing keypoints.
Fortunately, since the ground-truth point-wise correspondence has already been
defined in FAUST, the keypoint detection operation is only performed on one
mesh, and each keypoint can easily be retrieved in all the other meshes. Thus
it does not require too much manual effort. We finally annotate 48 keypoints on
the FAUST dataset, as shown in Fig. 3.
Local geometry images generation. Partially motivated by [17], we use the
geometry image representation to capture surface information, where surface
signals are stored in simple 2D arrays. Unlike previous work converting the entire
3D shape into a single geometry image for shape classification, we generate a set
of local geometry images for each keypoint.
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Fig. 3. Illustration of our annotated keypoints on two human models in dynamic poses
in the FAUST dataset.

We now generate local geometry images for each keypoint. A local patch mesh
is first built by extracting the neighbor triangles around the keypoint. Then we
map the local patch to a 2D square grid. Sinha et al. [17] have demonstrated
that geometry images using authalic parameterization encode more information
of the shape as compared to conformal geometry images, especially when the
resolution of the geometry images is limited. In our approach, we perform an
authalic and intrinsic parameterization method [41] which minimizes the intrinsic
distortion, then the local patch is resampled to generate one geometry image
using this parameterization. Nevertheless, other appropriate parameterization
methods, such as the geodesic polar coordinates used in [35], could also be used.
The resolution of a geometry image depends on specific applications, here we
set its size to be 32 × 32 for all our experiments. Additionally, to be invariant
to rotation, we rotate the local patch K = 12 times at 30◦ intervals around
the average normal direction of faces, and align it with respect to the principal
curvature direction as in [42]. For each rotation, we generate a corresponding
geometry image. Furthermore, in order to capture multi-scale contexts around
this keypoint, we extract the local patch at L = 3 scales, with neighbor radius
6r, 9r and 12r, respectively. Here r is computed as the average edge length of
the entire mesh.

While geometry images can be encoded with any suitable feature of the sur-
face mesh, we found that using only two fundamental low-level geometric features
is sufficient in our approach: (1) vertex normal direction nv = {nx, ny, nz} at
each vertex v, which are calculated by weighted averaging face normals of its
incident triangles; (2) two principal curvatures κmin and κmax, that measure the
minimum and maximum bending in orthogonal directions of a surface point, re-
spectively. Therefore, each geometry image is encoded with 15 feature channels:
{ni

x, n
i
y, n

i
z, κ

i
min, κ

i
max}

L=3
i=1 , where i represents each scale. Fig. 4 shows some

geometry image examples with different scales and rotations.
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Keypoint Local patch nx ny nz kmax kmin

Fig. 4. Geometry images generated around a keypoint. From top to bottom are the
geometry images of a smaller scale local patch, a larger scale local patch and a rotated
larger scale local patch (rotation angle is 90◦ in clockwise). From left to right show the
geometry images encoding normal {nx, ny, nz} and curvature {κmax, κmin} features.

4.2 Triplet Sampling

For fast training convergence, it is important to select meaningful and dis-
criminative triplets as input to the triplet network. The purpose of training
is to learn a discriminative descriptor with the positive or negative points that
are hard to be identified from the anchor point. That is to say, given an an-
chor point p, we want to select a positive point p+ (hard positive) such that
argmax||f(pi) − f(p+

i )||2 and similarly a negative point p− (hard negative)
such that argmin||f(p)−f(p−)||2. Then, the question becomes: given an anchor
point p, how to select the hard positive and negative points? The most straight-
forward way is to pick samples by hard mining from all of the possible triplets
across the whole training set. However, this global manner is time-consuming
and may lead to poor training, because the noisy or poorly shaped local patches
would cause great difficulties for defining good hard triplets. We use a stochastic
gradient descent approach to generate the triplets within a mini-batch, similar
to the approach used in [43] for 2D face recognition. Specifically, at each itera-
tion of the training stage, we randomly select 16 keypoints out of 48 keypoints,
then randomly select 8 geometry images out of K ×M geometry images across
the shapes for each keypoint, where K = 12 is the number of rotated geome-
try images of one keypoint on one shape, M is the number of shape models in
training set. Totally, the batch size equals to 128. Then for all anchor-positive
pairs within the batch, we select the semi-hard negatives instead of the hardest
ones, because the hardest negatives can in practice lead to bad local minima
early in training process. Here a semi-hard negative is a negative exemplar that
is further away from the anchor than the positive, but still closer than other
harder negatives. A rigorous definition of the hard and semi-hard negatives is
given in the supplemental materials, or refer to [43] for more details.
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4.3 Min-CV Triplet Loss

