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Abstract. We notice information flow in convolutional neural networks
is restricted inside local neighborhood regions due to the physical de-
sign of convolutional filters, which limits the overall understanding of
complex scenes. In this paper, we propose the point-wise spatial atten-

tion network (PSANet) to relax the local neighborhood constraint. Each
position on the feature map is connected to all the other ones through
a self-adaptively learned attention mask. Moreover, information propa-
gation in bi-direction for scene parsing is enabled. Information at other
positions can be collected to help the prediction of the current position
and vice versa, information at the current position can be distributed
to assist the prediction of other ones. Our proposed approach achieves
top performance on various competitive scene parsing datasets, includ-
ing ADE20K, PASCAL VOC 2012 and Cityscapes, demonstrating its
effectiveness and generality.
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1 Introduction

Scene parsing, a.k.a. semantic segmentation, is a fundamental and challenging
problem in computer vision, in which each pixel is assigned with a category label.
It is a key step towards visual scene understanding, and plays a crucial role in
applications such as auto-driving and robot navigation.

The development of powerful deep convolutional neural networks (CNNs) has
made remarkable progress in scene parsing [26,1,29,4,5,45]. Owing to the design
of CNN structures, the receptive field of it is limited to local regions [47,27].
The limited receptive field imposes a great adverse effect on fully convolutional

⋆ indicates equal contribution.
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networks (FCNs) based scene parsing systems due to insufficient understanding
of surrounded contextual information.

To address this issue, especially leveraging long-range dependency, several
modifications have been made. Contextual information aggregation through di-
lated convolution is proposed by [4,42]. Dilations are introduced into the clas-
sical compact convolution module to expand the receptive field. Contextual in-
formation aggregation can also be achieved through pooling operation. Global
pooling module in ParseNet [24], different-dilation based atrous spatial pyra-

mid pooling (ASPP) module in DeepLab [5] and different-region based pyramid

pooling module (PPM) in PSPNet [45] can help extract the context informa-
tion to a certain degree. Different from these extensions, conditional random
field (CRF) [4,46,2,3] and Markov random field (MRF) [25] are also utilized.
Besides, recurrent neural network (RNN) is introduced in ReSeg [38] for its ca-
pability to capture long-range dependencies. However, these dilated-convolution-
based [4,42] and pooling-based [24,5,45] extensions utilize homogeneous contex-
tual dependencies for all image regions in a non-adaptive manner, ignoring the
difference of local representation and contextual dependencies for different cat-
egories. The CRF/MRF-based [4,46,2,3,25] and RNN-based [38] extensions are
less efficient than CNN-based frameworks.

In this paper, we propose the point-wise spatial attention network (PSANet)
to aggregate long-range contextual information in a flexible and adaptive man-
ner. Each position in the feature map is connected with all other ones through
self-adaptively predicted attention maps, thus harvesting various information
nearby and far away. Furthermore, we design the bi-directional information prop-
agation path for a comprehensive understanding of complex scenes. Each posi-
tion collects information from all others to help the prediction of itself and vice
versa, the information at each position can be distributed globally, assisting the
prediction of all other positions. Finally, the bi-directionally aggregated contex-
tual information is fused with local features to form the final representation of
complex scenes.

Our proposed PSANet achieves top performance on three most competitive
semantic segmentation datasets, i.e., ADE20K [48], PASCAL VOC 2012 [9] and
Cityscapes [8]. We believe the proposed point-wise spatial attention module to-
gether with the bi-directional information propagation paradigm can also benefit
other dense prediction tasks. We give all implementation details, and make the
code and trained models publicly available to the community1. Our main con-
tribution is three-fold:

– We achieve long-range context aggregation for scene parsing by a learned
point-wise position-sensitive context dependency together with a bi-directional
information propagation paradigm.

– We propose the point-wise spatial attention network (PSANet) to harvest
contextual information from all positions in the feature map. Each position
is connected with all others through a self-adaptively learned attention map.

1 https://github.com/hszhao/PSANet

https://github.com/hszhao/PSANet
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– PSANet achieves top performance on various competitive scene parsing datasets,
demonstrating its effectiveness and generality.

