
Scenes-Objects-Actions: A Multi-Task,

Multi-Label Video Dataset

Jamie Ray1, Heng Wang1, Du Tran1, Yufei Wang1

Matt Feiszli1, Lorenzo Torresani1,2, and Manohar Paluri1

1Facebook Research 2Dartmouth College
{jamieray,hengwang,trandu,yufei22,mdf,torresani,mano}@fb.com

Abstract. This paper introduces a large-scale, multi-label and multi-
task video dataset named Scenes-Objects-Actions (SOA). Most prior
video datasets are based on a predefined taxonomy, which is used to de-
fine the keyword queries issued to search engines. The videos retrieved
by the search engines are then verified for correctness by human annota-
tors. Datasets collected in this manner tend to generate high classification
accuracy as search engines typically rank “easy” videos first. The SOA
dataset adopts a different approach. We rely on uniform sampling to get a
better representation of videos on the Web. Trained annotators are asked
to provide free-form text labels describing each video in three different
aspects: scene, object and action. These raw labels are then merged, split
and renamed to generate a taxonomy for SOA. All the annotations are
verified again based on the taxonomy. The final dataset includes 562K
videos with 3.64M annotations spanning 49 categories for scenes, 356 for
objects, 148 for actions, and naturally captures the long tail distribution
of visual concepts in the real world. We show that datasets collected
in this way are quite challenging by evaluating existing popular video
models on SOA. We provide in-depth analysis about the performance
of different models on SOA, and highlight potential new directions in
video classification. We compare SOA with existing datasets and discuss
various factors that impact the performance of transfer learning. A key-
feature of SOA is that it enables the empirical study of correlation among
scene, object and action recognition in video. We present results of this
study and further analyze the potential of using the information learned
from one task to improve the others. We also demonstrate different ways
of scaling up SOA to learn better features. We believe that the chal-
lenges presented by SOA offer the opportunity for further advancement
in video analysis as we progress from single-label classification towards
a more comprehensive understanding of video data.
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1 Introduction

In this work we introduce a new video dataset aimed at advancing research on
video understanding. We name the dataset Scenes-Objects-Actions (SOA), as
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Task Scene Object Action SOA

# videos 173K 560K 308K 562K

# classes 49 356 148 553

# annotations 223K 2.93M 484K 3.64M

Table 1: Statistics of the SOA dataset
for different tasks.

Fig. 1: Coverage of Scene, Object and
Action labels on SOA videos. 105K
videos (18.7%) have all three types of
labels.

each video is annotated with respect to three different aspects: scenes, objects,
and actions. Our objective is to introduce a benchmark that will spur research in
video understanding as a comprehensive, multi-faceted problem. We argue that
in order to achieve this goal a video dataset should fulfill several fundamental
requirements, as discussed below.

1. Large-scale. While KTH [29], HMDB51 [22] and UCF101 [34] have played
a fundamental role in the past by inspiring the design of effective hand-
engineered features for action recognition [23, 40], larger video datasets are
necessary to support modern end-to-end training of deep models. Datasets
such as Sports1M [18], Kinetics [19] and AVA [27] were recently introduced to
fill this gap and they have already led to the development of a new generation
of more effective models based on deep learning [18, 43, 6, 35, 2, 38, 4]. SOA
belongs to this new genre of large-scale video datasets. Despite being only
in its first version, SOA already includes as many videos as Kinetics while
containing ten times more annotations. Compared to crowdsourced datasets
such as Charades [31] and Something-Something [9], SOA is both larger and
more densely labeled. Table 1 summarizes the statistics of SOA.

