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Abstract. Densely-sampled light fields (LFs) are beneficial to many applications

such as depth inference and post-capture refocusing. However, it is costly and

challenging to capture them. In this paper, we propose a learning based algorithm

to reconstruct a densely-sampled LF fast and accurately from a sparsely-sampled

LF in one forward pass. Our method uses computationally efficient convolutions

to deeply characterize the high dimensional spatial-angular clues in a coarse-to-

fine manner. Specifically, our end-to-end model first synthesizes a set of inter-

mediate novel sub-aperture images (SAIs) by exploring the coarse characteristics

of the sparsely-sampled LF input with spatial-angular alternating convolutions.

Then, the synthesized intermediate novel SAIs are efficiently refined by further

recovering the fine relations from all SAIs via guided residual learning and stride-

2 4-D convolutions. Experimental results on extensive real-world and synthetic

LF images show that our model can provide more than 3 dB advantage in recon-

struction quality in average than the state-of-the-art methods while being compu-

tationally faster by a factor of 30. Besides, more accurate depth can be inferred

from the reconstructed densely-sampled LFs by our method.

Keywords: Light Field, Deep Learning, Convolutional Neural Network, Super

Resolution, View Synthesis

1 Introduction

Compared with traditional 2-D images, which integrate the intensity of the light rays

from all directions at a pixel location, LF images separately record the light ray inten-

sity from different directions, thus providing additional information on the 3-D scene

geometry. Such information is proportional to the angular resolution, i.e. the number of

directions of the light rays, captured by the LF image. Densely sampled LF, with high

resolution in the angular domain, contains sufficient information for accurate depth in-

ference [1,2,3,4], post-capture refocusing [5] and 3D display [6,7].

⋆ Equal Contributions
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LF images [8,9] can be acquired in a single shot using camera arrays [10] and con-

sumer hand-held LF cameras such as Lytro [11] and Raytrix [12]. The former, due to

the large number of sensors, can capture LF with higher spatial resolution while being

expensive and bulky. Through multiplexing the angular domain into the spatial domain,

the later is able to capture LF images with a single sensor, and thus are cheaper and

portable. However, due to the limited sensor resolution, there is a trade-off between

spatial and angular resolution. As a result, these cameras cannot densely sample in both

the spatial and angular domains.

Reconstruction of a densely-sampled LF from a sparsely-sampled LF input is an

on-going problem. Recent development in deep learning based LF reconstruction mod-

els [13,14] have achieved far superior performance over the traditional approaches

[1,2,3,4]. Most notably, Kalantari et al. [13] proposed a sequential convolutional neural

network (CNN) with disparity estimation and Wu et al. [14] proposed to use a blur-

deblur scheme to counter the problem of information asymmetry between angular and

spatial domain and a single CNN is used to map the blurred epipolar-plane images

(EPIs) from low to high resolution. However, both approaches require heavy pre- or

post-processing steps and long runtime, making them impractical to be applied in con-

sumer LF imaging system.

In this paper, we propose a novel learning based model for fast reconstruction of

a densely-sampled LF from a very sparsely-sampled LF. Our model, an end-to-end

CNN, is composed of two phases, i.e., view synthesis and refinement, which are real-

ized by computationally efficient convolutions to deeply characterize the spatial-angular

clues in a coarse-to-fine manner. Specifically, the view synthesis network is designed

to synthesize a set of intermediate novel sub-aperture images (SAIs) based on the input

sparsely-sampled LF and the view refinement network is deployed for further exploiting

the intrinsic LF structure among the synthesized novel SAIs. Our model does not require

disparity warping nor any computationally intensive pre- and post-processing steps.

Moreover, reconstruction of all novel SAIs are performed in one forward pass during

which the intrinsic LF structural information among them is fully explored. Hence, our

model fully preserves the intrinsic structure of reconstructed densely-sampled LF, lead-

ing to better EPI quality that can contribute to more accurate depth estimation.

