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Abstract. Modern 3D human pose estimation techniques rely on deep
networks, which require large amounts of training data. While weakly-
supervised methods require less supervision, by utilizing 2D poses or
multi-view imagery without annotations, they still need a sufficiently
large set of samples with 3D annotations for learning to succeed.
In this paper, we propose to overcome this problem by learning a geome-
try-aware body representation from multi-view images without annota-
tions. To this end, we use an encoder-decoder that predicts an image
from one viewpoint given an image from another viewpoint. Because
this representation encodes 3D geometry, using it in a semi-supervised
setting makes it easier to learn a mapping from it to 3D human pose. As
evidenced by our experiments, our approach significantly outperforms
fully-supervised methods given the same amount of labeled data, and
improves over other semi-supervised methods while using as little as 1%
of the labeled data.

Keywords: 3D reconstruction, semi-supervised training, representation
learning, monocular human pose reconstruction.

1 Introduction

Most current monocular solutions to 3D human pose estimation rely on methods
based on convolutional neural networks (CNNs). With networks becoming ever
more sophisticated, the main bottleneck now is the availability of sufficiently
large training datasets, which typically require a large annotation effort. While
such an effort might be practical for a handful of subjects and specific motions
such as walking or running, covering the whole range of human body shapes,
appearances, and poses is infeasible.

Weakly-supervised methods that reduce the amount of annotation required
to achieve a desired level of performance are therefore valuable. For example,
methods based on articulated 3D skeletons can be trained not only with actual
3D annotations but also using 2D annotations [21, 54] and multi-view footage [25,
47]. Some methods dispense with 2D annotations altogether and instead exploit
multi-view geometry in sequences acquired by synchronized cameras [31, 55].
However, these methods still require a good enough 3D training set to initialize
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Fig. 1: Approach. (a) During training, we first learn a geometry-aware representation
using unlabeled multi-view images. We then use a small amount of supervision to learn
a mapping from our representation to actual 3D poses, which only requires a shallow
network and therefore a limited amount of supervision. (b) At run-time, we compute
the latent representation of the test image and feed it to the shallow network to compute
the pose. (c) By contrast, most state-of-the-art approaches train a network to regress
directly from the images to the 3D poses, which requires a much deeper network and
therefore more training data.

the learning process, which sets limits on the absolute gain that can be achieved
from using unlabeled examples.

In this paper, we propose to use images of the same person taken from mul-
tiple views to learn a latent representation that, as shown on the left side of
Fig. 1(a), captures the 3D geometry of the human body. Learning this repre-
sentation does not require any 2D or 3D pose annotation. Instead, we train an
encoder-decoder to predict an image seen from one viewpoint from an image cap-
tured from a different one. As sketched on the right side of Fig. 1(a), we can then
learn to predict a 3D pose from this latent representation in a supervised man-
ner. The crux of our approach, however, is that because our latent representation
already captures 3D geometry, the mapping to 3D pose is much simpler and can
be learned using much fewer examples than existing methods that rely on multi-
view supervision [31, 55], and more generally most state-of-the-art methods that
attempt to regress directly from the image to the 3D pose.

As can be seen in Fig. 1, our latent representation resembles a volumetric 3D
shape. While such shapes can be obtained from silhouettes [50, 45], body outlines
are typically difficult to extract from natural images. By contrast, learning our
representation does not require any silhouette information. Furthermore, at test
time, it can be obtained from a monocular view of the person. Finally, it can
also be used for novel view synthesis (NVS) and outperforms existing encoder-
decoder algorithms [36, 37, 23] qualitatively on natural images.
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Our contribution is therefore a latent variable body model that can be
learned without 2D or 3D annotations, encodes both 3D pose and appearance,
and can be integrated into semi-supervised approaches to reduce the required
amount of supervised training data. We demonstrate this on the well-known Hu-
man3.6Million [13] dataset and show that our method drastically outperforms
fully supervised methods in 3D pose reconstruction accuracy when only few
labeled examples are available.