2 Related Work

Scene Parsing and Semantic Segmentation. Recently, CNN based meth-
ods [26,4,5,42,45,6] have achieved remarkable success in scene parsing and se-
mantic segmentation tasks. FCN [26] is the first approach to replace the fully-
connected layer in a classification network with convolution layers for semantic
segmentation. DeconvNet [29] and SegNet [1] adopted encoder-decoder struc-
tures that utilize information in low-level layers to help refine the segmentation
mask. Dilated convolution [4,42] applied skip convolution on feature map to en-
large network’s receptive field. UNet [33] concatenated output from low-level
layers with higher ones for information fusion. DeepLab [4] and CRF-RNN [46]
utilized CRF for structure prediction in scene parsing. DPN [25] used MRF
for semantic segmentation. LRR [11] and RefineNet [21] adopted step-wise re-
construction and refinement to get parsing results. PSPNet [45] achieved high
performance though pyramid pooling strategy. There are also high efficiency
frameworks like ENet [30] and ICNet [44] for real-time applications like auto-
matic driving.

Context Information Aggregation. Context information plays a key role for
image understanding. Dilated convolution [4,42] inserted dilation inside classi-
cal convolution kernels to enlarge the receptive field of CNN. Global pooling
was widely adopted in various basic classification backbones [19,35,36,13,14]
to harvest context information for global representations. Liu et al. proposed
ParseNet [24] that utilizes global pooling to aggregate context information for
scene parsing. Chen et al. developed ASPP [5] module and Zhao et al. proposed
PPM [45] module to obtain different regions’ contextual information. Visin et

al. presented ReSeg [38] that utilizes RNN to capture long-range contextual de-
pendency information.

Attention Mechanism. Attention mechanism is widely used in neural net-
works. Mnih et al. [28] learned an attention model that adaptively select a se-
quence of regions or locations for processing. Chen et al. [7] learned several
attention masks to fuse feature maps or predictions from different branches.
Vaswani et al. [37] learned a self-attention model for machine translation. Wang et
al. [40] got attention masks by calculating the correlation matrix between each
spatial point in the feature map. Our point-wise attention masks are different
from the aforementioned studies. Specifically, masks learned through our PSA
module are self-adaptive and sensitive to location and category information. PSA
learns to aggregate contextual information for each individual point adaptively
and specifically.
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3 Framework

In order to capture contextual information, especially in the long range, infor-
mation aggregation is of great importance for scene parsing [24,5,45,38]. In this
paper, we formulate the information aggregation step as a kind of information
flow and propose to adaptively learn a pixel-wise global attention map for each
position from two perspectives to aggregate contextual information over the en-
tire feature map.

3.1 Formulation

General feature learning or information aggregation is modeled as

zi =
1

N

∑

∀j∈Ω(i)

F (xi,xj , ∆ij)xj (1)

where zi is the newly aggregated feature at position i, and xi is the feature
representation at position i in the input feature map X. ∀j ∈ Ω(i) enumerates
all positions in the region of interest associated with i, and ∆ij represents the
relative location of position i and j. F (xi,xj , ∆ij) can be any function or learned
parameters according to the operation and it represents the information flow
from j to i. Note that by taking relative location ∆ij into account, F (xi,xj , ∆ij)
is sensitive to different relative locations. Here N is for normalization.

Specifically, we simplify the formulation and design different functions F with
respect to different relative locations. Eq. (1) is updated to

zi =
1

N

∑

∀j∈Ω(i)

F∆ij
(xi,xj)xj (2)

where {F∆ij
} is a set of position-specific functions. It models the information

flow from position j to position i. Note that the function F∆ij
(·, ·) takes both

the source and target information as input. When there are many positions in
the feature map, the number of the combination (xi,xj) is very large. In this
paper, we simplify the formulation and make an approximation.