According to the requirements in real tasks such as shape matching and shape
aligning, the pivotal property of an appropriate keypoint descriptor is its discrim-
inability. Since we employ CNNs to embed geometry images of keypoints into
a d−dimensional Euclidian space, an effective loss function must be designed.
It encourages the CNNs to regard that a geometry image of a specific type of
keypoint is closer to all other geometry images of the same type of keypoint and
farther from geometry images of any other types of keypoint. To achieve this
goal, we define the following classic triplet loss function [43]:

L =

N
∑

i=1

[

Di
pos −Di

neg + α
]

+
, (1)

Di
pos = D

(

f(pi), f(p
+
i )

)

,

Di
neg = D

(

f(pi), f(p
−
i )

)

,

where N is the batch size, α is the margin distance parameter that we expect
between anchor-positive and anchor-negative pairs.

Combined with hard mining, such kinds of triplet loss functions are widely
used in various metric learning tasks and perform well or at least acceptable.
However, it suffers from some problems in our evaluation dataset. In particular,
when training our model with this loss function, the average loss was continually
decreasing, however, the single-triplet loss was oscillating violently. Besides, we
noticed that for a large number of triplets, the distance between the anchor
and the positive geometry images in descriptor space are still considerably large
compared with the distance of anchor and negative. Only a few triplets resulted
in almost zero loss that led to the decrease in average loss. This phenomenon
indicated that our CNNs were failed to learn intrinsic local features but trapped
into a local optimum.

To solve this problem, we propose a new triplet loss function, which minimizes
the ratio of standard deviation to mean value (also called coefficient of variation-
CV) of anchor-positive distance among one batch. This modification is inspired
by the intuition that measured by distance in our descriptor space, one geometry
image pair of a keypoint should be as similar (at least same order of magnitude)
as other geometry image pairs of the same keypoint. By adding this part to the
classic triplet loss, we get our minimized-CV (referred to as ’Min-CV’) triplet
loss:

LMin−CV = λ
σ(Dpos)

µ(Dpos)
+

N
∑

i=1

[

Di
pos −Di

neg + α
]

+
, (2)

where λ is a tunable non-negative parameter, σ(·) calculates the standard devia-
tion among one batch, and µ(·) calculates the empirical mean of one batch. Note
that recent work [44, 45] also introduced the mean value and variance/standard
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Fig. 5. Detailed network architecture of individual ConvNet shown in Fig. 2.

deviation into traditional triplet loss. Their loss functions (Kumar’s [44] and
Jan’s [45]) are respectively defined as:

LKumar′s = (σ2(Dpos) + σ2(Dneg)) + λmax(0, µ(Dpos)− µ(Dneg) + α), (3)

LJan′s = σ(Dpos) + σ(Dneg) + µ(Dpos) + λmax(0, α− µ(Dneg)), (4)

where σ2(·) calculates the variance among one batch. Different from these two
approaches, we minimize the CV instead of the variance directly. The reason
is that compared to the variance, the CV could measure the dispersion of Dpos

without being influenced by the numerical scale of the descriptor distance (or the
magnitude of the data), e.g., scaling down the descriptor distance will decrease
the variance but not affect the CV. Thus, the CV better reflects the degree of
data deviation. We make a comparison with these two loss functions in Sec. 5.
Furthermore, extensive experiments show that our Min-CV triplet loss is able
to help CNNs to learn significant features from one dataset and generalize well
to other datasets.