2 Related work

In the following, we first review the literature on semi-supervised approaches to
monocular 3D human pose estimation, which is most closely related to our goal.
We then discuss approaches that, like us, make use of geometric representations,
both in and out of the context of human pose estimation, and finally briefly
review the novel view synthesis literature that has inspired us.

Semi-supervised human pose estimation. While most current human
pose estimation methods [25, 54, 24, 42, 27, 20, 22, 33, 38] are fully supervised, re-
lying on large training sets annotated with ground-truth 3D positions coming
from multi-view motion capture systems [21, 12], several methods have recently
been proposed to limit the requirement for labeled data. In this context, fore-
ground and background augmentation [30, 32] and the use of synthetic datasets
[2, 48] focus on increasing the training set size. Unfortunately, these methods
do not generalize well to new motions, apparels, and environments that are dif-
ferent from the simulated data. Since larger and less constrained datasets for
2D pose estimation exist, they have been used for transfer learning [47, 22] and
to provide re-projection constraints [54]. Furthermore, given multiple views of
the same person, 3D pose can be triangulated from 2D detections [25, 14] and a
2D pose network can be trained to be view-consistent after bootstrapping from
annotations. Nevertheless, these methods still require 2D annotation in images
capturing the target motion and appearance. By contrast, the methods of [31,
55] exploit multi-view geometry in sequences acquired by synchronized cameras,
thus removing the need for 2D annotations. However, in practice, they still re-
quire a large enough 3D training set to initialize and constrain the learning
process. We will show that our geometry-aware latent representation learned
from multi-view imagery but without annotations allows us to train a 3D pose
estimation network using much less labeled data.

Geometry-aware representations.Multi-view imagery has long been used
to derive volumetric representations of 3D human pose from silhouettes, for ex-
ample by carving out the empty space. This approach can be used in conjunction
with learning-based methods [44], by defining constraints based on perspective
view rays [45, 15], orthographic projections [50], or learned projections [29]. It
can even be extended to the single-view training-scenario if the distribution of
the observed shape can be inferred prior to reconstruction [56, 8]. The main
drawback of these methods, however, is that accurate silhouettes are difficult to
automatically extract in natural scenes, which limits their applicability.
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Another approach to encoding geometry relies on a renderer that generates
images from a 3D representation [9, 35, 16, 52] and can function as a decoder in an
autoencoder setup [1, 39]. For simple renderers, the rendering function can even
be learned [5, 6] and act as an encoder. When put together, such learned encoders
and decoders have been used for unsupervised learning, both with GANs [3, 43,
46] and without them [17]. In [41, 40], a CNN was trained to map to and from
spherical mesh representations without supervision. While these methods also
effectively learn a geometry-aware representation based on images, they have
only been applied to well-constrained problems, such as face modeling. As such,
it is unclear how they would generalize to the much larger degree of variability
of 3D human poses.

Novel view synthesis. Our approach borrows ideas from the novel view
synthesis literature, which is devoted to the task of creating realistic images from
previously unseen viewpoints. Most recent techniques rely on encoder-decoder
architectures, where the latent code is augmented with view change informa-
tion, such as yaw angle, and the decoder learns to reconstruct the encoded
image from a new perspective [36, 37]. Large view changes are difficult. They
have been achieved by relying on a recurrent network that performs incremental
rotation steps [51]. Optical flow information [23, 53] and depth maps [7] have
been used to further improve the results. While the above-mentioned techniques
were demonstrated on simple objects, methods dedicated to generating images
of humans have been proposed. However, most of these methods use additional
information as input, such as part-segmentations [18] and 2D poses [19]. Here,
we build on the approaches of [4, 49] that have been designed to handle large
viewpoint changes. We describe these methods and our extensions in more detail
in Section 3.

