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Abstract. Image downscaling is one of the most classical problems in
computer vision that aims to preserve the visual appearance of the orig-
inal image when it is resized to a smaller scale. Upscaling a small image
back to its original size is a difficult and ill-posed problem due to informa-
tion loss that arises in the downscaling process. In this paper, we present
a novel technique called task-aware image downscaling to support an up-
scaling task. We propose an auto-encoder-based framework that enables
joint learning of the downscaling network and the upscaling network to
maximize the restoration performance. Our framework is efficient, and it
can be generalized to handle an arbitrary image resizing operation. Ex-
perimental results show that our task-aware downscaled images greatly
improve the performance of the existing state-of-the-art super-resolution
methods. In addition, realistic images can be recovered by recursively
applying our scaling model up to an extreme scaling factor of x128. We
also validate our model’s generalization capability by applying it to the
task of image colorization.
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1 Introduction

Scaling or resizing is one of the most frequently used operations when handling
digital images. When sharing images via the Internet, we rarely use the original
high-resolution (HR) images because of the low resolution of display screens;
most images are downscaled to save the data transfer cost while maintaining
adequate image qualities. However, the loss of information from the downscaling
process makes the inverse problem of super-resolution (SR) highly ill-posed, and
zooming in to a part of the downscaled image usually shows a blurry restoration.

Previous works normally consider downscaling and super-resolution (upscal-
ing) as separate problems. Studies on image downscaling [16,23,24,34] only focus
on obtaining visually pleasing low-resolution (LR) images. Likewise, recent stud-
ies on SR [5,7,13,18,20,22,31,36,37] tend to fix the downscaling kernel (to e.g.

bicubic downscaling) and optimize the restoration performance of the HR images
with the given training LR-HR image pairs. However, the predetermined down-
scaling kernel may not be optimal for the SR task. Figure 1 shows an example
of the importance of choosing an appropriate downscaling method, where the
downscaled LR images in blue and red look similar, but the restored HR image
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Fig. 1: Our task-aware downscaled (TAD) image (red box) generates more real-
istic and accurate HR image compared with the state-of-the-art methods that
use bicubic-downscaled LR images (blue box). TAD image shows good LR im-
age quality and, when upscaled with our jointly trained upscaling method TAU,
outperforms EDSR+ by a large margin with considerably faster runtime. The
scaling factor1is ×4.

from the red LR image shows much more accurate result where the shapes and
details are consistent with the original ground truth image.

In this paper, we address the problem of task-aware image downscaling and
show the importance of learning the optimal image downscaling method for the
target tasks. For the SR task, the goal is to find the optimal LR image that
maximizes the restoration performance of the HR image. To achieve this goal,
we use a deep convolutional auto-encoder model where the encoder is the down-
scaling network and the decoder is the upscaling network. The auto-encoder is
trained end-to-end, and the output of the encoder (output of the downscaling
network) will be our final task-aware downscaled (TAD) image. We also guaran-
tee that the latent representation of the auto-encoder resembles the downscaled
version of its original input image by introducing the guidance image. In SR,
the guidance image is an LR image made by a predefined downscaling algorithm
(e.g. bicubic, Lanczos), and it can be used to control the trade-off between HR
image reconstruction performance and LR image quality. Our whole framework
has only 20 convolution layers and can be run in real-time.

1 We use the term scaling factor (denoted as sc) as “upscaling” factor unless otherwise
mentioned. Then, downscaling an image from H ×W to H

2
× W

2
is noted to have a

scaling factor of sc = 1

2
. When indicated in a joint model, the images are downscaled

to 1

sc
and upscaled again to sc

sc
= 1.
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Our framework can also be generalized to other resizing tasks aside from SR.
Note that the rescaling can be done not only in the spatial dimension but also
in the channel dimension of an image. So we can apply our proposed framework
to the grayscale-color conversion problem. In this setting, the downscaling task
becomes RGB to grayscale conversion, and the upscaling task becomes image
colorization. Our final grayscale image achieves visually much more pleasing
results when re-colorized.

Overall, our contributions are as follows:

• To the best of our knowledge, our proposed method is the first deep learning-
based image downscaling method that is jointly learned to boost the accuracy
of an upscaling task. Applying our TAD images to train an SR model im-
proves the reconstruction performance of the previous state-of-the-art (SotA)
by a large margin.