4.4 CNN Architecture and Configuration

Considering the particularity and complexity of our task, we design a special
CNN architecture dedicated to processing geometry images in our triplet struc-
ture, which is presented below.
Network architecture. Fig. 5 illustrates the architecture of our CNN model.
In this figure, we have a compact stack of three convolutional layers (“conv”,
colored in blue), three pooling layers and two fully connected layers (“fc”, colored
in green). In particular, each convolutional layer is equipped with the size of
convolution kernel shown above and the number of output feature maps shown
below. For each fully connected layer, we show the number of units above. The
“size” represents the length and the width of the tensor which is fed into next
layer, e.g., from left to right, the third layer is a convolutional layer that takes an
8×8×256 tensor as input and operates 3×3×512 convolution on it, resulting in an
8×8×512 tensor flowed to pooling operation. Next, we apply max pooling with
a stride of 2 on the output of the first convolutional layer and average pooling
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with the same stride on the outputs of the other two convolutional layers. Batch
normalization (BN) is adopted after each convolution or linear map of input but
before non-linear activation.
CNN configuration. The detailed configuration of our triplet CNN is set to
adapt our architecture and gain the best performance. Because triplet loss is not
as stable as other frequently-used loss functions, our old-version CNN with tradi-
tional ReLU activation often suffers from dying ReLU problem that may reduce
the effective capacity of our CNN model and then lead to failure in generating
meaningful descriptors. To avoid this defect, we employ leaky ReLU [46] with
slope = 0.1 for negative input as our activation function. Experimental results
demonstrate the effectiveness of this strategy. In addition, to speed up training,
we first train a classification network with same architecture and training data
of our triplet CNNs except the fully connected layers. The classification labels
are the indices of the vertices of the mesh. When it is closed to convergence, its
parameters can be used to initialize the convolutional layers of our triplet CNN.
Besides, Xavier initialization [47] is adopted to initialize all layers of the classi-
fication network and the fully connected layers of our triplet CNNs. In training
procedure, Adam algorithm [48] is employed to optimize the loss function. In all
of our experiments, the learning rate starts with 0.01 and decreases by a factor of
10 every time when the validation loss begins to oscillate periodically. To avoid
overfitting, L2 regularization is also used with coefficient 0.005.

5 Experimental Results

In this section, we conduct a number of experiments on both real and synthetic
datasets to demonstrate the efficacy of our learned local descriptors. We first
give training details and evaluate the performance of our Min-CV triplet loss.
Then we provide a complete comparison with state-of-the-art approaches with
qualitative and quantitative experiments. The shown results are obtained on an
Intel Core i7-3770 Processor with 3.4 GHz and 16GB RAM. Offline training runs
on an NVIDIA GeForce TITAN X Pascal (12GB memory) GPU.
Datasets. In addition to FAUST, we further carry out experiments on four other
public-domain datasets. The SCAPE dataset [49] contains 71 realistic registered
meshes of a particular person in a variety of poses, while the TOSCA dataset [9]
contains 80 synthetic models of animals and people with near-isometric deforma-
tions. The SPRING dataset [50] contains 3000 scanned body models which have
also been placed in point to point correspondence. Finally, we test our method
on the FACE models used in [10], where some facial expressions are provided.
Training settings.We separate the FAUST dataset into training models (75%),
validation models (10%), and testing models (15%). Any geometry image triplet
is generated from one of above subsets depending on the stage it is used for,
resulting in the triplet training set, validation set, and testing set, respectively.
The training set contains, counted by combination, up to 8.1 × 1011 different
triplets that could be fed into our triplet CNNs for training (due to imperfec-
tions on meshes, local patches of some keypoints on certain models may not
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Fig. 6. Training behaviors using different triplet loss functions. Left: positive-negative
margin curves. Middle: standard deviation mean ratio curves. Right: CMC curves.

Table 1. Numeric statistics of the CMC curve using different losses in the rightmost
plots of Fig. 6.

Dataset Method P1% P5% P10% P20%

FAUST

Ours 40.42 55.94 64.76 71.29

Ours with Classic loss 25.93 42.37 49.66 57.82

Ours with Kumar’s loss 33.39 51.90 59.04 66.25

Ours with Jan’s loss 12.28 21.92 29.70 40.40

able to be parameterized correctly and thus are discarded), while the triplet
validation set and testing set contains up to 1.7 × 109 and 6.1 × 109 triplets,
respectively. Our method is implemented based on TensorFlow [51]. Using our
hardware configuration shown above, one full training takes about 8 hours.