3 Unsupervised Geometry-Aware Latent Representation

Our goal is to design a latent representation L that encodes 3D pose, along with
shape and appearance information, and can be learned without any 2D or 3D
pose annotations. To achieve this, we propose to make use of sequences of images
acquired from multiple synchronized and calibrated cameras. To be useful, such
footage requires care during the setup and acquisition process. However, the
amount of effort involved is negligible compared to what is needed to annotate
tens of thousands of 2D or 3D poses.

For L to be practical, it must be easy to decode into its individual compo-
nents. To this end, we learn from the images separate representations for the
body’s 3D pose and geometry, its appearance, and that of the background. We
will refer to them as L3D, Lapp, and B, respectively.

Let us assume that we are given a set, U = {(Iit, I
j
t )}

Nu

t=1, of Nu image pairs
without annotations, where the i and j superscripts refer to the cameras used
to capture the images, and the subscript t to the acquisition time. Let Ri→j be
the rotation matrix from the coordinate system of camera i to that of camera j.
We now turn to the learning of the individual components of L.
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Fig. 2: Representation learning. We learn a representation that encodes geome-
try and thereby 3D pose information in an unsupervised manner. Our method (Left)
extends a conventional auto encoder (Right) with a 3D latent space, rotation opera-
tion, and background fusion module. The 3D rotation enforces explicit encoding of 3D
information. The background fusion enables application to natural images.

Learning to encode multi-view geometry. For individual images, autoen-
coders such as the one shown on the right side of Fig. 2 have become standard
tools to learn latent representations in unsupervised settings. Let such an autoen-
coder comprise an encoder Eθe and a decoderDθd , where θe and θd are the weights
controlling their behaviors. For image representation purposes, an autoencoder
can be used to encode an image I into a latent representation L = Eθe(I), which

can then be decoded into a reconstructed image Î = Dθd(L). θe and θd are

learned by minimizing ‖I− Î‖2 on average over a training set U .
To leverage multi-view geometry, we take our inspiration from Novel View

Synthesis methods [36, 37, 4, 49, 11] that rely on training encoder-decoders on
multiple views of the same object, such as a car or a chair. Let (Iit, I

j
t ) ∈ U be

two images taken from different viewpoints but at the same time t. Since we are
given the rotation matrix Ri→j connecting the two viewpoints, we could feed
this information as an additional input to the encoder and decoder and train
them to encode Iit and resynthesize I

j
t , as in [36, 37]. Then, novel views of the

object could be rendered by varying the rotation parameter Ri→j . However, this
does not force the latent representation to encode 3D information explicitly. To
this end, we model the latent representation L3D ∈ R

3×N as a set of N points
in 3D space by designing the encoder Eθe and decoder Dθe so that they have a
three channel output and input, respectively, as shown on the left side of Fig. 2.
This enables us to model the view-change as a proper 3D rotation by matrix
multiplication of the encoder output by the rotation matrix before using it as
input to the decoder. Formally, the output of the resulting autoencoder Aθe,θd

can be written as

Aθe,θd(I
i
t,R

i→j) = Dθd(R
i→jL3D

i,t ), with L3D
i,t = Eθe(I

i
t) , (1)

and the weights θd and θe are optimized to minimize ‖Aθe,θd(I
i
t,R

i→j)−I
j
t‖ over

the training set U . In this setup, which was also used in [4, 49] and is inspired by
[11], the decoder D does not need to learn how to rotate the input to a new view
but only how to decode the 3D latent vector L3D. This means that the encoder is
forced to map to a proper 3D latent space, that is, one that can still be decoded
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Fig. 3: Appearance representation learning. To encode subject identity, we split
the latent space into a 3D geometry part and an appearance part. The latter is not
rotated, but swapped between two time frames t and t

′ depicting the same subject, so
as to enforce it not to contain geometric information.

by D after an arbitrary rotation. However, while L3D now encodes multi-view
geometry, it also encodes the background and the person’s appearance. Our goal
now is to isolate them from L3D and to create two new vectors B and Lapp that
encode the latter two so that L3D only represents geometry and 3D pose.