2. Unbiased Videos. It is useful to fairly represent in the dataset the distri-
bution of videos on the Internet. By doing so, models trained on the dataset
can be directly applied to understand and recognize popular concepts in
everyday Internet videos. For this purpose we build SOA by uniformly sam-
pling videos from Web platforms. This procedure avoids biases on video
length, content, metadata, and style. It provides a diverse collection of sam-
ples matching the actual distribution of Internet videos. On the contrary,
prior datasets [18, 1, 34, 19] have used keyword-based searches to find Web
videos matching predefined concepts. The tags used for the searches skew
the distribution of the dataset. Furthermore, search engines typically returns
in the top positions videos that match unambiguously the query. This yields
prototypical examples that tend to be easy to classify. As evidence, the top-
5 accuracy on Kinetics is already over 93% [24] less than one year from
its public release. In our experiments we demonstrate that SOA is a much
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more challenging benchmark than prior datasets, with even the best video
classification models hovering only around 45% top-5 accuracy1.

3. Unbiased Labels. Rather than constraining annotators to adopt a prede-
fined ontology to label the videos, as done in most prior video datasets, we
allow annotators to enter free-from textual tags describing the video. We ar-
gue that this yields a more fitting set of annotations than those obtained by
forcing labeling through a fixed ontology. The collection of free-form tags is
then manually post-processed via concept renaming, deleting, merging and
splitting to give rise to a final taxonomy, which directly reflects the distri-
bution of labels given by annotators labeling the data in an unconstrained
fashion. Moreover, SOA naturally captures the long tail distribution of visual
labels in the real world, whereas existing datasets are often hand designed
to be well balanced. This opens the door of studying few shot learning and
knowledge transfer to model the long tail [41] on a large scale video dataset.

4. Multi-Task. A video is much more than the depiction of a human action.
It often portrays a scene or an environment (an office, a basketball court,
a beach), and includes background objects (a picture, a door, a bus) as
well as objects manipulated or utilized by a person (e.g., lipstick, a tennis
racquet, a wrench). An action label provides a human-centric description
of the video but ignores this relevant contextual information. Yet, today
most existing video classification datasets contain only human action tags.
While a few object-centric video datasets have been proposed [28, 14], there
is no established video benchmark integrating joint recognition of scenes,
objects and actions. To the best of our knowledge the only exceptions are
perhaps YouTube-8M [1] and Charades [31], where some of the classes are
pure actions (e.g., wrestling), some represent objects (e.g., bicycle), and some
denote “objects in action” (e.g., drinking from a cup). Unlike in these prior
datasets, where contextual information (scenes and objects) is coupled with
action categorization in the form of flat classification, we propose a dataset
that integrates scene, object, and action categorization in the form of multi-
task classification, where labels are available for each of these three aspects in
a video. This makes it possible to quantitively assess synergy among the three
tasks and leverage it during modeling. For example, using SOA annotations it
is possible to determine how object recognition contributes to disambiguating
the action performed in the video. Furthermore, this multi-task formulation
recasts video understanding as a comprehensive problem that encompasses
the recognition of multiple semantic aspects in the dynamic scene. Figure 1
shows the coverage of annotations from different tasks on SOA videos.

5. Multi-Label. Finally, we argue that a single class label per task is often
not sufficient to describe the content of a video. Even a single frame may
contain multiple prominent objects; the addition of a temporal dimension
makes multi-label even more important for video than for images. As dis-
cussed above, datasets that use search queries to perform biased sampling

1 Top-5 accuracy on SOA is computed by considering each label from a given video
independently, i.e., matching each label against top-5 predictions from the model.
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Fig. 2: Histograms of length and view count for sampled videos. These distribu-
tions contain heavy tails that will be lost by biased sampling.

can sidestep this issue, as they mostly contain prototypical examples for
which a single-label assumption is reasonable. With closer fidelity to the
true distribution and all of the hard positives it contains, the content of a
given video is no longer dominated by a given label. In SOA we ask the
annotator to provide as many labels as needed to describe each of the three
individual aspects of recognition (Scenes, Objects and Actions) and we adopt
mAP (mean Average Precision) as the metric accordingly.