Experimental results show that our model provides over 3 dB improvement in the

average reconstruction quality while requiring less than 20 seconds on CPU, achiev-

ing over 30× speed up, compared with the state-of-the-art methods in synthesizing a

densely-sampled LF from a sparsely-sampled LF. Experiment also shows that the pro-

posed model can perform well on large baseline LF inputs and provides substantial

quality improvement of over 3 dB with extrapolation. Our algorithm not only increases

the number of samples for depth inference and post-capture refocusing, it can also en-

able LF to be captured with higher spatial resolution from hand-held LF cameras and

potentially be applied in compression of LF images.

2 Related Work

Early works on LF reconstruction are based on the idea of warping the given SAIs

to novel SAIs guided by an estimated disparity map. Wanner and Goldluecke [1] for-
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mulated the SAI synthesis problem as an energy minimization problem with a total

variation prior, where the disparity map is obtained through global optimisation with

a structure tensor computed on the 2-D EPI slices. Their approach considers disparity

estimation as a separate step from SAI synthesis, which makes the reconstructed LF

heavily dependent on the quality of the estimated disparity maps. Although subsequent

research [2,3,4] has shown significantly better disparity estimations, ghosting and tear-

ing effects are still present when the input SAIs are sparse.

Kalantari et al. [13] alleviated the drawback of Wanner and Goldluecke [1] by

synthesizing the novel SAIs with two sequential CNNs that are jointly trained end-

to-end. The first CNN performs disparity estimation based on a set of depth features

pre-computed from the given input SAIs. The estimated disparities are then used to

warp the given SAIs to the novel SAIs for the second CNN to perform color estima-

tion. This approach is accurate but slow due to the computation intensive depth features

extraction. Furthermore, each novel SAI is estimated at a separate forward pass, hence

the intrinsic LF structure among the novel SAIs is neglected. Moreover, the reconstruc-

tion quality depends heavily upon the intermediate disparity warping step, and thus the

synthesized SAIs are prone to occlusions.

Advancement in single image super-resolution (SISR) is recently made possible by

the adoption of deep CNN models [15,16,17,18]. Following this, Yoon et al. [19,20],

developed a CNN model that jointly super-resolves the LF in both the spatial and angu-

lar domain. This model concatenates at the channel dimension a subset of the spatially

super-resolved SAIs from a CNN that closely resembles the model proposed in [15].

The concatenated SAIs are then passed into a second CNN for angular super-resolution.

Their approach is designed specificity for scale 2 angular super-resolution and can not

flexibly adapt to perform on very sparsely-sampled LF input.

Recently, Wu et al. [14] developed a CNN model that inherits the basic architecture

of [15] with an addition residual learning component as in [16]. Using the idea of SISR,

their model focuses on recovering the high frequency details of the bicubic upsampled

EPI while a blur-deblur scheme is proposed to counter the information asymmetry prob-

lem caused by sparse angular sampling. Their model is adaptable to different devices.

Since each EPI is a 2-D slice in both the spatial and angular domains of the 4-D LF, EPI

based model can only utilize SAIs from the same horizontal or vertical angular coor-

dinate of the sparsely-sampled LF to recover the novel SAIs in between, thus severely

restricting the accessible information of the model. For the novel SAIs that do not fall

within the same horizontal or vertical angular coordinate as the input SAIs, they are

reconstructed based on the previously estimated SAIs. As a result, these SAIs are bi-

ased due to input errors. Moreover, due to the limitation in the blurring kernel size and

bicubic interpolation, this method cannot be applied to sparsely-sampled LF with only

2× 2 SAIs or with disparity larger than 5 pixels.

3 The Proposed Approach

3.1 4-D Light Field and Problem Formulation

4-D LF can be represented using the two-plane parameterization structure, as illustrated

in Fig. 1, where the light ray travels and intersects the angular plane (s, t) and the spatial
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Fig. 1. LF captured with a single sensor device. The angular information of an LF is captured via

the separation of light rays by the micro-lens array. The resulting LF can be parameterized by the

spatial coordinates and the angular coordinates, i.e. the position of the SAI.

plane (x, y) [21]. Let I ∈ R
W×H×M×N×3 denote an LF with M ×N SAIs of spatial

dimension W ×H × 3, and I(:, :, s, t, :) ∈ R
W×H×3 be the (s, t)-th SAI (1 ≤ s ≤ M ,

1 ≤ t ≤ N ).