At first, we simplify the function F∆ij
(·, ·) as

F∆ij
(xi,xj) ≈ F∆ij

(xi) (3)

In this approximation, the information flow from j to i is only related to the
semantic feature at target position i and the relative location of i and j. Based
on Eq. (3), we rewrite Eq. (2) as

zi =
1

N

∑

∀j∈Ω(i)

F∆ij
(xi)xj (4)

Similarly, we simplify the function F∆ij
(·, ·) as

F∆ij
(xi,xj) ≈ F∆ij

(xj) (5)
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Fig. 1. Illustration of bi-direction information propagation model. Each position both
‘collects’ and ‘distributes’ information for more comprehensive information propaga-
tion.

in which the information flow from j to i is only related to the semantic feature
at source position j and the relative location of position i and j.

We finally decompose and simplify the function as a bi-direction information
propagation path. Combining Eq. (3) and Eq. (5), we get

F∆ij
(xi,xj) ≈ F∆ij

(xi) + F∆ij
(xj) (6)

Formally, we model this bi-direction information propagation as

zi =
1

N

∑

∀j∈Ω(i)

F∆ij
(xi)xj +

1

N

∑

∀j∈Ω(i)

F∆ij
(xj)xj . (7)

For the first term, F∆ij
(xi) encodes to what extent the features at other positions

can help prediction. Each position ‘collects’ information from other positions.
For the second term, the importance of the feature at one position to features at
other positions is predicted by F∆ij

(xj). Each position ‘distributes’ information
to others. This bi-directional information propagation path, shown in Fig. 1,
enables the network to learn more comprehensive representations, evidenced in
our experimental section.

Specifically, our PSA module, aiming to adaptively predict the information
flow over the entire feature map, takes all the positions in feature map as Ω(i)
and utilizes the convolutional layer as the operation of F∆ij

(xi) and F∆ij
(xj).

Both F∆ij
(xi) and F∆ij

(xj) can then be regarded as predicted attention values
to aggregate feature xj . We further rewrite Eq. (7) as

zi =
1

N

∑

∀j

aci,jxj +
1

N

∑

∀j

adi,jxj , (8)

where aci,j and adi,j denote the predicted attention values in the point-wise at-

tention maps Ac and Ad from ‘collect’ and ‘distribute’ branches, respectively.

3.2 Overview

We show the framework of the PSA module in Fig. 2. The PSA module takes
a spatial feature map X as input. We denote the spatial size of X as H × W .
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Fig. 2. Architecture of the proposed PSA module.

Through the two branches as illustrated, we generate pixel-wise global attention
maps for each position in feature map X through several convolutional layers.
We aggregate input feature map based on attention maps following Eq. (8) to
generate new feature representations with the long-range contextual information
incorporated, i.e., Zc from the ‘collect’ branch and Zd from the ‘distribute’
branch.

We concatenate the new representations Zc and Zd and apply a convolutional
layer with batch normalization and activation layers for dimension reduction
and feature fusion. Then we concatenate the new global contextual feature with
the local representation feature X. It is followed by one or several convolutional
layers with batch normalization and activation layers to generate the final feature
map for following subnetworks.

We note that all operations in our proposed PSA module are differentiable,
and can be jointly trained with other parts of the network in an end-to-end
manner. It can be flexibly attached to any feature maps in the network. By
predicting contextual dependencies for each position, it adaptively aggregates
suitable contextual information. In the following subsections, we detail the pro-
cess of generating the two attention maps, i.e., Ac and Ad.

3.3 Point-wise Spatial Attention

Network Structure. PSA module firstly produces two point-wise spatial at-
tention maps, i.e., Ac and Ad by two parallel branches. Although they repre-
sent different information propagation directions, network structures are just the
same. As shown in Fig. 2, in each branch, we firstly apply a convolutional layer
with 1 × 1 filters to reduce the number of channels of input feature map X to
reduce computational overhead (i.e., C2 < C1 in Fig. 2). Then another convo-
lutional layer with 1× 1 filters is applied for feature adaption. These layers are
accompanied with batch normalization and activation layers. Finally, one con-
volutional layer is responsible for generating the global attention map for each
position.

Instead of predicting a map with size H ×W for each position i, we predict
an over-completed map hi, i.e., with size (2H−1)×(2W −1), covering the input
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Fig. 3. Illustration of Point-wise Spatial Attention.

feature map. As a result, for feature map X, we get a temporary representation
map H with spatial size H×W and (2H−1)×(2W −1) channels. As illustrated
by Fig. 3, for each position i, hi can be reshaped to a spatial map with 2H − 1
rows and 2W −1 columns and centers on position i, of which only H×W values
are useful for feature aggregation. The valid region is highlighted as the dashed
bounding box in Fig. 3.