Factoring out the background. Let us assume that we can construct back-
ground imagesBj , for example by taking the median of all the images taken from
a given viewpoint j. To factor them out, we introduce in the decoder a direct
connection to the target background Bj , as shown in Fig. 2. More specifically,
we concatenate the background image with the output of the decoder and use an
additional 1× 1 convolutional layer to synthesize the decoded image. This frees
the rest of the network from having to learn about the background and ensures
that the L3D vector we learn does not contain information about it anymore.

Factoring out appearance. To separate appearance from geometry in our
latent representation, we break up the output of the encoder E into two separate
vectors L3D and Lapp that should describe pose and appearance, respectively.
To enforce this separation, we train simultaneously on two frames It and It′

depicting the same subject at different times, t and t′, as depicted in Fig. 3.
While the decoder uses L3D

t and L3D
t′ , as before, it swaps L

app
t and L

app
t′ . In

other words, the decoder uses L3D
t and L

app
t′ to resynthesize frame t and L3D

t′

and L
app
t for frame t′. Assuming that the person’s appearance does not change

drastically between t and t′ and that differences in the images are caused by 3D
pose changes, this results in L3D encoding pose while Lapp encodes appearance.

In practice, the encoder E has two outputs, that is, Eθe : Iit → (L3D
i,t ,L

app
i,t )

and the decoder Dθd accepts these plus the background as inputs, after swapping
appearance and rotating the geometric representation for two views i and j. We
therefore write the output of our encoder-decoder as

Aθe,θd(I
i
t,R

i→j , L
app
k,t′ , Bj) = Dθd(R

i→jL3D
i,t , L

app
k,t′ , Bj) . (2)

The viewpoint k can be arbitrary. The critical point is that it was acquired
at time t′ 6= t such that the poses at t and t′ are uncorrelated. Thus, only
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time-invariant appearance features are encoded into Lapp. A similar exchange of
information has been performed before in [28] for analogy transformations. It is
related to works that separate facial identity, pose and illumination [17, 51, 26].

Combined optimization. To train A with sequences featuring several people
and backgrounds, we randomly select mini-batches of Z triplets (Iit, I

j
t , I

k
t′) in U ,

with t 6= t′, from individual sequences. In other words, all three views feature the
same person. The first two are taken at the same time but from different view-
points. The third is taken at a different time and from an arbitrary viewpoint k.
For each such mini-batch, we compute the loss

Eθd,θe =
1

Z

∑

Iit,I
j
t ,I

k
t′
∈U

t 6=t′

‖Aθe,θd(I
i
t,R

i→j ,L
app
k,t′ , Bj)− I

j
t‖ , (3)

where Lk,t′ = (L3D
k,t′ ,L

app
k,t′ ) is the output of encoder Eθe applied to image Ikt′ , Bj

is the background in view j, and Ri→j denotes the rotation from view i to view
j. Note that we apply E twice, to obtain L3D

i,t and L
app
k,t′ in Eq. 3 while ignoring

L
app
i,t and L3D

k,t′ with the swap discussed above.
At training time, we minimize a total loss that is the sum of the pixel-wise

error Eθd,θe of Eq. 3 and a second term obtained by first applying a Resnet
with 18 layers trained on ImageNet on the output and target image and then
computing the feature difference after the second block level, as previously done
with VGG by [23]. All individual pixel and feature differences are averaged and
their influence is balanced by weighting the feature loss by two. We experiment
with L1 and L2 norms. The L1 norm in combination with the additional feature
term allows for crisper decodings and improved pose reconstruction.

Translation and Augmentation. Object scale and translation in depth direc-
tion are inherently ambiguous for monocular reconstruction and NVS. To make
our model invariant instead of ambiguous to these effects, we use the crop in-
formation provided in the training datasets. We compute the rotation between
two views with respect to the crop center instead of the image center and shear
the cropped image so that it appears as if it were taken from a virtual camera
pointing in the crop direction. With the human in the same position and scale,
these crops remove the need to model object and camera translation. We also
apply random in-plane rotations to increase view diversity. As a result, Ri→j

and Bj depend on time t, but we neglect this in our notation for readability.