Densely-sampled LF reconstruction aims to construct an LF I ′ ∈ R
W×H×M ′×N ′×3

including a large number of SAIs, from an LF I containing a small number of SAIs ,

where M ′ > M and N ′ > N . Since the densely-sampled LF I ′ also contains the set

of input SAIs, denoted as K, the SAIs to be estimated is therefore reduced to the set of

(M ′ ×N ′ −M ×N ) novel SAIs, denoted as N .

Efficient modelling of the intrinsic structure of LF , i.e. photo-consistency, defined

as the relationship of pixels from different SAIs that represent the same scene point,

is crucial for synthesising high quality LF SAIs. However, real-world scenes usually

contain factors such as occlusions, specularities and non-Lambertian lighting, making

it challenging to characterize this structure accurately. In this paper, we propose a CNN

based approach for efficient characterisation of spatial-angular clues for high quality

reconstruction of densely sampled LFs.

3.2 Overview of Network Architecture

As illustrated in Fig. 2, we propose a novel CNN model to provide direct end-to-end

mapping between the luma component of the input SAIs, denoted as KY , and that of the

novel SAIs, denoted as N̂Y . Our proposed network consists of two phases: view syn-

thesis and view refinement. The view synthesis network, denoted as fS(.), first synthe-

sizes the whole set of intermediate novel SAIs based on all input SAIs. The synthesized

novel SAIs are then combined with the input SAIs to form a 4-D LF structure using a

customised reshape-concat layer. This intermediate LF is then fed into the refinement

network, denoted as fR(.), for recovering the fine details. At the end, the estimated fine

details are added to the intermediate synthesized SAIs in an pixel-wise manner to give

the final prediction of the novel SAIs N̂Y . The relations between the inputs and outputs

of our model is represented as:

N̂Y = fS(KY ) + fR(fS(KY ),KY ). (1)
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Fig. 2. The workflow of reconstructing a densely-sampled LF with 8 × 8 SAIs from a sparsely-

sampled LF with 2×2 SAIs. Our proposed model focuses on reconstructing the luma components

(Y) of the novel SAIs, while angular bilinear interpolation recovers the other two chrominance

components (Cb and Cr). Note that the reshape operations in the view synthesis network are

included for understanding of the data flow and are not required in actual implementation.

Note that the full color novel SAIs N̂ are obtained from combining N̂Y with an-

gular bilinear interpolation of the other two chrominance components, i.e., Cb and Cr.

Contrary to the previous approaches that synthesize a particular novel SAI at a each

forward pass [13], and an EPI of a row or column of novel SAIs at each forward pass

[14], our approach is capable of jointly producing all novel SAIs at one pass to preserve

the intrinsic LF structure among them. Our network is full 4-D convolutional and uses

Leaky Relu with the parameter of 0.2 for activation. Table 1 provides a summary of the

network architecture.

3.3 View Synthesis Network

The view synthesis network estimates a set of intermediate novel SAIs by uncover-

ing the coarse spatial-angular clues carried by the limited number of SAIs of the input

sparsely-sampled LF. This step takes in all input SAIs from the given LF for the es-

timation of novel SAIs, and thus it can make full use of available information on the

structural relationship among SAIs. For achieving this, it is necessary to perform con-

volution on all both the spatial and the angular dimensions of the input LF.

4-D convolution is a straightforward choice for this task. However, for this partic-

ular problem, the computational cost required by 4-D convolution makes training such

a model impossible in a reasonable amount of time. Pseudo filters or separable filters,

which reduce model complexity by approximating a high dimensional filter with filters

of lower dimension, have been applied to solve different computer vision problems,
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Table 1. Model specification for reconstructing a densely-sampled LF with 8 × 8 SAIs from a

sparsely-sampled LF with 2 × 2 SAIs on the luma component. The first two dimensions of the

filters, input and output data tensor correspond to the spatial dimension whereas the third and the

forth dimension correspond to the angular dimension. The fifth dimension of the output tensor

denotes the number of feature maps in the intermediate convolutional layers while represent-

ing the number of novel SAIs at the final layer. Stride and Paddings are given in the form of

(Spatial/Angular). All convolutional layers contain biases. Note that the intermediate LF recon-

struction step is performed with reshape and concatenation operations to enable back-propagation

of loss from the view refinement network to the view synthesis network.