2 Scenes-Objects-Actions

This section describes the creation of SOA in four steps: sampling videos, open-
world annotation, generating the taxonomy and closed-world verification.

2.1 Sampling videos

We sample publicly available videos shared on Facebook. The sampling is not
biased by length or view count. The resulting videos are diverse and approximate
the true distribution of Internet videos, as demonstrated by Figure 2. From each
video, we sample only one clip of about 10 seconds with the start time selected
uniformly across the whole video. It is important to note that unbiased sam-
pling yields an unbalanced long-tail class distribution, with many more videos
containing mundane labels like “speaking to camera” compared to the kinds of
actions popular in existing action recognition datasets, e.g., “ice skating”.

After collecting the videos, we follow the protocol used for Kinetics [19] to
de-duplicate videos within the SOA dataset. Our only modification is to use a
ResNet-50 [11] image model as the feature extractor. We use the same protocol
to remove SOA videos that match the testing and validation sets of the following
action recognition datasets: Kinetics [19], UCF101 [33], and HMDB51 [21].
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2.2 Open-world annotation

The first stage of annotation provides an interface with a video player and three
text-entry fields, one for each of the three SOA aspects (Scenes, Objects, and
Actions). The annotator watches a clip (often multiple times) and types in any
applicable textual tags corresponding to these three aspects. Note that the set of
tags are not predefined. Each field includes an auto-complete mechanism so that
the annotator does not need to type the whole tag. Each annotator is required
to enter at least one label per aspect per clip. To improve recall, we send each
clip to at least two annotators. The process takes on average 80 seconds per clip
for a trained annotator.

2.3 Generating the taxonomy

As described above, the initial round of labeling was unconstrained. The resulting
free-form annotations were then cleaned in several ways. They were first sanitized
to correct typos, unify synonyms and plurals, and merge similar terms. After this
pass, only labels with more than 1500 samples were kept. The kept labels were
then manually inspected and refined into a final taxonomy. The goals of the final
taxonomy included:

1. Reduce label noise. Labels like “headphone” vs “headset”, or “snowboard”
vs “skateboard” were often confused, and we established guidelines for their
use. In some cases this resulted in labels with less than 1500 samples being
reintroduced.

2. Visual coherence. Certain free-form labels like “jumping” or “weight lifting”
lacked visual coherence, and were replaced with more fine-grained labels.
If there were not enough samples to split a label into multiple labels, we
eliminated the incoherent label.

3. Sharing terminology. In structuring the final taxonomy we appealed to ex-
isting datasets and ontologies (e.g., MIT Places dataset [45], WordNet [26])
for guidance when possible, but there is no strict mapping to any existing
taxonomy.

In particular, this process was aimed to preserve the true distribution of labels.
The taxonomy was refined in certain areas and coarsened in others, so the gran-
ularity was changed, but additional videos were not retrieved to support new
labels. Instead, all the videos were re-annotated with the new list of labels, as
described below.

2.4 Closed-world verification

When placing these labels into a visual taxonomy, we produced a set of mappings
from free-form labels to curated labels. Many free-form labels were unchanged
and mapped to a single curated label. Others were split or merged with other la-
bels. These created mappings from free-form labels to groups of multiple curated
labels.
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Fig. 3: Different labels tend to co-occur in SOA. Here we visualize their relation-
ship with t-SNE [25]. This embedding is purely based on label co-occurrence,
without using video content. The superscript indicates the number of samples for
each class. Scenes, Objects and Actions are in red, green and blue respectively.

These mappings define a set of verification tasks for the second stage of
annotation. Each label from the first stage may correspond to n labels in the
new taxonomy (where n is zero if the label was discarded) for each aspect (Scenes,
Objects, and Actions). These are provided to a second annotation tool which
plays the video and displays these n choices as options (selected via hotkeys),
with a default “NONE OF THE ABOVE” option included. Trained annotators
watch a video and then select all labels that apply. This verification step takes
about 30 seconds per clip on average. In practice, n is often equal to 1, making
the task binary. This process can filter out erroneous labels, improving precision,
but may yield low recall if the original labels or the mapping were too sparse.
We noticed low recall for a small subset of labels and densified the mapping to
correct for it. We measured the rate of “NONE OF THE ABOVE” to be about
30%. This indicates that our defined mapping provided a true label for 70% of
the verification tasks.