Next, we demonstrate the effectiveness of our proposed Min-CV triplet loss.
In Fig. 6 we depict the training behaviors evaluated on validation dataset using
classic triplet loss (Eq. 1), Kumar’s loss [44] (Eq. 3), Jan’s loss [45] (Eq. 4)
and our Min-CV triplet loss (Eq. 2), where the margin distance parameter α is
empirically set to a large number (e.g., 100 in this paper) and λ is set to 1.0. To
be fair, we use the same network architecture and parameters proposed in this
paper for different losses. The positive-negative margin curve shows the average
distance between anchor-positive and anchor-negative pairs in each batch, and it
is calculated by

∑N

i=1

[

Di
pos−Di

neg

]

+
. The standard deviation mean ratio curve

shows the average ratio
σ(Dpos)
µ(Dpos)

along the iterations. From the left two figures in

Fig. 6, we see that Jan’s loss performs worst in our task, and classic loss cannot
control the degree of deviation of anchor-positive distance, while both Kumar’s
loss and our Min-CV loss significantly reduce it. Compared with Kumar’s loss,
the training behaviors of our loss are better in both figures, thus it effectively
improves the robustness and generalization ability of our learned descriptor.
Taking advantage of this, our descriptor performs stably on various datasets.
From the CMC curves (we will explain it below), our loss still outperforms
Kumar’s loss. A more thorough comparison is provided in Table 1.

Evaluation metrics. Next, we thoroughly compare our method with several
local descriptors of different types, including extrinsic hand-crafted features spin
images (SI) [11], SHOT [24], and RoPS [25], intrinsic hand-crafted features
HKS [13] and WKS [27], learning-based descriptor OSD [29], and the state-of-
the-art deep-learned descriptors LSCNN [34], MoNet [16], FMNet [37]. All the
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SHOT OSD LSCNN FMNetHKS MoNet Ours

Fig. 7. Selected comparison result of non-rigid shape matching on FAUST, where the
incorrect matches are shown in red lines. The total number of used landmark points is
48. From left to right are SHOT (11 matches), HKS (16 matches), OSD (20 matches),
LSCNN (19 matches), FMNet (21 matches), MoNet (41 matches) and our descriptor
(33 matches).
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Fig. 8. Performance of different descriptors on FAUST dataset, measured using the
CMC (left) and PR (right) plots.

learning-based methods are trained on our above FAUST train-test split. For fair
comparison with others, FMNet is not post-processed with the correspondence
refinement technique as used in their paper. We believe it makes sense because
we focus on the performance of different descriptors, rather than the correspon-
dence. The comparison contains two evaluation metrics that are commonly used
in the literature. The first measure is the cumulative match characteristic (CMC)
curve, which evaluates the probability of finding a correct correspondence among
the k−nearest neighbors in the descriptor space. Another popular measure is the
precision-recall (PR) curve with the average precision (i.e., area under PR curve,
denoted by AP ), that is based on two basic evaluation measures: recall and pre-
cision.
Comparison on FAUST dataset. Fig. 8 shows the CMC and PR plots for all
the descriptors on the FAUST dataset. The numerical statistics about the curves
are presented in Table 2. For a fair and unbiased comparison, we randomly select
200 pairs of shapes from the dataset. And for each pair of shapes, we generate
1000 feature points on them by using 3D-Harris detector [40]. Then the plots
are drawn by averaging the calculation results of 200 pairs of shapes. From the
curves, we observe that MoNet performs best. However, in fact MoNet does
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Table 2. Numeric statistics of the CMC and PR curves for all the methods on different
datasets. The best result of each measurement is marked in bold font. Here Pk% is
the fraction of correct correspondences within the first k ranks in CMC curve; AP is
the average precision, i.e., the area under the PR curve.