• Our downscaling and upscaling networks operate efficiently and cover mul-
tiple scaling factors. In particular, our method achieves the best SR perfor-
mance in extreme scaling factors up to ×128.

• Our framework can be generalized to various computer vision tasks with
scale changes in any dimension.

2 Related Work

In this section, we review studies on super-resolution and image downscaling.

2.1 Image Super-Resolution (SR)

Single image super-resolution (SR) is a standard inverse problem in computer
vision with a long history. Most previous works discuss which methodology is
used to obtain HR images from LR images, but we categorize SR methods ac-
cording to the inherent assumptions they used with regard to the process of
acquiring LR images in the first place. First, approaches without any such as-
sumptions at all exist. These approaches include early methods that use inter-
polation [2, 12, 19, 39], which estimates filter kernels from local pixels/patch to
the HR image pixel values with respect to the scaling factor. Interpolation-based
methods are typically fast but yield blurry results. Many methods used priors
from natural image statistics for more realistic textures [14, 28, 29]. One excep-
tional case of Ulyanov et al. [32] showed that a different structural image prior
is inherent in deep CNN architecture.

Second, a line of work attempts to estimate the LR image acquisition pro-
cess via self-similarities. These studies assume the fractal structures inherent in
images, which means that considerable internal path redundancies exist within
a single image. Glasner et al. [7] proposed a novel SR framework that exploits
recurrent patches within and across image scales. Michaeli and Irani [22] im-
proved this approach by jointly estimating the unknown downscaling blur kernel
with the HR image, and Huang et al. [10] extended this approach to incorpo-
rate transformed self-exemplars for added expressive power. Shocher et al. [27]
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recently proposed a “zero-shot” SR (ZSSR) using deep learning, which trains an
image-specific CNN with HR-LR pairs of patches extracted from the test image
itself. ZSSR shares our motivation of handling the problem of fixed downscaling
process in generating HR-LR pairs when training deep models. However, the
main objective is different in that our model focuses on restoring HR images
from previously downscaled images.

The third and last category includes the majority of SR methods, wherein
the process of obtaining LR images is predetermined (in most cases, MATLAB
bicubic). Fixing the downscaling method is inevitable when creating a large
HR-LR paired image dataset, especially when training a model needs a vast
amount of data. Many advanced works that use neighbor embedding [3, 4, 6,
25, 31, 37], sparse coding [31, 35–37], and deep learning [5, 13, 17, 18, 20, 30] fall
into this category, where many HR-LR paired patches are needed to learn the
mapping function between them. With regard to more recent deep learning based
methods, Dong et al. [5] proposed SRCNN as the first attempt to solve the SR
problem with CNN. Accordingly, CNN-based SR architectures expanded, and
they have greatly boosted the performance. Kim et al. (VDSR) [13] suggested
the concept of residual learning to ease the difficulty in optimization, which
was later improved by Ledig et al. (SRResNet) [18] with intermediate residual
connections [8]. Following this line of work, Lim et al. [20] proposed an enhanced
model called EDSR, which achieved SotA performance in the recent NTIRE
challenge [30]. Ledig et al. proposed another distinctive method called SRGAN,
which introduces adversarial loss with perceptual loss [11] and raised the problem
of the current metric that we use for evaluating SR methods: peak signal-to-noise
ratio (PSNR). Although these methods generate visually more realistic images
than previous works regardless of their PSNR value, the generated textures can
differ considerably from the original HR image (as shown in Figure 1).

2.2 Image Downscaling

Image downscaling aims to preserve the appearance of HR images in LR images.
Conventional methods use smoothing filters and resampling for anti-aliasing [23].
Although these classical methods are still dominant in practical usage, more re-
cent approaches have also attempted to improve the sharpness of LR images.
Kopf et al. [16] proposed a content-adaptive method, wherein filter kernel co-
efficients are adapted with respect to image content. Öztireli and Gross [24]
proposed an optimization framework to minimize SSIM [33] between the nearest-
neighbor upsampled LR image and the HR image. Weber et al. [34] uses convo-
lutional filters to preserve important visual details, and Hou et al. [9] recently
proposed perceptual loss based method using deep learning.