Finally, we remove all the labels with less than 200 samples, and summarize
the statistics of SOA in Table 1. Semantically related labels tend to co-occur on
SOA, which we visualize using t-SNE in Figure 3.

3 Comparing video models on SOA

This section compares different video models on SOA. We outline the experi-
mental setup and three models used, then present and discuss the results.

3.1 Experimental setup

SOA includes a total of 562K videos, which are randomly split into training,
validation and testing with a percentage of 70, 10 and 20, respectively. For all the
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experiments, we only use the training set for training and report metrics on the
validation set. The performance on SOA is measured by computing the average
precision (AP) for each class since it is a multi-label dataset. For each individual
task (e.g., Scenes), we report the mean AP over all its classes (mAP). To measure
the overall multi-task performance on SOA, we use a weighted average over the
three tasks, by weighting each task differently to reflect the perceived importance
of the three tasks to video understanding: mAPSOA = 1/6 ∗mAPScene + 1/3 ∗
mAPObject + 1/2 ∗mAPAction.

3.2 Video models

We briefly describe the three popular video models used for evaluation on SOA.

Res2D. ResNet [11] is among the most successful CNN models for image
classification. Res2D [39] applies a ResNet to a group of video frames instead of
a single image. The input to Res2D is 3L×H ×W instead of 3×H ×W , where
L is the number of frames and H ×W is the spatial resolution. As the channel
and temporal dimension are combined into a single dimension, convolution in
Res2D is only on the two spatial dimensions. Note that 2D CNNs for video [32]
ignore the temporal ordering in the video and are in general considered to be
inferior for learning motion information from video.

Res3D. 3D CNNs [16, 38] are designed to model the temporal dynamics of
video data by performing convolution in 3D instead of 2D. Res3D [39] applies 3D
convolutions to ResNet. Unlike Res2D, the channel and temporal dimensions are
treated separately. As a result, each filter is 4-dimensional (channel, temporal
and two spatial dimensions), and is convolved in 3D, i.e., over both temporal and
spatial dimensions. Both Res2D and Res3D used in this paper have 18 layers.

I3D. The inflated 3D ConvNet (I3D) [4] is another example of 3D CNN
for video data. It is based on the Inception-v1 [36] model with Batch Normal-
ization [15]. I3D was originally proposed as a way to leverage the ImageNet
dataset [5] for pre-training in video classification via the method of 2D-to-3D
inflation. Here we only adopt this model architecture without pre-training on
ImageNet as we are interested in comparing different model architectures on
SOA trained under the same setup (no pre-training).

For a fair comparison, we use the same input to all three models, which is
a clip of 32 consecutive frames containing RGB or optical flow. We choose the
Farneback [7] algorithm to compute optical flow due to its efficiency. For data
augmentation, we apply temporal jittering when sampling a clip from a given
video. A clip of size 112× 112 is randomly cropped from the video after resizing
it to a resolution of 171 × 128. Training is done with synchronous distributed
SGD on GPU clusters using Caffe2 [3]. Cross entropy loss is used for multi-label
classification on SOA. For testing, we uniformly sample 10 clips from each video
and do average pooling over the 10 clips to generate the video level predictions.
We train all models from scratch with these settings unless stated otherwise.