Filter Size/Operation Input Size Output Size Stride Pad

sparsely-sampled LF Input - - (64, 64, 2, 2, 1) - -

View Synthesis Netowrk

Feature Extraction (3, 3, 3, 3, 1, 64) (64, 64, 2, 2, 1) (64, 64, 2, 2, 64) 1/1 1/1

Alternating Filtering (×L)

Spatial Sl, l ∈ {1, ..., L} (3, 3, 1, 1, 64, 64) (64, 64, 2, 2, 64) (64, 64, 2, 2, 64) 1/1 1/0

Angular Al, l ∈ {1, ..., L} (1, 1, 3, 3, 64, 64) (64, 64, 2, 2, 64) (64, 64, 2, 2, 64) 1/1 0/1

Novel SAIs Synthesis (3, 3, 2, 2, 64, 60) (64, 64, 2, 2, 64) (64, 64, 1, 1, 60) 1/1 1/0

Intermediate LF
Reshape & Concat

(64, 64, 2, 2, 1)
(64, 64, 8, 8, 1) - -

Reconstruction (64, 64, 1, 1, 60)

View Refinement Network

Angular Dim. Reduction 1 (3, 3, 2, 2, 1, 16) (64, 64, 8, 8, 1) (64, 64, 4, 4, 16) 1/2 1/0

Angular Dim. Reduction 2 (3, 3, 2, 2, 16, 64) (64, 64, 4, 4, 16) (64, 64, 2, 2, 64) 1/2 1/0

Fine Details Recovery (3, 3, 2, 2, 64, 60) (64, 64, 2, 2, 64) (64, 64, 1, 1, 60) 1/1 1/0

Novel SAIs Reconstruction Element-wise Sum
(64, 64, 1, 1, 60)

(64, 64, 1, 1, 60) - -
(64, 64, 1, 1, 60)

such as image structure extraction [22], 3-D rendering [23] and video frame interpola-

tion [24]. This is recently adopted in [25] for LF material classification, which verifies

that the pseudo 4-D filters can achieve similar performance as 4-D filters.

For preventing potential overfitting and long training time from the use of full 4-D

filter while characterizing 4-D information of LF, we adopt the pseudo 4-D filter which

approximates a single 4-D filtering step with two 2-D filters that perform convolution

on the spatial and the angular dimensions of the LF in an alternating manner. Such a

design requires only the computation of 2/n2 of a 4-D convolution while still utilizing

all available information from the input SAIs.

In the synthesis network, spatial-angular alternating convolutions are adopted only

for intermediate feature extraction. For the initial feature extraction step and the novel

SAIs synthesis step, 4-D convolution is applied since the computational complexity is

less. Such a design obtains a significant reduction in parameter size as well as com-

putational cost. Moreover, the low computational cost also benefits from that feature

extraction is performed at the coarse angular resolution of M × N as opposed to [14]

at the fine level of M ′ ×N ′.

3.4 View Refinement Network

In the view synthesis phase, novel SAIs are independently synthesized, and the rela-

tionship among them is not taken into account. Therefore, a view refinement network is

designed to further exploit the relationship among the synthesized novel SAIs from the
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intermediate LF, which is expected to contribute positively to the reconstruction quality

of the densely-sampled LF. This can be considered as a regularizer that imposes the LF

structure on the synthesized SAIs.

Inspired by the success of residual learning on image reconstruction [16,17,18,14],

we equip our view refinement network with guided residual learning that is specifically

designed for the LF data structure. Typical residual learning attempts to learn a trans-

formation R(·) to recover the residual R(I ′) for the input data I ′, i.e. the intermediate

LF, as shown in Eq. (2). However, the input to the refinement network consists of a set

of SAIs KY ⊂ I ′ from the given sparsely-sampled LF, which is absolutely correct, i.e.

R(KY ) = 0, and a set of synthesized SAIs N ′
Y = fS(KY ) ⊂ I ′, which is erroneous.