However, a high similarity value does not imply good results when an image is
restored to high resolution. Zhang et al. [40] proposed interpolation-dependent
image downsampling (IDID) where given an interpolation method, the down-
sampled image that minimizes the sum of squared errors between the original
input HR image and the obtained LR image interpolated to the input scale is
obtained. Our method is most similar to IDID, but we mitigate its limitations
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in that the upscaling process considers only simple interpolation methods and
take full advantage of the recent advancements in deep learning-based SR.

3 Task-Aware Downscaling (TAD)

3.1 Formulation

We aim to study a task-aware downscaled (TAD) image that can be efficiently
reconstructed to its original HR input. Let ITAD denote our TAD image and IHR

as the original HR image. Our ultimate goal is to study the optimal downscaling
function g : IHR 7→ ITAD with respect to the upscaling function f , which denotes
our task of interest. The process of obtaining input IHR is shown in the following
equation:

IHR = f(ITAD) = f(g(IHR)).

The downscaling and upscaling functions g and f are both image-to-image map-
pings, and the input to g and the output of f are the same HR image IHR.
Thus, f and g are naturally modeled with a deep convolutional auto-encoder,
each becoming the decoder and encoder part of the network.

Let θf and θg be the parameters of the convolutional decoder and encoder
f and g, respectively. With the training dataset of N images IHR

n , n = 1, ..., N
and Ltask as the loss function that can differ task by task, our learning objective
becomes:

θ∗f , θ
∗

g = argmin
θf ,θg

1

N

N
∑

n=1

Ltask
(

fθf
(

gθg
(

IHR
n

))

, IHR
n

)

. (1)

The desired ITAD for downscaling and the reconstructed image ITAU (task-
aware upscaled image) can be calculated accordingly:

ITAD = gθ∗

g

(

IHR
)

, (2)

ITAU = fθ∗

f

(

ITAD
)

. (3)

3.2 Network Architecture and Training

In this section, we describe the network architecture and the training details. In
this work, we mainly focus on the SR task and present SR-specific operations
and confiugurations. The overall architecture is outlined in Figure 2.

Guidance image for better downscaling. In our framework, TAD images
are obtained as the latent representation of the deep convolutional auto-encoder.
However, without proper constraints, the latent representation may be arbitrary
and does not look like the original HR image. Therefore, we propose a guidance

image Iguide, which is basically a bicubic-downsampled LR image obtained from
IHR, to ensure visual similarity of our learned TAD image ITAD with IHR. The
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Fig. 2: Our convolutional auto-encoder architecture with three parts: downscal-
ing network (gθg , encoder), compression module, and upscaling network (fθf ,
decoder). Two outputs, ITAD and ITAU , are obtained from Eqs. 2 and 3, and
used to calculate the two loss terms in Eq. 4.

guidance image is used as a ground truth image to calculate the L1 loss with the
predicted ITAD. Incorporating Iguide and the new loss term, Lguide, changes the
loss function in the original objective of Eq.1 to:

Ltask
(

f(g(IHR
n )), Iguiden , IHR

n

)

= LSR
(

f(ITAD
n ), IHR

n

)

+λLguide
(

ITAD
n , Iguiden

)

,

(4)
where LSR is the standard L1 loss function for the SR task. θf and θg are omitted
for the simplicity of notation. The hyperparameter λ is introduced to control the
weights for the loss imposed by the guidance image w.r.t. the original SR loss.
We can set the amount of trade-off between the reconstructed HR image quality
and the LR TAD image quality by changing the value of λ. The effect of λ can
be seen in Figure 4, and this will be analyzed more extensively in the experiment
section.

Simple residual blocks as base networks. Our final deep convolutional auto-
encoder model is composed of three parts: a downscaling network (encoder), a
compression module, and an upscaling network (decoder). We jointly optimize
all parts in an end-to-end manner, for the scaling factor of ×2.