8 J. Ray, H. Wang, D. Tran, Y. Wang, M. Feiszli, L. Torresani and M. Paluri

Model # params FLOPs Input Scenes Objects Actions SOA

Res2D 11.5M 2.6G
RGB 44.1 22.8 26.8 23.0

Optical flow 29.7 14.6 21.5 16.7
Late fusion 48.7 24.7 32.2 27.6

Res3D 33.2M 81.4G
RGB 48.0 25.9 33.6 27.3

Optical flow 39.4 20.2 32.1 23.6
Late fusion 51.5 27.4 37.7 30.9

I3D 12.3M 13.0G
RGB 45.4 22.6 30.3 24.5

Optical flow 34.0 16.3 29.2 20.5
Late fusion 49.4 24.4 35.4 28.5

Table 2: Three models trained with different inputs on SOA. For each task, we
only use the videos and labels from that task for training and testing as listed in
Table 1. Parameters and FLOPs are computed for RGB input. For optical flow,
they are about the same as RGB.

3.3 Classification results on SOA

Table 2 presents the mAP of each model, input, and task. For late fusion of RGB
and optical flow streams, we uniformly sample 10 clips from a given video, and
extract a 512-dimensional feature vector from each clip using the global average
pooling layer of the trained model. Features are aggregated with average pooling
over the 10 clips. We normalize and concatenate the features from RGB and
optical flow. A linear SVM is trained to classify the extracted features.

Model vs. Task. Comparing the performance of different models in Table 2,
we find that 3D models (i.e., Res3D and I3D) are consistently better than 2D
models (i.e., Res2D) across different tasks. This indicates that 3D CNNs are
generally advantageous for video classification problems. The gap between 2D
and 3D models becomes wider when we move from Scene and Object tasks to
Action task. This is presumably due to the fact that Scenes and Objects can
often be recognized from a single frame, whereas Actions require more temporal
information to be disambiguated and thus can benefit more from 3D CNNs.

Input vs. Model. We observe an interaction between the input modality
and the model type. Optical flow yields much better accuracy when using 3D
models, while in the case of RGB the performances of 2D and 3D CNNs are
closer. For example, optical flow yields about the same mAP as RGB for Ac-
tions when using Res3D and I3D, but the accuracy with optical flow drops by
about 5% when switching to Res2D. A similar observation applies to Scenes and
Objects. This again suggests that 3D models are superior for leveraging motion
information.

Task vs. Input. Choosing the right input for a target task is critical, as
the input encapsulates all the information that a model can learn. RGB shows
a great advantage over optical flow for Scenes and Objects. As expected, optical
flow is more useful for Actions. Late fusion has been shown to be very effective
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Fig. 4: The relationship between the Aver-
age Precision of each class and the number
of training samples from that class. Scene,
Object and Action classes are plotted in red,
green and blue respectively.

Fig. 5: Tree structure recovered
from confusion matrix. We mark
the number of training samples
and testing AP for each class.

for combining RGB and optical flow in the two-stream network [32]. The mAP
of late fusion is about 2− 4% higher than each individual input in Table 2.

Overall, Res3D performs the best but is also the most computationally ex-
pensive, with the highest FLOPs and the most parameters, as shown in Table 2.
Due to its strong performance, we use Res3D for the remaining experiments.

3.4 Discussion

In this section, we analyze the results from SOA in detail and highlight our
findings. We choose the Res3D model with RGB as the input, which gives an
mAP of 27.3 in Table 2. Figure 4 shows a strong correlation between AP and
the number of positive samples in each class. The best two recognized classes
for each task are man, overlaid text, grass field, gymnasium indoor, exercising
other, speaking to camera, which are all very common categories in SOA.