With our instantiation, the set of filters used to predict the attention maps
at different positions are not the same. This enables the network to be sensitive
to the relative positions by adapting weights. Another instantiation to achieve
this goal is to utilize a fully-connected layer to connect the input feature map
and the predicted pixel-wise attention map. But this will lead to an enormous
number of parameters.

Attention Map Generation. Based on the predicted over-completed map
Hc from the ‘collect’ branch and Hd from the ‘distribute’ branch, we further
generate attention maps Ac and Ad, respectively.

In the ‘collect’ branch, at each position i, with kth row and lth column, we
predict how current position is related to other positions based on feature at
position i. As a result, aci corresponds to the region in hc

i with H rows and W

columns starting from (H − k)th row and (W − l)th column.
Specifically, element at sth row and tth column in attention mask aci , i.e.,

ac[k,l] is

ac[k,l],[s,t] = hc
[k,l],[H−k+s,W−l+t], ∀s ∈ [0, H), t ∈ [0,W ) (9)

where [·, ·] indexes position in rows and columns. This attention map helps collect
informative in other positions to benefit the prediction at current position.

On the other hand, we distribute information at the current position to other
positions. At each position, we predict how important the information at the
current position to other positions is. The generation of adi is similar to aci . This
attention map helps to distribute information for better prediction.

These two maps encode the context dependency between different position
pairs in a complementary way, leading to improved information propagation and
enhanced utilization of long-range context. The benefits of utilizing those two
different attentions are manifested in experiments.
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Fig. 4. Network structure of ResNet-FCN-backbone with PSA module incorporated.
Deep supervision is also adopted for better performance.

3.4 PSA Module with FCN

Our PSA module is scalable and can be attached to any stage in the FCN
structure. We show our instantiation in Fig. 4.

Given an input image I, we acquire its local representation through FCN as
feature map X, which is the input of the PSA module. Same as that of [45], we
take ResNet [13] as the FCN backbone. Our proposed PSA module is then used
to aggregate long-range contextual information from the local representation.
It follows stage-5 in ResNet, which is the final stage of the FCN backbone.
Features in stage-5 are semantically stronger. Aggregating them together leads
to a more comprehensive representation of long-range context. Moreover, the
spatial size of the feature map at stage-5 is smaller and can reduce computation
overhead and memory consumption. Referring to [45], we also utilize the same
deep supervision technique. An auxiliary loss branch is applied apart from the
main loss as illustrated in Fig. 4.

3.5 Discussion

There has been research making use of context information for scene parsing.
However, the widely used dilated convolution [4,42] utilized a fixed sparse grid to
operate the feature map, losing the ability to utilize information of the entire im-
age. While pooling strategies [24,5,45] captures global context with fixed weight
at each position, they can not adapt to the input data and are less flexible.
Recently proposed non-local method [40] encodes global context by calculating
the correlation of semantic features between each pair of positions on the input
feature map, ignoring the relative location between these two positions.

Different from these solutions, our PSA module adaptively predicts global
attention maps for each position on the input feature map by convolutional
layers, taking the relative location into account. Moreover, the attention maps
can be predicted from two perspectives, aiming at capturing different types of
information flow between positions. The two attention maps actually build the
bi-direction information propagation path as illustrated in Fig. 1. They collect
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and distribute information over the entire feature map. The global pooling tech-
nique is just a special case of our PSA module in this regard. As a result, our
PSA module can effectively capture long-range context information, adapt to
input data and utilize diverse attention information, leading to more accurate
prediction.

4 Experimental Evaluation

The proposed PSANet is effective on scene parsing and semantic segmentation
tasks. We evaluate our method on three challenging datasets, including complex
scene understanding dataset ADE20K [48], object segmentation dataset PAS-
CAL VOC 2012 [9] and urban-scene understanding dataset Cityscapes [8]. In
the following, we first show the implementation details related to training strat-
egy and hyper-parameters, then we show results on corresponding datasets and
visualize the learned masks generated by the PSA module.