Hence, residual learning on KY is unnecessary. Guided residual learning can be formu-

lated as a typical residual learning on N ′
Y with the guidance from the additional input,

KY , as shown in Eq. (3).

ÎY = I ′ +R(I ′) (2)

N̂Y = N ′
Y +R(N ′

Y |KY ) (3)

Guided residual learning has the following benefits: i) KY , as a set of ground-truth

SAIs, offers correct complementary information of the scene; ii) learning 0 residuals

for KY is not performed; and iii) By placing KY and N ′
Y in the form of I ′, a densely

sampled intermediate LF, for input to the second stage refinement network, it encour-

ages the first stage, i.e., view synthesis network, to generate SAIs that preserve the LF

structure exhibiting in the EPI shown in Fig. 1 (d).

Since the angular dimension increases significantly from M ×N to M ′ ×N ′ after

the view synthesis processes, alternating convolution will incur a substantially higher

computation cost that increases linearly in angular dimension. For reducing the com-

putation to a manageable level, stride-2 4-D convolution is used for efficient angular

dimension reduction while the feature map number is set to increase gradually. Note

that to allow back-propagation, an intermediate 4-D LF is reconstructed from the pre-

viously synthesized novel SAIs and the input SAIs via a customised reshape-concat

layer. The refinement details of all novel SAIs are independently estimated at the final

4-D convolution layer and are added to the previously synthesized intermediate novel

SAIs to give the final reconstructed novel SAIs.

3.5 Training Details

The training objective is to minimise the L2 distance between all reconstructed novel

SAIs N̂Y and their respective ground-truth NY :

L2(NY , N̂Y ) =
∑

x

∑

y

∑

s

∑

t

(
N̂Y (x, y, s, t)−NY (x, y, s, t)

)2

.

We trained a model for each task on the training set with 100 scenes provided by

Kalantari et al. [13] 1. All images were taken with a Lytro Illum camera and were

1 http://cseweb.ucsd.edu/˜viscomp/projects/LF/papers/SIGASIA16

http://cseweb.ucsd.edu/~viscomp/projects/LF/papers/SIGASIA16
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(a) (b) (c) (d) (e)

Fig. 3. Illustration of inputs (red blocks) and outputs (yellow blocks) for different tasks. From left

to right: (a) 3× 3− 7× 7, (b) 3× 3− 9× 9, (c) 2× 2− 8× 8, (d) 2× 2− 8× 8 extrapolation-1,

(e) 2× 2− 8× 8 extrapolation-2.

decoded to 14× 14 SAIs with spatial resolution 376× 541. Since the three SAIs from

each side are usually black, we only adopted the middle 8 × 8 SAIs for training and

testing as done in [13].

Training LFs were spatially cropped to 64× 64 patches with stride 1, giving a max-

imum of approximately 15,000,000 training samples. Moreover, we adopted stochastic

gradient descent to optimize the model, and the batch size was set to 1. The spatial

resolution of the model output is kept unchanged at 64× 64 with padding of zeros.

We implemented the model with the MatConvNet toolbox [26] in MATLAB and

trained it with the GTX 1080 Ti GPU. Random filter weights under the MSRA method

[27] were used to initialize our model, while biases were initialized to 0. Throughout

training, momentum parameter was set to 0.9. Depending on model depth, a learning

rate between 1e−6 to 2e−5 was applied without weight decay, and epoch number was

set between 8000 to 12000 each with 1000 iterations. Training time increases linearly

with the number of alternating convolutions, ranging from around 1 day for model with

1 alternating convolution and 10 days for model with 16 alternating convolutions.

4 Experimental Results

Our model was compared with two state-of-the-art CNN based methods that are specif-

ically designed for densely-sampled LF reconstruction, i.e., Kalantari et al. [13] and

Wu et al. [14]. Comparisons were performed over three different tasks, shown in Fig.

3: 3×3−7×7, 3×3−9×9 and 2×2−8×8. Task M ×N −M ′×N ′ stands for re-

constructing densely-sampled LFs with M ′×N ′ SAIs from sparsely-sampled LFs with

M ×N SAIs. Moreover, we investigated the effect of the positions of SAIs involved in

the sparsely-sampled LF input on the reconstruction quality via task 2× 2− 8× 8.