To further understand the performance of the model, we construct a confusion
matrix. As SOA is a multi-label dataset, we take the top-5 predictions of each
sample, and consider all the pair combinations for each prediction and each
ground truth annotation. All these combinations are accumulated to compute the
final confusion matrix. To find meaningful structures from the confusion matrix,
we recursively merge the two classes with the biggest confusion. This results in
different tree structures where many classes are progressively merged together.
Figure 5 shows such an example. We can clearly see that concepts appearing in
the tree are semantically related with an increasing level of abstraction. There
is also a gradual shift of concepts from fish to water, then water related scenery
and activities, and drifting away to beach, sand and sunset.
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❵
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Pre-training
Fine-tuning

UCF101 HMDB51 Kinetics Charades

From scratch 67.6 33.1 63.9 9.8

Kinetics 92.6 69.6 N/A 16.8

Sports-1M 90.2 63.7 64.6 13.7

SOA 84.7 57.2 63.9 15.3

Table 3: Comparison of SOA with Kinetics and Sports-1M for transfer learning.
We consider four target datasets for fine-tuning including UCF101, HMDB51,
Kinetics and Charades. Note that all these experiments are based on the Res3D
model with RGB as the input. We report mAP on Charades and accuracy on
the other three datasets.

We also found other trees that centered around concepts that are related to
animals, cosmetics, vehicles, gym activities, etc. As in Figure 5, these trees typi-
cally include multiple labels covering Scene, Object and Action. This is another
evidence that Scene, Object and Action tasks should be solved jointly for video
understanding and SOA provides an opportunity for driving computer vision
research along this direction.

4 Transfer learning

Strong transfer learning performance was not a design goal for SOA, however it
is quite natural to ask what the strengths and weaknesses are with respect to this
objective. The section discusses the results of using SOA for transfer learning,
i.e., pre-training on SOA and fine-tuning on smaller datasets. We briefly describe
the datasets used, and compare SOA with existing large-scale video datasets. We
then discuss features of SOA that may influence its transfer learning ability and
conclude by comparing with the state of the art.

4.1 Datasets

We compare SOA with Sports-1M [18] and Kinetics [19] for pre-training, and
evaluate the performance of fine-tuning on four target datasets, i.e., UCF101 [34],
HMDB51 [21], Kinetics and Charades [31].

Sports-1M is a large-scale benchmark for fine-grained classification of sport
videos. It has 1.1M videos of 487 fine-grained sport categories. We only use
the training set of Sports-1M for pre-training. Kinetics has about 300K videos
covering 400 action categories. The annotations on the testing set are not public
available. Here we use the training set for pre-training and report the accuracy
on the validation set. UCF101 and HMDB51 are among the most popular
datasets for action recognition. UCF101 has 13k videos and 101 classes, whereas
HMDB51 is slightly smaller with 7k videos and 51 classes. Both datasets provide
three splits for training and testing. We only use the first split in our experiments.
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Methods UCF101 HMDB51 Kinetics Charades

ActionVLAD+iDT [8] 93.6 69.8 - 21.0
I3D (two-stream) [4] 98.0 80.7 75.7 -
MultiScale TRN [44] - - - 25.2

S3D-G [42] 96.8 75.9 77.2 -
ResNeXt-101 (64f) [10] 94.5 70.2 65.1 -

SOA(optical flow) 86.5 65.6 59.1 16.1
SOA(late fusion) 90.7 67.0 67.9 16.9

Table 4: Compare the effectiveness of pre-training on SOA with the state of the
art. For late fusion, we follow the same procedure described in Section 3.3 by
combining the RGB results from Table 3 with the optical flow results listed in
this table.

Unlike the other datasets, Charades is collected by crowdsourcing. It consists of
10k videos across 157 action classes of common household activities. We report
mAP on the validation set of Charades.

4.2 Transfer learning results

We compare SOA with two popular large-scale datasets: Sports-1M and Kinet-
ics. Fine-tuning performance is evaluated on UCF101, HMDB51, Kinetics, and
Charades. The results are presented in Table 3. First, the improvement from
pre-training is inversely related to the size of the fine-tuning dataset. For large
datasets (e.g., Kinetics), the gain by pre-training is much smaller than datasets
with less samples (e.g., UCF101, HMDB51, Charades). Pre-training is often used
to mitigate scarcity of training data on the target domain. If the fine-tuning
dataset is large enough, pre-training may not be needed.