4 3D Human Pose Estimation

Recall that our ultimate goal is to infer the 3D pose of a person from a monocular
image. Since L3D can be rotated and used to generate novel views, we are already
part way there. Being a 3 × N matrix, it can be understood as a set of N 3D
points, but these do not have any semantic meaning. However, in most practical
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applications, one has to infer a pre-defined representation, such as a skeleton
with K major human body joints, encoded as a vector p ∈ R

3K .
To instantiate such a representation, we need a mapping F : L3D → R

3K ,
which can be thought as a different decoder that reconstructs 3D poses instead of
images. To learn it, we rely on supervision. However, as we will see in the results
section, the necessary amount of human annotations is much smaller than what
would have been required to learn the mapping directly from the images, as in
many other recent approaches to human pose estimation.

Let L = {(It,pt)}
Ns

t=1 be a small set of Ns labeled examples made of image
pairs and corresponding ground-truth 3D poses. We model F as a deep network
with parameters θf . We train it by minimizing the objective function

Eθf =
1

Ns

Ns∑

t=1

‖Fθf (L
3D
t )− pt‖ , with (L3D

t , ·) = Eθe(It) . (4)

Because our latent representation L3D already encodes human 3D pose and
shape, F can be implemented as a simple two-layer fully-connected neural net-
work. Together with the encoder-decoder introduced in Section 3, which is
trained in an unsupervised manner, they form the semi-supervised setup de-
picted by Fig. 1(b). In other words, our unsupervised representation does a lot
of the hard-work in the difficult task of lifting the image to a 3D representation,
which makes the final mapping comparatively easy.

5 Evaluation

In this section, we first evaluate our approach on the task of 3D human pose
estimation, which is our main target application, and show that our represen-
tation enables us to use far less annotated training data than state-of-the-art
approaches to achieve better accuracy. We then evaluate the quality of our la-
tent space itself and show that it does indeed encode geometry, appearance, and
background separately.

Dataset. We use the well-known Human3.6M (H36M) [12] dataset. It is recorded
in a calibrated multi-view studio and ground-truth human poses are available for
all frames. This makes it easy to compare different levels of supervision, unsu-
pervised, semi-supervised, or fully supervised. As in previous approaches [54, 31,
42, 27, 22], we use the bounding boxes provided with the dataset to crop images.

5.1 Semi-Supervised Human Pose Estimation

Our main focus is semi-supervised human pose estimation. We now demonstrate
that, as shown in Fig. 4, recent state-of-the-art methods can do better than us
when large amounts of annotated training data are available. However, as we
use fewer and fewer of these annotations, the accuracy of the baselines suffers
greatly whereas ours does not, which confers a significant advantage in situations
where annotations are hard to obtain. We now explain in detail how the graphs
of Fig. 4 were produced and further discuss their meaning.
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Type Method MPJPE NMPJPE PMPJPE

Fully-supervised S1 Resnet 177.2 166.5 135.6

Semi-supervised S1
RhodinCVPR [31] n/a 153.3 128.6
OursUnet 149.5 135.9 106.4
OursResnet 131.7 122.6 98.2

(b)

Fig. 4: (a) Performance as function of the number of training samples. When
using all the available annotated 3D data in H36M, that is, 370,000 images, Rhod-
inCVPR and Resnet yield a better accuracy than our approach. However, when
the number of training examples drops below 180’000 the baselines’ accuracy degrades
significantly, whereas OursResnet degrades much more gracefully and our accuracy
becomes significantly better. (b) This improvement is consistent across metrics.

Metrics. We evaluate pose prediction accuracy in terms of the mean per joint
prediction error (MPJPE), and its normalized variants N-MPJPE and P-MPJPE,
where poses are aligned to the ground truth in the least-square sense either in
scale only or in scale, rotation and translation, respectively, before computing
the MPJPE. The latter is also known as Procrustes alignment. We do this over
16 major human joints and all positions are centered at the pelvis, as in [54].
Our results are consistent across all metrics, as shown in Fig. 4 (b).