4.1 Implementation Details

We conduct our experiments based on Caffe [15]. During training, we set the
mini-batch size as 16 with synchronized batch normalization and base learning
rate as 0.01. Following prior works [5,45], we adopt ‘poly’ learning rate policy
and the power is set to 0.9. We set maximum iteration number to 150K for
experiments on the ADE20K dataset, 30K for VOC 2012 and 90K for Cityscapes.
Momentum and weight decay are set to 0.9 and 0.0001 respectively. For data
augmentation, we adopt random mirror and random resize between 0.5 and 2 for
all datasets. We further add extra random rotation between -10 and 10 degrees,
and random Gaussian blur for ADE20K and VOC 2012 datasets.

4.2 ADE20K

The scene parsing dataset ADE20K [48] is challenging for up to 150 classes
and diverse complex scenes up to 1,038 image-level categories. It is divided into
20K/2K/3K for training, validation and testing, respectively. Both objects and
stuffs need to be parsed for the dataset. For evaluation metrics, both mean of

class-wise intersection over union (Mean IoU) and pixel-wise accuracy (Pixel
Acc.) are adopted.

Comparison of Information Aggregation Approaches. We compare the
performance of several different information aggregation approaches on the val-
idation set of ADE20K with two network backbones, i.e., ResNet with 50 and
101 layers. The experimental results are listed in Table 1. Our baseline network
is ResNet-based FCN with dilated convolution module incorporated at stage 4
and 5, i.e., dilations are set to 2 and 4 for these two stages respectively.
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Table 1. Contextual information aggregation with different approaches. Results are
reported on validation set of ADE20K dataset. ‘SS’ stands for single-scale testing and
‘MS’ means multi-scale testing strategy is utilized.

Method
Mean IoU(%) / Pixle Acc.(%)

SS MS

ResNet50-Baseline 37.23/78.01 38.48/78.92
ResNet50+DenseCRFa [18] 37.97/78.51 38.86/79.32
ResNet50+GlobalPooling [24] 40.07/79.52 41.22/80.35
ResNet50+ASPP [5] 40.39/79.71 42.18/80.73
ResNet50+NonLocal [40] 40.93/79.97 41.94/80.71
ResNet50+PSP [45] 41.68/80.04 42.78/80.76
ResNet50+COLLECT(Compact) 41.07/79.61 41.99/80.32
ResNet50+COLLECT 41.27/79.74 42.56/80.56
ResNet50+DISTRIBUTE 41.46/80.12 42.63/80.90
ResNet50+COLLECT+DISTRIBUTE 41.92/80.17 42.97/80.92

ResNet101-Baseline 39.66/79.44 40.71/80.17
ResNet101+COLLECT 42.70/80.53 43.68/81.24
ResNet101+DISTRIBUTE 42.11/80.01 43.38/81.12
ResNet101+COLLECT+DISTRIBUTE 42.75/80.71 43.77/81.51

a
CRF parameters: bi w=3.5, bi xy std=55, bi rgb std=3, pos w=2, pos xy std=1.

Based on the feature map extracted by FCN, DenseCRF[18] only brings
slight improvement. Global pooling [24] is a simple and intuitive attempt to har-
vest long-range contextual information, but it treats each position on the feature
map equally. Pyramid structures [5,45] with several branches can capture contex-
tual information at different scales. Another option is to use an attention mask
for each position in the feature map. A non-local method was adopted in [40],
in which attention mask for each position is generated by calculating the fea-
ture correlation between each paired positions. In our PSA module, apart from
the uniqueness of the attention mask for each point, our point-wise masks are
self-adaptively learned with convolutional operations instead of simply matrix
multiplication adopted by non-local method [40]. Compared with these infor-
mation aggregation methods, our method performs better, which shows that
the PSA module is a better choice in terms of capturing long-range contextual
information.