The encoder (gθg ) consists of a downscaling layer, three residual blocks, and
a residual connection. The downscaling layer is a reverse version of sub-pixel
convolution (also called pixel shuffle layer) [26], so that the feature channels are
properly aligned and the number of channels is reduced by a factor of ×4. We
used two convolution layers with one ReLU activation for each residual block
without batch normalization and bottleneck, which is the same as that used in
EDSR [20]. Note that in our downscaling network g, the final output ITAD is
obtained by the addition of the output of the last conv. layer and the Iguide in
a pixel-wise manner.
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The decoder has almost the same simple architecture as the encoder, except
the downscaling layer changes to the upscaling layer. The sub-pixel convolution
layer [26] is used to upscale the output feature map by a factor of ×2. Note that
each scaling layer is located at the beginning (downscaling layer) and the end
(upscaling layer) of the network to reduce the overall computational complexity
of our model.

All our networks’ convolution layers have a fixed channel size of 64, except for
upscaling/downscaling layers, where we set the output activation map to have
64 channels. That is, for sub-pixel convolution with a scaling factor of ×2, we
first apply a 3× 3 convolution layer to increase the number of channels to 256,
and then align the pixels to reduce it again to 64.

Compression Module. Most deep networks have floating-point values for both
feature activations and weights. Our TAD image output from the downscaling
network is also represented with the default floating-point values. However, when
displayed on a screen, most of the images are represented in true color (8 bits
for each R, G, and B color channels). Considering that the objective of this work
is to save a TAD image that is suitable for future application to SR, saving the
obtained TAD image in RGB format is helpful for wider usage. We propose a
compression module to achieve this goal.

A compression module is a structure for converting an image into a bitstream
and storing it. We use a simple differentiable quantization layer that converts the
floating-point values into 8-bit unsigned int (uint8) for this module. However, in
the early iterations when the training is unstable, adding a quantization layer
can result in training failure. Therefore, we omit it the layer until almost at
the end of the training stage and insert our compression module again to fine-
tune the network for a few hundred more iterations. The fine-tuned output TAD
image then becomes a true-color RGB image that can be stored by lossless image
compression methods, such as PNG. Although we used a single quantization layer
for the compression module and saved the images in PNG format, this process
can be generalized to the use of more complex image compression models as long
as it is differentiable; thus, we call this part the compression module.

Multi-scale SR with extreme scaling factors. To deal with multiple scal-
ing factors, we simply placed the original HR image in our downscaling model
recursively, with minor changes in our architecture. Therefore, our model can
(down)scale the HR image to the scaling factors of negative powers of 2. We
even test our model with an extreme scaling factor of 1

128 and show that our
method can recover a reasonable ×128 HR image from a tiny LR image. To the
best of our knowledge, this work is the first to present the SR results for scaling
factors of such an extreme level (over 16). Qualitative result and discussion can
be seen in Figure 5.

Our architectural changes for multi-scale SR are as follows:

1. We omit the compression module during the recursive execution of the down-
scaling network, and replace the compression module of the final downscaling
network to a simple rounding operation because a more beneficial alterna-
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tive is to preserve the full information in floating-point values until the end
where the final TAD image has to be saved.

2. The output of the downscaling network is modified to predict the guidance
image itself directly by removing the pixelwise addtion of the guidance image.

3. During the recursive process, the network is fine-tuned for a few hundred
iterations once every scaling factor of ×4.

Upscaling the TAD image again requires the same recursive process, this time
with the upscaling network. Although the exact downscaling and upscaling for
our model, including recursive executions, are only for the scaling factors of
powers of 2, combining our model with small-scale changes handled by a simple
bicubic interpolation can still work. As shown in the experiments, this problem
can be solved by applying a scale-invariant model, such as VDSR [13], to the
obtained TAD image.

3.3 Extending to General Tensor Resizing Operations

Note that the goal of the SR task is to reconstruct the HR image IHR from
the corresponding LR image ILR. Assuming ILR (input low resolution image)
with spatial size H × W and channels C, the upscaling function becomes f :
R

H×W×C 7→ R
sH×sW×C where s denotes the scaling factor.

In this section, we formulate a generalized resizing operation, so that the
proposed model can handle arbitrary resizing of an image tensor. Specifically,
we consider the general upscaling task of f : RH×W×C 7→ R

sH×rW×tC , where
s, r, and t are the scaling factors for the image height, width, and channels,
respectively. IHR ∈ R

sH×rW×tC is denoted again as a high-resolution2image
tensor, and θf and θg are denoted as the parameters of our new models fθf and
gθg , respectively. Training these models jointly with the same objective function
of Eq. 1 completes our generalized formulation.