Dataset Method P1% P5% P10% P20% AP

FAUST

SI 34.66 56.00 61.19 64.14 0.116

RoPS 14.04 29.95 40.64 51.85 0.128

SHOT 8.77 17.94 23.36 29.07 0.045

HKS 7.47 11.71 17.78 24.14 0.098

WKS 11.26 21.24 28.55 38.98 0.071

OSD 13.19 23.85 33.45 47.45 0.113

LSCNN 11.97 22.02 38.12 58.61 0.210

FMNet 12.43 27.12 38.10 49.59 0.508

MoNet 56.93 84.62 90.82 96.93 0.677

Ours 49.14 70.93 76.63 81.70 0.500

SPRING

SI 43.03 60.33 64.57 69.88 0.445

RoPS 22.13 40.68 46.00 50.30 0.558

SHOT 23.10 56.68 69.60 77.14 0.244

HKS 8.58 14.83 19.75 28.73 0.348

WKS 13.80 31.07 40.42 49.55 0.299

OSD 10.52 26.60 37.95 50.58 0.327

LSCNN 8.80 17.17 24.43 38.53 0.359

FMNet 13.40 47.48 63.53 78.07 0.528

Our 63.30 77.71 81.70 85.99 0.631

FACE

SI 19.33 34.03 40.13 47.23 0.304

RoPS 26.93 47.27 55.17 60.77 0.629

SHOT 16.50 35.53 45.93 55.20 0.479

HKS 14.57 21.97 30.77 38.47 0.273

WKS 12.67 19.57 24.63 25.43 0.193

OSD 17.46 24.20 33.93 42.17 0.367

LSCNN 15.53 18.47 20.83 23.70 0.140

FMNet 12.00 36.89 48.30 56.67 0.558

Ours 35.22 63.22 71.76 80.94 0.619
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Fig. 9. Performance of different descriptors on SPRING and FACE dataset. The left
two figures are the CMC and PR plots on SPRING respectively, while the right two
figures are the CMC and PR plots on FACE.

not learn a real descriptor, and it casts shape correspondence as a labelling
problem. Thus, it cannot be directly generalized to other datasets once it is
trained on FAUST, because the labelling spaces can be quite different. Our
learned descriptor performs better than all of the extrinsic and intrinsic hand-
crafted features. Although our CMC curve converges a little slower than LSCNN,
we have higher rank k CMC-percentage, i.e., more corresponding keypoints can
be correctly matched in the top k ranks (see Table 2 for details). In addition,
we show that our approach has better generalization capability than others in
later experiments.

Next, as an application, we test the performance of different local descriptors
for non-rigid shape matching, which is performed by computing the landmark
correspondences. From the comparison in Fig. 7, we see that our learned local
descriptor produces outstanding matching result.
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Comparison on other datasets. In order to test our generalization ability,
we perform a series of experiments on several other datasets. Here we only show
the experimental results on the SPRING and FACE datasets. More exhaustive
analysis and comparisons are provided in the supplemental materials. For all
comparisons, the learned methods (OSD, LSCNN, FMNet and ours) are trained
on FAUST dataset, then applied to other datasets. The evaluation curves are
depicted in Fig. 9, and the numeric statistics are shown in Table 2. Note that for
the 3D FACE dataset, we manually annotate 15 keypoints by considering the
2D facial point annotations [52] (see Fig.1).

As it can be observed, hand-crafted features behave differently on different
datasets, so their robustness is not strong. Another interesting phenomenon is
that LSCNN performs similarly with OSD on the SPRING dataset, but it is the
worst on the FACE dataset. The reason is that LSCNN uses a domain-dependent
spectral basis (the human body shapes in this case) for learning, thus it does
not generalize well on different domains. Our approach performs even better on
the SPRING than on the FAUST dataset, while a negligible drop in the CMC is
observed on the FACE data. Moreover, among all the descriptors, FMNet shows
good generalization, but we still achieve the best performance on both datasets.
It demonstrates that our approach has the best generalization ability.

6 Conclusion and Future Work

In this paper, we have proposed a new 3D keypoint descriptor based on end-
to-end deep learning techniques. A triplet network is designed and efficiently
trained, where we introduce a new triplet-based loss function to characterize the
relative ordering of the corresponding and non-corresponding keypoint pairs. The
significant advantage of our framework is that we can learn the descriptors using
local geometry images, that encodes more surface information than rendered
views or 3D voxels. Although many local descriptors exist, we have demonstrated
better discriminability, robustness and generalization capability of our approach
through a variety of experiments.

Though we only use low-level geometric information in this paper, any other
extrinsic or intrinsic surface properties can also be encoded into the geometry
images. In future work, we would like to extend our flexible approach to other
data-driven 3D vision applications, e.g., shape segmentation, 3D saliency detec-
tion, etc.
Acknowledgments. We thank anonymous reviewer for their valuable com-
ments and suggestions. This work is partially funded by the National Natural
Science Foundation of China (No. 61620106003), Beijing Natural Science Foun-
dation (4184102), National Natural Science Foundation of China (No. 61772523,
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