Both quantitative and qualitative results will be shown in the following subsections.

Reconstruction quality is measured with PSNR and SSIM, averaged over all synthesised

novel SAIs. Due to limited space, we only report the average result for all data entries

in each dataset. The (5, 5)-th SAI of the reconstructed densely-sampled LF is chosen

for display. Both training and testing codes are publicly available 2.

2 https://github.com/angularsr/LightFieldAngularSR

https://github.com/angularsr/LightFieldAngularSR
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Table 2. Quantitative comparisons of the reconstruction quality of the proposed model and the

state-of-the-art methods under the task 3× 3 – 7× 7.

Algorithm 30 Scenes Reflective-29 Occlusions-16 Neurons 20× Average

Wu el al. [14] 41.02/0.9875 46.10/0.9929 38.86/0.9852 29.34/0.9378 40.75/0.9861

Kalantari et al. [13] 43.73/0.9891 46.54/0.9953 37.97/0.9827 28.45/0.9274 43.18/0.9872

Ours 4L 44.53/0.9900 47.85/0.9960 39.53/0.9873 30.69/0.9518 44.06/0.9889

Table 3. Quantitative comparisons of reconstruction quality of the proposed model, Kalantari et

al. and Wu et al. over Buddha and Mona from the HCI dataset.

Algorithm Buddha Mona Average

Wu el al. [14]/SC 41.67/0.9975 42.39/0.9973 42.03/0.9974

Wu el al. [14]/SRCNN 41.50/0.9971 42.64/0.9976 42.07/0.9974

Wu el al. [14] 43.20/0.9980 44.37/0.9982 43.79/0.9981

Kalantari et al. [13] 42.73/0.9844 42.42/0.9858 42.58/0.9851

Ours 8L 43.77/0.9872 45.67/0.9920 44.72/0.9896

4.1 3 × 3 − 7 × 7 Light Field Reconstruction

For the task 3 × 3 − 7 × 7, we compared with Kalantari et al. [13] and Wu et al. [14].

We set the number of spatial-angular alternating convolutional layers to 4. Comparisons

were performed on the 30 Scenes dataset [13], the reflective-29 and occlusion-16 LFs

from the Stanford Lytro Lightfield Archive [28] and Neurons 20× from the Stanford

Light Field microscope dataset [29]. The reconstruction quality measured in PSNR and

SSIM is shown in Table 2. For each LF, the results are the average of the luma com-

ponent of all 40 novel SAIs. Our proposed model performs better for all datasets than

the two comparing methods: with 0.88 dB and 3.31 dB reconstruction advantage over

Kalantari et al. [13] and Wu et al. [14], respectively. A 2.3 dB advantage for the Neu-

rons 20× dataset shows that the proposed LF reconstruction model generalizes well to

different LF capturing devices.

4.2 3 × 3 − 9 × 9 Reconstruction on Large Disparity Light Field

To demonstrate that our model can work on LFs with larger disparities, the proposed

model was modified for task 3×3−9×9 and was trained with LFs from the HCI dataset

[30], which are created with Blender software [31], with larger disparities compared

with Lytro Illum captures. The LFs Budda and Mona are used for testing and the rest

are used for training. For this task, we set the number of spatial-angular alternating

convolution layers to 8. Due to limited number of training images, data augmentation

was applied for obtaining more data training samples.

Comparison results with [14] are reported in Table 3. Using only 7 training LFs,

our proposed method provides superior reconstruction quality on the luma component,

averaged across all 72 novel SAIs.
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Table 4. Quantitative comparisons of reconstruction quality of the proposed model and Kalantari

et al. under task 2× 2− 8× 8 over 222 real-world LFIs.