We further explore the two branches in our PSA module. Taking ResNet50 as
an example with information flow in ‘collect’ mode (denoted as ‘+COLLECT’)
in Table 1, our single scale testing results get 41.27/79.74 in terms of Mean
IoU and Pixel Acc. (%)., exceeding the baseline by 4.04/1.73. This significant
improvement demonstrates the effectiveness of our proposed PSA module, even
with only uni-directional information flow in a simplified version. With our bi-
direction information flow model (denoted as ‘+COLLECT +DISTRIBUTE’),
the performance further increases to 41.92/80.17, outperforming the baseline
model by 4.69/2.16 in terms of absolute improvement and 12.60/2.77 in terms
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Table 2. Methods comparison with re-
sults reported on ADE20K validation set.

Method Mean IoU(%) Pixel Acc.(%)

FCN-8s [26] 29.39 71.32
SegNet [1] 21.64 71.00
DilatedNet [42] 32.31 73.55
CascadeNet [48] 34.90 74.52
RefineNet101 [21] 40.20 -
RefineNet152 [21] 40.70 -
PSPNet50 [45] 42.78 80.76
PSPNet101 [45] 43.29 81.39
WiderNet [41] 43.73 81.17

PSANet50 42.97 80.92
PSANet101 43.77 81.51

Table 3. Methods comparison with re-
sults reported on VOC 2012 test set.

Method mIoU(%)

LRR [11] 79.3
DeepLabv2 [5] 79.7
G-CRF [3] 80.4
SegModel [34] 81.8
LC [20] 82.7
DUC HDC [39] 83.1
Large Kernel Matters [31] 83.6
RefineNet [21] 84.2
ResNet-38 [41] 84.9
PSPNet [45] 85.4
DeepLabv3 [6] 85.7
PSANet 85.7

of relative improvement. The improvement is just general to backbone networks.
This manifests that both of the two information propagation paths are effective
and complementary to each other. Also note that our location-sensitive mask
generation strategy plays a key role for our high performance. Method denoted
as ‘(compact)’ means compact masks are generated with size H ×W instead of
the over-completed ones with doubled size, ignoring the relative location infor-
mation. The performance is higher if the relative location is taken into account.
However, the ‘compact’ method outperforms the ‘non-local’ method, which also
indicates that the long-range dependency adaptively learned from the feature
map as we propose is better than that calculated from the feature correlation.

Method Comparison. We show the comparison between our method and
others in Table 2. With the same network backbone, PSANet gets higher per-
formance than those of RefineNet [21] and PSPNet [45]. PSANet50 even out-
performs RefineNet with much deeper ResNet-152 as the backbone. It is slightly
better than WiderNet [41] that uses a powerful backbone called Wider ResNet.

Visual Improvements. We show the visual comparison of the parsing results
in Fig. 5. PSANet much improves the segmentation quality, where more accu-
rate and detailed predictions are generated compared to the one without the
PSA module. We include more visual comparisons between PSANet and other
approaches in the supplementary material.

4.3 PASCAL VOC 2012

PASCAL VOC 2012 segmentation dataset [9] is for object-centric segmentation
and contains 20 object classes and one background. Following prior works [4,5,45],
we utilize the augmented annotations from [12] resulting 10,582, 1,449 and 1,456
images for training, validation and testing. Our introduced PSA module is also
very effective for object segmentation as shown in Table 4. It boosts the perfor-
mance greatly, exceeding the baseline by a large margin.
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(a) Image (b) Ground Truth (c) Baseline (d) PSA-COL (e) PSA-COL-DIS

Fig. 5. Visual improvement on validation set of ADE20K. The proposed PSANet gets
more accurate and detailed parsing results. ‘PSA-COL’ denotes PSANet with ‘COL-
LECT’ branch and ‘PSA-COL-DIS’ stands for bi-direction information flow mode,
which further enhances the prediction.

Table 4. Improvements introduced by
PSA module. Results are reported with
models trained on train aug set and eval-
uated on val set of VOC 2012.

Method
Mean IoU(%) / Pixle Acc.(%)

SS MS

Res50-Baseline 67.12/92.83 67.57/92.98
+COL 76.96/94.79 78.00/95.01
+COL+DIS 77.24/94.88 78.14/95.12

Res101-Baseline 70.64/93.82 71.22/93.95
+COL 77.90/95.02 79.07/95.32
+COL+DIS 78.51/95.18 79.77/95.43

Table 5. Improvements introduced by
PSA module. Results are reported with
models trained on fine train set and eval-
uated on fine val set of Cityscapes.