Baselines. We compare our approach against the state-of-the-art semi-super-
vised method of [31], which uses the same input as ours and outputs normalized
poses. We will refer to it as RhodinCVPR. We also use the popular ResNet-
based architecture [22] to regress directly from the image to the 3D pose, as
shown in Fig. 1(c), we will refer to this as Resnet.

Note that even higher accuracies on H36M than those of RhodinCVPR and
Resnet have been reported in the literature [24, 20, 54, 38, 27] but they depend
both on more complex architectures and using additional information such as
labeled 2D poses [22, 54, 38, 20] or semantic segmentation [27], which is not our
point here. We want to show that when using only 3D annotations and not many
of them are available, our representation still allows us to perform well.

Implementation. We base our encoder-decoder architecture on the UNet [34]
network, which was used to perform a similar task in [19]. We simply remove the
skip connections to force the encoding of all information into the latent spaces
and reduce the number of feature channels by half.

Concretely the encoder E consists of four blocks of two convolutions, where
each two convolutions are followed by max pooling. The resulting convolutional
features are of dimension 512×16×16 for an input image resolution of 128×128
pixels. These are mapped to Lapp ∈ R

128 and L3D ∈ R
200×3 by a single fully-

connected layer followed by dropout with probability 0.3. The decoder D maps
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L3D to a feature map of dimension (512− 128)× 16× 16 with a fully-connected
layer followed by ReLU and dropout and duplicates Lapp to form a spatial uni-
form map of size 128 × 16 × 16. These two maps are concatenated and then
reconstructed by four blocks of two convolutions, where the first convolution is
preceded by bilinear interpolation and all other pairs by up-convolutions. Each
convolution is followed by batch-normalization and ReLU activation functions.
We also experimented with a variant in which the encoder E is an off-the shelf
Resnet with fifty layers [10], pre-trained on ImageNet, and the decoder is the
same as before. We will refer to these two versions as OursUnet and OursRes-

net, respectively.
The pose decoder F is a fully-connected network with two hidden layers of

dimension 2048. The ground-truth poses in the least-squares loss of Eq. 4 are
defined as root-centered 3D poses. Poses and images are normalized by their
mean and standard deviation on the training set. We use mini-batches of size 32
and the Adam optimizer with learning rate 10−3 for optimization of θe, θd and θf .

Dataset splits. On H36M, we take the unlabeled set U used to learn our
representation to be the complete training set—S1, S5, S6, S7 and S8, where SN
refers to all sequences of the Nth subject—but without the available 3D labels.
To provide the required supervision to train the shallow network of Fig. 1(b),
we then define several scenarios.
– Fully supervised training with the 3D annotation of all five training subjects.
– We use all the 3D annotations for S1; S1 and S5; or S1, S5 and S6.
– We use only 50%, 10%, 5%, 1% or 0.1% of the 3D annotations for S1.

In all cases we used S9 and S11 for testing. We subsampled the test and training
videos at 10ps to reduce redundancy and validation time. The resulting numbers
of annotated images we used are shown along the x-axis of Fig. 4.

Comparison to the state of the art. RhodinCVPR is the only method
that is designed to leverage unlabeled multi-view footage without using a sup-
plemental 2D dataset [31]. OursUnet outperforms it significantly, e.g., on la-
beled subject S1 by 13.6 mm (8.9% relative improvement) and OursResnetL1

even attains a gain of 35.7 mm (23.3% relative improvement). The fact that the
Resnet architecture, training procedure, and dataset split is the same for our
method and RhodinCVPR evidences that this gain is due to our new way of
exploiting the unlabeled examples, thus showing the effectiveness of learning a
geometry-aware latent representation in an unsupervised manner.

Discussion and Ablation Study. As shown in Fig. 4, when more than 300,000
annotated images are used the baselines outperform us. However, their accuracy
decreases rapidly when fewer are available and our approach then starts domi-
nating. It only loses accuracy very slowly down to 5,000 images and still performs
adequately given only 500.