Our second observation is that the improvements are also related to the
source of the videos used for creating the datasets. UCF101, HMDB51, Kinetics
and Sports-1M are all created with YouTube videos, whereas SOA uses publicly
available videos shared on Facebook. Charades is built by crowdsourcing. Typ-
ically, improvements are largest when the pre-training and fine-tuning datasets
use the same video source (e.g. YouTube) and sampling method (e.g., querying
search engines). This is connected to the issue of dataset bias, which has already
been observed on several datasets [37]. In Table 3, Kinetics performs remark-
ably well on UCF101 and HMDB51, but the gain becomes less pronounced on
Charades. For SOA, its transfer learning ability is on par with Sports-1M and
Kinetics on Charades, but is worse on UCF101 and HMDB51.

In Table 4 we compare against the state of the art in video classification by us-
ing SOA as a pre-training dataset for Res3D. State-of-the-art models tend to use
more sophisticated architectures [44, 42], more advanced pooling mechanisms [8],
deeper models [10], and heavyweight inputs [4, 10] (long clips with higher resolu-
tion). Pre-training on SOA with a simple Res3D model gives competitive results
in general. As shown in section 5.3, the improvement from pre-training on SOA
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P
P
P

P
P
P
P

Task
Feature

Scene Object Action

Scene 49.7 53.9 45.6

Object 14.2 26.5 18.2

Action 18.3 29.9 34.8

Scene
S+O S+A SOA
52.4 50.9 53.2

Object
O+S O+A SOA
26.5 27.3 27.0

Action
A+S A+O SOA
34.7 36.0 35.9

(a) Correlation among the three tasks (b) How much one task can help another

Table 5: Rows correspond to the target task, columns to the type of features
extracted. Res3D with RGB input was used for all experiments.

can be more significant as we scale up the dataset by either adding more videos
or increasing the number of categories.

5 Multi-task Investigations

SOA is uniquely designed for innovation in the large-scale multi-task arena. In
this section we establish what we hope will be some compelling baselines about
the interaction between features learned across tasks as an example of these kinds
of questions. To our knowledge, SOA is the only dataset currently available on
which such experimentation can be done. Previously, Jiang et al. [17] proposed
to use context knowledge extracted from scene and object recognition to improve
action retrieval in movie data. Ikizler-Cinbis et al. [13] extracted different types
of features that can capture object and scene information, and combined them
with multiple-instance learning for action recognition. More recently, Sigurdsson
et al. [30] studied the effectiveness of perfect object oracles for action recognition.

5.1 Correlations among the three tasks

For this experiment, we take the Res3D models (with RGB as the input) trained
on the three individual tasks. We use each model in turn as a feature extractor
for Scenes, Objects and Actions separately. The feature extraction process is
the same as Section 3.3, i.e., average pooling the 512-dimensional Res3D feature
vector over 10 clips for a given video. We then train a linear SVM on each of
these three features for each of the three tasks (9 training runs in total).

The results are summarized in Table 5(a). It is interesting to compare the per-
formance of the three task-specific Res3D models using RGB from Table 2 with
the numbers on the diagonal axis of Table 5(a). The differences are explained by
the usage of the SVM classifier on top of the Res3D features. In terms of overall
performance considering all three tasks, Object features are the strongest while
Scene features are the weakest. Note that this ranking is also consistent with the
number of annotations we have for each task (listed in Table 1).

Overall there are strong correlations among different tasks from our prelim-
inary results in Table 5(a). For example, even when applying the weakest Scene
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feature on the hardest Object task, we achieve an mAP of 14.2, which is a decent
result considering the difficulty of the Object task. This highlights the potentials
of leveraging different information for each task and the usefulness of SOA as a
test bed to inspire new research ideas.