Method
Mean IoU(%) / Pixle Acc.(%)

SS MS

Res50-Baseline 71.93/95.53 72.99/95.76
+COL 76.51/95.95 77.50/96.15
+COL+DIS 76.65/95.99 77.79/96.24

Res101-Baseline 74.83/96.03 75.89/96.23
+COL 77.06/96.18 78.05/96.39
+COL+DIS 77.94/96.10 79.05/96.30

Following methods of [4,5,45,6], we also pre-train on the MS-COCO [23]
dataset and then finely tune the system on the VOC dataset. Table 3 lists the
performance of different frameworks on VOC 2012 test set – PSANet achieves
top performance. Visual improvement is clear as shown in the supplementary
material. Similarly, better prediction is yielded with PSA module incorporated.

4.4 Cityscapes

Cityscapes dataset [8] is collected for urban scene understanding. It contains
5,000 finely annotated images divided into 2,975, 500, and 1,525 images for
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Table 6. Methods comparison with results reported on Cityscapes test set. Methods
trained using both fine and coarse data are marked with †.

Method mIoU(%)

DeepLabv2 [5] 70.4
LC [20] 71.1
Adelaide [22] 71.6
FRRN [32] 71.8
RefineNet [21] 73.6
PEARL [16] 75.4
DUC HDC [39] 77.6
SAC [43] 78.1
PSPNeta [45] 78.4
ResNet-38 [41] 78.5
SegModel [34] 78.5
Multitask Learning [17] 78.5
PSANeta 78.6

PSANetb 80.1

a
Trained with fine train set only

b
Trained with fine train + fine val set

Method mIoU(%)

LRR-4x† [11] 71.8

SegModel† [34] 79.2

DUC HDC† [39] 80.1

Netwarp† [10] 80.5

ResNet-38† [41] 80.6

PSPNet† [45] 81.2

DeepLabv3† [6] 81.3

PSANet† 81.4

training, validation and testing. 30 common classes of road, person, car, etc.
are annotated and 19 of them are used for semantic segmentation evaluation.
Besides, another 20,000 coarsely annotated images are also provided.

We first show the improvement brought by our PSA module based on the
baseline method in Table 5 and then list the comparison between different meth-
ods on test set in Table 6 with two settings, i.e., training with only fine data
and training with coarse+fine data. PSANet achieves the best performance un-
der both settings. Several visual predictions are included in the supplementary
material.

4.5 Mask visualization

To get a deeper understanding of our PSA module, we visualize the learned
attention masks as shown in Fig. 6. The images are from the validation set of
ADE20k. For each input image, we show masks at two points (red and blue
ones), denoted as the red and blue ones. For each point, we show the mask
generated by both ‘COLLECT’ and ‘DISTRIBUTE’ branches. We find that
attention masks pay low attention at the current position. This is reasonable
because the aggregated feature representation is concatenated with the original
local feature, which already contains local information.

We find that our attention mask effectively focuses on related regions for
better performance. For example in the first row, the mask for the red point,
which locates on the beach, assigned a larger weight to the sea and beach which
is beneficial to the prediction of red point. While the attention mask for the blue
point in the sky assigns a higher weight to other sky regions. A similar trend is
also spotted in other images.
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(a) Input Image (b) RED-COL (c) RED-DIS (d) BLUE-COL (e) BLUE-DIS

Fig. 6. Visualization of learned masks by PSANet. Masks are sensitive to location and
category information that harvest different contextual information.

The visualized masks confirm the design intuition of our module, in which
each position gather informative contextual information from regions both nearby
and far away for better prediction.

5 Concluding Remarks

We have presented the PSA module for scene parsing. It adaptively predicts two
global attention maps for each position in the feature map by convolutional lay-
ers. Position-specific bi-directional information propagation is enabled for better
performance. By aggregating information with the global attention maps, long-
range contextual information is effectively captured. Extensive experiments with
top ranking scene parsing performance on three challenging datasets demon-
strate the effectiveness and generality of the proposed approach. We believe the
proposed module can advance related techniques in the community.
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