We used the L2 loss in Eq. 3 by default since our main goal is 3D pose
estimation, not NVS quality. Interestingly, however, using the L1 loss makes
reconstructions not only crisper but also 3D poses estimates more accurate. It
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Input i View j . . .decodedView j′ . . .decodedView j′′ . . .decoded

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Fig. 5: Novel viewpoint synthesis. Top row. Each one of the three image pairs of
image to the left of it comprise an original image acquired from a different viewpoint and
the image synthesized from the input image i. Bottom row. We can also synthesize
images for previously unseen viewpoints and remove the background.

improves pose accuracy consistently by about 5%, shown as OursResnetL1 in
Fig. 4. Unless indicated otherwise, all results are produced with the L2 metric.

To better evaluate different aspects of our approach, we use the OursUnet

version to conduct an ablation study whose results we report in Table 1. In short,
not separating the background and appearance latent spaces reduces N-MPJPE
by 14 mm and P-MPJPE by more than 12 mm. Using two hidden layers in F
instead of one increases accuracy by 12 mm. The loss term based on ResNet-18
features not only leads to crisper NVS results but also improves pose estimation
by 9 mm. Using bilinear upsampling instead of deconvolution for all decoding
layers reduces performance by 4 mm. The largest decrease in accuracy by far,
46.1mm, occurs when we use our standard OursUnet architecture but without
our geometry-aware 3D latent space. It appears in the last line of the table on the
left and strongly suggests that using our latent representation has more impact
than tweaking the architecture in various ways.

5.2 Evaluating the Latent Representation Qualitatively

We now turn to evaluating the quality of our latent representation as such with a
number of experiments on OursUnet. We show that geometry can be separated
from appearance and background and that this improves results. The quality of
the synthesized images is best seen in the supplemental videos.

Method N-MPJPE P-MPJPE

OursUnet⋆ 145.6 112.2
OursUnet⋆, w/o appearance space, as in [4, 49] 159.0 117.1
OursUnet⋆, w/o background handling, as in [4, 49] 159.6 124.6
OursUnet⋆, w/o 3D latent space, as in [36, 37] 191.7 139.0
⋆ no rotation augmentation. Errors are reported in mm.

Method N-MPJPE P-MPJPE

OursUnet⋆ 145.6 112.2
OursUnet⋆, bilinear upsampling 149.2 114.1
OursUnet⋆, w/o ImgNet loss 154.1 118.7
OursUnet⋆, F with 1 hidden layer 157.4 121.9

Table 1: Ablation study, using S1 for semi-supervised training. The extensions to
the NVS methods [36, 37] and [4, 49] as well as further model choices improve accuracy.
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Input 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Fig. 6: Ablation study. First row. Without background handling, as used in [4, 49],
the synthesized foreground pose appears fuzzy. Second row. Without a geometry-
aware latent space, as used by [36, 37], results are inaccurate and blurred in new views.
Third row. OursResnet captures pose and appearance accurately, but contours are
still blurred. Fourth row. OursResnetL1 produces crisper and more accurate results.

Novel View Synthesis. Recall from Section 3 that E encodes the image into
variables L3D and Lapp, which are meant to represent geometry and appearance,
respectively. To check that this is indeed the case, we multiply L3D by different
rotation matrices R and feed the result along with the original Lapp to D. Fig. 5
depicts such synthesized novel views.

For comparison purposes, in Fig. 6, we synthesize rotated images without
using our geometry-aware latent space, that is, as in [37]. The resulting images
are far blurrier than those of OursResnet. Fig. 6 further shows that results
degrade without the background handling, that is, as in [4, 49, 11]. Using the L1
instead of L1 loss further improves reconstruction quality. Test subjects wear
clothes that differ in color and shape from those seen in the training data. As
a result, the geometry in the synthesized images remains correct, but the ap-
pearance ends up being a mixture of training appearances that approximates
the unseen appearance. Arguably, using more than the five subjects that appear
in the training set should result in a better encoding of appearance, which is
something we plan to investigate in future work.