Note that if we constrain the scaling factor to s = t = 1, then the task be-
comes the image color space conversion. For example, if we consider the coloriza-
tion task, the downscaling network gθg performs a RGB to grayscale conversion
where the spatial resolution is fixed and only the feature channel dimension is
downsized. The upscaling network, fθf , performs a colorization task. We use the
similar model of a deep convolutional auto-encoder to obtain the TAD image
ITAD, which becomes a grayscale image that is optimal for the reconstruction
of original RGB color image. For the colorization task, one major change in the
network architecture is the removal of the downscaling layer in the encoder (gθg )
and the upscaling layer in the decoder (fθf ), because no spatial dimensionality
change occurs in the color space conversions and the sub-convolution layers are
not needed. Thus, the resulting network each has nine convolution layers. Other
changes in the model configurations follow naturally: the guidance image Iguide

2 We keep using the term high-resolution for the input tensor of its original scale,
to have a consistent notation with the formulation in Sec. 3.1, although tensors in
general don’t use the word “resolution” to indicate its dimensions. Likewise, HR and
LR image tensors represent the high-dimensional and the low-dimensional tensors.
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becomes a grayscale image obtained using the conventional RGB to grayscale
conversion method, and the task-aware upscaled image ITAU becomes the col-
orized output image. For the compression module, a simple rounding scheme is
used instead of a differentiable quantization layer.

4 Experiment

In this section, we report the results of our TAD model for SR (Sec. 4.1), analyze
the results of our model thoroughly (Sec. 4.2), and apply our generalized model
shown in Sec. 3.3 to the colorization task (Sec. 4.3).

4.1 TAD for Super-resolution

Datasets and evaluation metrics. We evaluate the performance on five
widely used benchmark datasets: Set5 [3], Set14 [38], B100 [21], Urban100 [10],
and the validation set of DIV2K [1]. All benchmark datasets are evaluated with
scaling factors of ×2 and ×4 between LR and HR images. For the validation set
of DIV2K that consists of 2K resolution images, we also perform experiments
with extreme scaling factors of ×8-×128. All the models we present in this sec-
tion are trained on the 800 images from DIV2K training set [1]. No image overlap
exists between our training set of images and the data we use for evaluation.

For the evaluation metric, we use PSNR to compare similarities between
(1) the bicubic downscaled LR image and our predicted ITAD (Eq. 2); and (2)
the ground truth HR image and our predicted ITAU (Eq. 3). To ensure a fair
comparison with previous works, the input LR images of the reproduced SotA
networks [13, 20] are downscaled by MATLAB’s default imresize operation,
which is implemented to perform bicubic downsampling with antialiasing. We
apply the networks for both single channel (Y from YCbCr) and RGB color
channel images. To obtain a single-channel image, an RGB color image is first
converted to YCbCr color space, and the chroma channels (Cb, Cr) are discarded.

Comparison with the SotA. We compare our downscaling method TAD
and upscaling method (TAU) with recent SotA models for single (VDSR [13])
and color (EDSR [20]) channel images. Since the single channel performance
of EDSR+ and the color channel performance of VDSR are not provided in
the reference papers, we reproduced them for the comparison. For *VDSR and
*EDSR+ under TAD as the downscaling method, we re-train the reproduced
networks using TAD-HR image pairs, instead of conventional LR-HR pairs for
bicubic-downsampled LR images. Quantitative evaluations are summarized in
Table 1.