At first glance, table 5(a) appears to suggest that Object features are in-
herently richer than Scene features: Object features gives better accuracy (53.9
mAP) than Scene features (49.7 mAP) on Scene classification. However, SOA
has over 13 times more annotations for Objects than Scenes. When we control
the label count by reducing the number of feature-learning samples for Objects
to be the same as Scenes, the mAP drops from 53.9 to 46.5, demonstrating that
there is likely inherent value in the Scene features, despite the much smaller label
space for Scene.

5.2 How multiple tasks can help another

Here we study the effectiveness of leveraging several tasks to solve another. We
follow the same procedure described in Section 5.1 with the difference that we
combine multiple features by concatenating them together for each task. The
results are presented in Table 5(b).

At a glance, simply concatenating different features does not seem to boost
the performance of each individual task significantly. For the Scene task, com-
bining all three features does improve the mAP from 49.7 to 53.2. However, the
improvement becomes marginal for both the Object and the Action task. As
Scene is the weakest descriptor, combining it with stronger features (such as
Object) can make the Scene task easier, but not the other way around.

Moreover, fusing different features by concatenating them implies that each
feature has the same weight in the final classifier. This is not ideal as the strength
of each feature is different. It is, thus, appealing to design more sophisticated
mechanisms to adaptively fuse different features together. There are many cre-
ative ways of exploiting the correlation among different tasks, such as transfer
learning and graphical models [20] that we hope to see in future research.

5.3 Number of videos vs. number of categories

The comparison of the Scene features with Object feaures in Section 5.1 suggests
a more careful investigation of the tradeoffs between label diversity and number
of labeled samples. Given a limited budget, and assuming the resource required
for each annotation is the same, how should we spend our budget to improve
the representational ability of SOA? As a proxy for richness of representation,
we choose to use transfer learning ability. Huh et al. [12] investigated different
factors that make ImageNet [5] good for transfer learning. Here we consider
the effects of varying the number of samples and the number of categories for
SOA. We then consider transfer performance as a function of the total number
of annotations (as opposed to the total number of videos).

We randomly sample a subset (i.e., 25%, 50%, 75%, 100%) of either samples
or categories to build a smaller version of SOA. In the first case, we randomly
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Fig. 6: How to scale up the transfer learning ability of SOA effectively: number
of videos vs number of categories.

choose a given fraction of videos. In the second case, we randomly choose a given
fraction of labels, remove all other labels from the dataset, and discard videos
with no labels remaining. The second case generally yields more videos than the
first case. A Res3D model is pre-trained with the smaller versions of SOA, and
then fine-tuned on UCF101 and HMDB51.

The results in Figure 6 are unequivocal: for a fixed number of annotations,
a smaller label set applied to more videos produces better results. Fine-tuning
accuracy on UCF101 and HMDB51 increases rapidly with respect to the number
of videos used from SOA for pre-training, while performance seems to saturate
as the number of categories is increased. This suggests that we can further boost
the accuracy on UCF101 and HMDB51 by annotating more videos for SOA.
This gives us a relevant guideline on how to extend SOA in the future.

6 Conclusions

In this work we introduced a new large-scale, multi-task, multi-label video dataset
aimed at casting video understanding as a multi-faceted problem encompassing
scene, object and action categorization. Unlike existing video datasets, videos
from SOA are uniformly sampled to avoid the bias introduced by querying search
engines, and labels originate from free-form annotations that sidestep the bias of
fixed ontologies. This gives rise to a benchmark that appears more challenging
than most existing datasets for video classification. We also present a compre-
hensive experimental study that provide insightful analyses on several factors of
SOA, including performance achieved by popular 2D and 3D models, the role of
RGB vs optical flow, transfer learning effectiveness, synergies and correlations
among the three SOA tasks, as well as some observations that will guide future
extensions and improvements to SOA.

As the design of SOA departs significantly from those adopted in previous
datasets, we argue that the current and future value of our benchmark should be
measured by its unique ability to support a new genre of experiments across dif-
ferent aspects of video recognition. We believe that this will inspire new research
ideas for video understanding.
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