Appearance and background switching. Let Ij and Ig be two images of
subjects j and g and (L3D

j ,L
app
j ,Bj) = E(Ij) and (L3D

g ,Lapp
g ,Bg) = E(Ig) their

encodings. Re-encoding using L3D of one and Lapp of the other yields results
such as those depicted by Fig. 7. Note that the appearance of one is correctly
transferred to the pose of the other while the geometry remains intact under
rotation. This method could be used to generate additional training data, by
changing the appearance of an existing multi-view sequence to synthesize images
of the same motion being performed by multiple actors.
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Input Subject
A

. . . transi-
tion

. . . Subject
B

Target

Input Subject
A

. . . transi-
tion

. . . Subject
B

Target

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Fig. 7: Appearance separation. Top two rows. The same pose can be decoded
to different identities by blending the appearance latent vectors. In the first row, both
subjects appear in the training set. In the second row, they are from the test set.
Bottom two rows. We generate rotated views of the test subject and its transferred
appearance, to demonstrate that appearance can be changed without affecting 3D pose.

Input New view White Picture Bg. pic. Input New view White Picture Bg. pic.

Fig. 8: Background separation. The background is handled separately from the
foreground an can be chosen arbitrary at decoding time. From left to right, input image,
decoded on the input background, on a novel view, on a white, and on a picture. The
first row features someone from the training set and the second row from the test set.

Similarly, we can switch backgrounds instead of appearances before decod-
ing the latent vectors, as shown in Fig. 8. In one case, we make the background
white and in the other we use a natural scene. In the first case, dark patches
are visible below the subject, evidently modeling shadowing effects that were
learned implicitly. In the second case, the green trees tend to be rendered as or-
ange because our training scenes were mostly reddish—problem a larger training
database would almost certainly cure.

5.3 Generalization and Limitations

To analyze the scalability of the unsupervised training we tested using only four
out of the five unsupervised training subjects. The additional subject improves
OurResnet drastically by 16 N-MPJPE. This indicates that training is not yet
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Input 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Fig. 9: Foreground objects are reconstructed too, if seen in training and testing.

Input yaw roll pitch

Fig. 10: Generalization on 3DHP. Our NVS solution generalizes well to the differ-
ent camera placements in 3DHP, allowing for yaw, pitch and roll transformations.

saturated and much higher accuracies seem possible by leveraging huge unsu-
pervised sets. These, be it indoors or outdoors, are relatively easy to obtain.

In the data we used, some of the images contain a chair on which the subject
sits. Interestingly, as shown in Fig. 9, the chair appearance and 3D position is
faithfully reconstructed by our method. This suggests that it is not specific to
human poses and can generalize to rigid objects as well as multiple object classes.
In future work, we intend to apply it to such more generic problems.

We further tested our method on the MPI-INF-3DHP (3DHP) [21] dataset,
which features more diverse clothing and viewpoints, such as low-hanging and
ceiling cameras, and is therefore well suited to probe extreme conditions for
NVS. Without changing any parameter, OursResnet is able to synthesis view
transformations in roll, yaw and pitch, as shown in Fig. 10. On H36M, pitch
transformation could not be learned due to the solely chest-height training views.

6 Conclusion

We have introduced an approach to learning a geometry-aware representation
of the human body in an unsupervised manner, given only multi-view imagery.
Our experiments have shown that this representation is effective both as an
intermediate one for 3D pose estimation and for novel view synthesis. For pose
estimation, our semi-supervised approach performs much better than state-of-
the-art methods when only very little annotated data is available. In future work,
we will extend its range by learning an equivalent latent representation for much
larger multi-view datasets but still in an unsupervised manner.

Acknowledgment. This work was supported in part by a Microsoft Joint Re-
search Project.
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39. Tewari, A., Zollhöfer, M., Kim, H., Garrido, P., Bernard, F., Pérez, P., Theobalt, C.:
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