The results show that our jointly trained TAD-TAU for the color image SR
outperforms all previous methods in all datasets. Moreover, EDSR+ trained with
TAD-HR images (down- and up-scaling not jointly trained as an auto-encoder)
boosts reconstruction performance considerably, gaining over 5 dB additional
PSNR in some benchmarks. The same situation holds for the single channel
settings. The TAU network architecture is much more efficient (comprising 10
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Table 1: Quantitative PSNR (dB) results on benchmark datasets: Set5, Set14,
B100, Urban100, and DIV2K. The red color indicates the best performance, and
the blue color indicates the second best. (*: reproduced performance)

Single Channel Results / Color Channel Results

Downscaling Bicubic TAD(Ours)

Upscaling TAU(baseline) VDSR [13] EDSR+ [20] TAU *VDSR *EDSR+

Set5
×2 35.84/36.04 37.53/35.08 37.95/36.09 37.69/38.46 37.68/38.76 37.98/39.44

×4 31.20/29.52 31.35/29.39 32.17/30.71 31.59/31.81 31.60/31.96 32.36/32.49

Set14
×2 32.89/30.99 33.03/30.93 33.65/31.97 33.90/35.52 33.88/35.92 34.07/36.58

×4 27.92/26.28 28.01/26.26 28.50/27.14 28.36/28.63 28.38/28.76 28.82/29.24

B100
×2 31.74/30.40 31.90/30.42 32.22/31.40 32.62/36.68 32.65/36.87 32.83/37.59

×4 27.20/25.88 27.29/25.87 27.54/26.45 27.57/28.51 27.57/28.53 27.86/28.97

Urban100
×2 30.64/29.13 30.76/29.19 32.51/31.47 31.96/35.03 32.16/35.50 32.86/35.55

×4 25.08/23.66 25.18/23.68 26.25/25.34 25.56/26.63 25.66/26.98 26.50/27.76

DIV2K
×2 35.17/33.91 35.29/33.79 35.91/35.12 36.13/39.01 36.18/39.42 36.52/40.21

×4 29.73/28.40 29.63/28.31 30.29/29.38 30.25/31.16 30.25/31.34 30.73/31.88

convolution layers) than the compared networks, VDSR (20 convolution layers)
and EDSR+ (68 convolution layers).

The qualitative results in Figure 3 show that only TAU for the color image
perfectly reconstructs the word, ”presentations”. TAU for the single-channel
image also provides clearer characters than the previous SotA methods.

Training details. We trained all models with a GeForce GTX 1080 Ti GPU
using 800 images from the DIV2K training data [1]. For both training and testing,
we first crop the input HR images from the upper and left sides so that the height
and width of the image are divisible by the scaling factors. Then, we obtain the
guidance images (single channel or color channel LR images with regard to the
experiment setting) by using MATLAB imresize command. We randomly crop
16 patches of 96 × 96 HR sub images, with each patch coming from a different
HR image, to construct the training mini-batch. Our downscaling and upscaling
networks are fully convolutional and can handle images of arbitrary size. We
normalized the range of the input pixel values to [-0.5,0.5] and output pixel values
to [0,1], and the L1 loss is calculated to be in the range of [0,1]. To optimize
our network, we use the ADAM [15] optimizer with β1 = 0.9. The network
parameters are updated with a learning rate of 10−4 for 3× 105 iterations.

4.2 Analysis

In this section, we perform two experiments to improve understanding of our
TAD model and discuss the results.

Investigating LR-HR image quality trade-off. The objective for training
our model is given in Sec. 3.1, Eq. 4. The hyperparameter λ controls the weight
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Fig. 3: Qualitative SR results of “ppt3”(Set14). The top and bottom rows show
the results for single (Y) and color (RGB) channel images, respectively. In both
gray and color images, TAD produces more decent LR images compared with
Bicubic and guarantees much better HR reconstructions when upscaled with
TAU. This figure is best viewed in color, and by zooming into the electronic
copy. The scaling factor is ×2.

between two loss terms: LSR for HR image reconstruction and Lguide for LR im-
age guidance. If λ = 0, then our framework becomes a simple deep convolutional
auto-encoder model for the task of SR, without any constraint in producing
a high quality downscaled image. Conversely, if λ = ∞, LSR is ignored, then
and our framework becomes a downscaling CNN with ground truth downscal-
ing method as bicubic downsampling. In this study, we explore the effect of the
influence of guidance image Iguide, and find that changing the weight λ allows
us to control the quality of generated HR (ITAU ) and LR (ITAD) images. This
effect is visualized in Figure 4.