Algorithm 30 Scenes EPFL Reflective Occlusions Average

Kalantari et al. [13] 38.21/0.9736 38.70/0.9574 35.84/0.9416 31.81/0.8945 36.90/0.9452

Ours 16L 39.22/0.9773 39.57/0.9637 36.47/0.9472 32.68/0.9061 37.76/0.9521

4.3 2 × 2 − 8 × 8 Light Field Reconstruction

We carried out comparison with the method by Kalantari et al. [13] retrained with the

same training dataset as ours. The method by Wu et al. [14] cannot be compared since

their approach requires 3 views in each angular dimension to provide enough informa-

tion for the bicubic interpolation step. Our testing dataset contains 30 test scenes from

[13]1 and 118 LFs from the EPFL dataset [32] 3 with diversified real-world scenes. To

further evaluate the robustness of the algorithms, we also included the Refractive and

Reflective Surfaces and the Occlusions categories from the Stanford Lytro Lightfield

Archive [28], which contain 31 and 43 LFs, respectively. Note that the 8 LFs from

the Occlusions category and 1 LF from the Refractive and Reflective Surfaces category

were removed from testing as they were used for training. This test set contains 222

LFs which is sufficient to provide objective evaluation of model performance.

Reconstruction quality is measured with PSNR and SSIM averaged over the RGB

channels, and over all 60 novel SAIs. As shown in Table 4, our proposed model with 16

alternating convolutions in the synthesis network obtains an average of 37.76 dB, 0.86

higher than that of Kalantari et al. [13].

Fig. 4 further visually demonstrates that our algorithm is able to obtain better re-

construction quality compare with the state-of-the-art. As shown in the error maps,

Kalantari et al. produces artifacts near the boundaries of the foreground objects. In

most cases, thin edges cannot be reconstructed correctly, leaving blurred and overlapped

regions between occluders and the background. Moreover, since our method fully ex-

plores the relationship among all SAIs in the reconstruction process, the LF structure is

well preserved, leading to better EPI quality that can contribute to more accurate depth

estimation.

4.4 2 × 2 − 8 × 8 Light Field Reconstruction with Extrapolation

Figs. 5 (a) and (b) show the average quality of each novel SAIs by Kalantari et al. [13]

and the proposed approach under the task 2× 2− 8× 8, where it can be observed that

reconstruction quality of the center SAIs has significantly worse quality compared with

the novel SAIs near the input SAIs. The central view is furthest away from any of the

input SAIs, therefore it poses greatest challenge to correctly infer the details. Based on

this analysis, we investigated the possibility of combing interpolation and extrapolation

for the LF reconstruction, which can make the average distances from all novel SAIs

shorter to the input SAIs.

3 https://jpeg.org/plenodb/lf/epfl/

https://jpeg.org/plenodb/lf/epfl/
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Fig. 4. Visual comparison of our proposed approach with Kalantari et al. [13] on the (5, 5)-th
synthesised novel SAI for the task 2×2−8×8. Selected regions have been zoomed on for better

comparison. Digital zoom-in is recommended for more visual details.

We trained two models with the exact same network architecture as Ours 8L, how-

ever, with different input view position configurations as shown in 3 (d) and (e), which

we name as Ours Extra. 1 and Ours Extra. 2, respectively. Note that for the first

model, 1 row and column of SAIs are extrapolated while for the second model, 2 rows

and columns of SAIs are extrapolated.

As shown in Table 5, when our model combines interpolation and extrapolation,

an average of 2.5 dB improvement can be achieved for all novel SAIs on the 222 LFs

dataset. Figs 5 (c) and (d) also show the average quality of each novel SAIs by Ours

Extra. 1 and Ours Extra. 2, respectively. The significant gain in reconstruction quality

indicates the potential for the proposed algorithm to be applied on LF compression

[33,34].
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Table 5. Quantitative comparisons of reconstruction quality of Ours, Ours Extra. 1, Ours Ex-

tra. 2 and Kalantari et al. over 222 real-world LFs. For the proposed models, the number of

spatial-angular alternating convolutions is set to 8.