We train our TAD model for the scaling factor of ×2, first with λ = 0 and
gradually increase its value up to 102. For each λ, we measure the average PSNR
for 10 validation images of DIV2K [1] and plot the values , as shown in the top-
left corner of Figure 4. We chose λ = 10−1 where the PSNR for HR images
(39.81 dB) and LR images (40.69 dB) are similar, as the default value for our
model and use it throughout all the SR experiments. The compression module
is not used for this experiment. The exact PSNR accuracy for different values of
λ will be reported in the supplementary materials due to the space limit.
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Fig. 4: TAD-TAU reconstruction performance trade-off. Smaller values of λ give
a high upscaling performance with noisy TAD image. We choose λ from the
intersection of the curves, where both TAD/TAU images give satisfactory results.
PSNR for LR image is measured with bicubic-downsampled image, and for HR
images with the original GT.

Multi-scale extreme SR. The results of recursive multi-scale SR operation
with extreme scaling factors described in Sec. 3.2 are shown in Figure 5. In
this experiment, the last conv. of our downscaling network predicts TAD images
directly. As the guidance image for each scaling factors is not needed to produce
TAD/TAU images, it improves practical applicability of our model. Quantitative
analysis and more of qualitative results will be provided in the supplementary
materials due to the page limit.

Runtime analysis. Our model efficiently achieves near real-time performance
while still maintaining SotA SR accuracy. Each of our scaling network consists
of 10 convolution layers and one sub-convolution (pixel shuffle) layer, and a full
HD image (1920 × 1080) can be upscaled in 0.14s with a single GeForce GTX
1080 GPU Ti. Our model clearly has a major advantage over the recent EDSR+
(70.88s), which is a heavy model with 68 convolution layers.

4.3 Extension: TAD for Colorization

We follow the exact formulation described in Sec. 3.3 and perform the color space
conversion experiments accordingly. All experiments use the DIV2K training
image dataset [1] for training, and B100 and Urban100 datasets for evaluation.
We use a single Y channel image from YCbCr color space as Iguide, and we
choose our hyper-parameter λ = 5 to place a strong constraint on our TAD
image.

To demonstrate the effectiveness of our proposed framework, we train another
image colorization network that has the same architecture as our upscaling net-
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Fig. 5: Results of extreme scaling factors up to ×128. Our TAD images over all
scales have decent visual quality with respect to Bicubic↓, and our TAU images
are much cleaner and sharper than those of Bicubic ↑. All resized results are
produced by a single joint network of TAU and TAD (Figure 2), with a
scaling factor of ×2. Considering that the ×64 and ×128 downscaled images have
only 31× 24 and 15× 12 pixels respectively, we visualize the full image for these
extreme scaling factors. The generated ITAU is downscaled again - with Bicubic↓
- for visualization. Note the detailed recovery of the spines of the pufferfish in
×8 and a surprisingly realistic global structures reconstructed in ×64.
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Fig. 6: Qualitative image colorization results. The leftmost image is used as Iguide

for our model and input grayscale for the baseline. The channel scale factor ×3.

work with conventional grayscale-HR image pairs. The results in Figure 6 show
that the colorization network trained in a standard way clearly cannot resolve the
color ambiguities, whereas our TAD Gray image contains the necessary informa-
tion for restoring original pleasing colors as demonstrated in the reconstructed
TAD color. Quantitatively, while the baseline model achieves an average PSNR
of 24.21 dB (B100) and 23.29 dB (Urban100), our model outputs much higher
performance values of 36.14 dB (B100) and 33.68 dB (Urban100).

The results clearly demostrate that the TAD-TAU framework is also practi-
cally very useful for both the color to gray conversion and gray to color conversion
(colorization) tasks.

5 Conclusion

In this work, we present a novel task-aware image downscaling method using a
deep convolutional auto-encoder. By jointly training the downscaling and up-
scaling processes, our task-aware downscaling framework greatly alleviates the
difficulties in solving highly ill-posed resizing problems such as image SR. We
have shown that our upscaling method outperforms previous works in SR by a
large margin, and our downscaled image also aids the existing methods to achieve
much higher accuracy. Moreover, valid scaling results with extreme scaling fac-
tors are provided for the first time. We have demonstrated how our method
can be generalized and verified our framework’s capability in image color space
conversion. Apart from the tasks examined in this study, we believe that our ap-
proach provides a useful framework for handling images of various sizes. Promis-
ing future work may include deep learning based image compression.
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