Algorithm 30 Scenes EPFL Reflective Occlusions Average

Kalantari et al. [13] 38.21/0.9736 38.70/0.9574 35.84/0.9416 31.81/0.8945 36.90/0.9452

Ours 38.88/0.9750 39.29/0.9611 36.52/0.9466 32.58/0.9019 37.55/0.9495

Ours Extra. 1 40.79/0.9820 41.25/0.9705 40.16/0.9667 35.54/0.9275 39.93/0.9632

Ours Extra. 2 40.93/0.9827 41.46/0.9717 40.02/0.9651 35.79/0.9246 40.09/0.9631

(a) (b) (c) (d)

Fig. 5. Each subfigure displays the average reconstruction quality measured as PSNR at different

SAI position under the task 2 × 2 − 8 × 8 of different models. The white blocks indicate the

input SAIs. From left to right: (a) Kalantari et al. [13], (b) Ours, (c) Ours Extra. 1 and (d) Ours

Extra. 2.

4.5 Depth Estimation

To verify that the densely-sampled LF generated from our proposed model not only

produces high PSNR for each SAIs, but also well preserves the 3-D geometric struc-

tures among the SAIs, we further applied the depth estimation algorithm [3] on the

reconstructed densely-sampled LF with 8× 8 SAIs generated from a sparsely-sampled

LF with 2 × 2 SAIs. Fig. 6 shows in each row the depth maps based on the sparsely-

sampled LFs, the densely-sampled LFs from Kalantari et al., the densely-sampled LFs

from our model and the ground-truth densely-sampled LFs. It can be observed that the

depth maps from Ours Extra. 1 are more accurate than those by Kalantari et al..

4.6 Runtime and Reconstruction Quality vs. Model Depth

The runtime and performance trade-off of our proposed model with different numbers

of alternating convolutions are shown in Fig. 7. We can observe that the reconstruction

quality by our model increases rapidly with the number of alternating convolutions in-

creasing. Furthermore, the adoption of extrapolation leads to a significant improvement

in reconstruction with a runtime of around 11 seconds, over 30× speed up compared

with Kalantari et al. [13], on an Intel i7-6700K CPU @ 4.00GHz without GPU accel-

eration. Moreover, the scalable structure in the synthesis network enables a trade-off

between the reconstruction quality and speed. For task 2×2−8×8, our model with 16

alternating convolutions needs approximately 20 seconds. If speed is of priority, at sim-

ilar reconstruction quality to Kalantari et al., our model with 1 alternating convolution

can provide over 130× speed up, taking only 3.15 seconds to process an LF.



Fast Light Field Reconstruction 13

Black Fence Fountain and Bench Bikes Vespa

Central View of the LFI
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Depth generated from reconstructed LF with our method

Depth generated from Ground-truth SAIs

Fig. 6. Visual comparison of the depth estimation results from a sparsely-sampled LF, recon-

structed densely-sampled LF from our proposed approach and Kalantari et al. [13] and a ground-

truth densely-sampled LF.

5 Conclusion and Future Work

We have presented a novel learning based framework for densely-sampled LF recon-

struction. To characterize the high-dimensional spatial-angular clues within LF data

accurately and efficiently, we have designed an end-to-end trained CNN that exten-

sively employs spatial-angular alternating convolutions for fast feature transformation

and stride-2 4-D convolutions for rapid angular dimension reduction. Moreover, our

network synthesizes novel SAIs in a coarse-to-fine manner by first reconstructing a set

of intermediate novel SAIs synthesized at the coarse angular dimension, then applying

guided residual learning to refine the intermediate views at a finer level.

Extensive evaluations on real-world and synthetic LF scenes show that our pro-

posed model is able to provide over 3 dB reconstruction quality in average than the
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Fig. 7. The trade-off between runtime and reconstruction quality at different model depth. Exe-

cution time in seconds were calculated as the average of 50 tests performed on an Intel i7-6700K

CPU @ 4.00GHz without GPU acceleration.

state-of-the-art methods while being over 30× faster. Especially, our model can handle

complex scenes with serious occlusions well. Moreover, our model is able to perform

well under LFs with larger disparities, and more accurate depth can be inferred from the

reconstructed densely-sampled LFs by our method. Considering the efficiency and ef-

fectiveness of the proposed CNN model in processing LF data, we believe such a design

has great potential on LF compression, as well as a wide range of LF image processing

tasks, including but not limited to LF spatial super-resolution, temporal super-resolution

and depth estimation.
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