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Abstract. We propose a novel GAN-based framework for detecting
shadows in images, in which a shadow detection network (D-Net) is
trained together with a shadow attenuation network (A-Net) that gen-
erates adversarial training examples. The A-Net modifies the original
training images constrained by a simplified physical shadow model and
is focused on fooling the D-Net’s shadow predictions. Hence, it is ef-
fectively augmenting the training data for D-Net with hard-to-predict
cases. The D-Net is trained to predict shadows in both original images
and generated images from the A-Net. Our experimental results show
that the additional training data from A-Net significantly improves the
shadow detection accuracy of D-Net. Our method outperforms the state-
of-the-art methods on the most challenging shadow detection benchmark
(SBU) and also obtains state-of-the-art results on a cross-dataset task,
testing on UCF. Furthermore, the proposed method achieves accurate
real-time shadow detection at 45 frames per second.
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1 Introduction

Shadows occur frequently in natural scenes, and can hamper many tasks such
image segmentation, object tracking, and semantic labeling. Shadows are formed
in complex physical interactions between light sources, geometry and materials
of the objects in the scene. Information about the physical environment such as
sparse 3D scene reconstructions [33], rough geometry estimates [22], and multiple
images of the same scene under different illumination conditions [25] can aid
shadow detection. Unfortunately, inferring the physical structure of a general
scene from a single image is still a difficult problem.

The difficulty of shadow detection is exacerbated when dealing with consumer-
grade photographs and web images [15]. Such images often come from non-linear
camera sensors, and present many compression and noise artifacts. In this case, it
is better to train and use appearance-based classifiers [36, 7,27, 13] rather than
relying on physical models of illumination [4,5]. Shadow classifiers, however,
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Fig.1: Adversarial shadow attenuation. The attenuator takes an original
shadow image and generates different adversarial shadow samples to train the
shadow detector.
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require annotated training data, and the performance of a classifier often corre-
lates with the amount of training data. Unfortunately, annotated shadow data
is expensive to collect and label. Only recently available training data has in-
creased from a few hundred images [7, 36] to a few thousands [30] thus enabling
training more powerful shadow classifiers based on deep convolutional neural
networks [30,20]. Nevertheless, even a few thousand images is a tiny amount
compared to datasets that have driven progress in deep learning [2,16]. It is
therefore safe to assume that the performance of deep learning shadow classifiers
has not saturated yet, and it can be improved with more training data. Unfor-
tunately, collecting and annotating shadow data is a laborious process. Even a
lazy annotation approach [28] takes significant effort; the annotation step itself
takes 20 seconds per image, not including data collection and cleansing efforts.

In this paper, instead of collecting additional data, we propose a method
to increase the utility of available shadow data to the fullest extent. The main
idea is to generate a set of augmented training images from a single shadow
image by weakening the shadow area in the original training image. We refer
to this process as shadow attenuation and we train a deep neural network to
do so, called A-Net. This network modifies original shadow images so as to
weaken the shadow effect, as illustrated in Fig. 1. The generated images serve as
additional challenging training samples for a shadow detector D-Net. We present
a novel framework, where the shadow attenuator and the shadow detector are
trained jointly in an adversarial manner. The output of the attenuation model
A-Net provides adversarial training samples with harder-to-detect shadow areas
to improve the overall reliability of the detector D-Net.

Recent research also suggests that deep networks are highly sensitive to ad-
versarial perturbations [19, 26, 34]. By jointly training A-Net and D-Net, we di-
rectly enhance the resistance of the detector D-Net to adversarial conditions and
improve the generalization of the detector, following the recent trend [35, 3, 31].

Essentially, what is being proposed here is a data augmentation method for
shadow detection. It is different from other data augmentation methods, and
it does not suffer from two inherent problems of general data augmentation
approaches, which are: 1) the augmented data might be very different from the
real data, having no impact on the generalization ability of the trained classifier
on real data, and 2) it is difficult to ensure that the augmented data samples
have the same labels as the original data, and this leads to training label noise.
A popular approach to address these problems is to constrain the augmented
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data samples to be close to the original data, e.g., setting an upper bound for
the Lo distance between the original sample and the generated sample. However,
it is difficult to set the right bound; a big value would create label noise while
a small value would produce augmented samples that are too similar to the
original data, yielding no benefit. In this paper, we address these two problems
in a principled way, specific to shadow detection. Our idea is to use a physics
model of shadows and illumination to guide the data generation process and to
estimate the probability of having label noise.

Note that we aim to attenuate the shadow areas, not to remove them. Shadow
removal is an important problem, but training a good shadow removal network
would require many training pairs of corresponding shadow /shadow-free images,
which are not available. Furthermore, completely removed shadows would corre-
spond to having label noise, and this might hurt the performance of the detector.

Experimental results show that our shadow detector outperforms the state-
of-the-art methods in the challenging shadow detection benchmark SBU [30]
as well as on the cross-dataset task (training on SBU and testing on the UCF
dataset [36]). Furthermore, our method is more efficient than many existing
ones because it does not require a post-processing step such as patch averaging
or conditional random field (CRF) smoothing. Our method detects shadows at
45 frames per second for 256 x 256 input images.

2 Related Work

Single image shadow detection is a well studied problem. Earlier work focused
on physical modeling of illumination [5,4]. These methods render illumination
invariant representations of the images where shadow detection is trivial. These
methods, however, only work well for high quality images taken with narrow-
band sensors [15]. Another early attempt to incorporate physics based con-
straints with rough geometry was the approach of Panagopoulos et al. [21] where
the illumination environment is modeled as a mixture of von Mises-Fisher distri-
butions [1] and the shadow pixels are segmented via a graphical model. Recently,
data-driven approaches based on learning classifiers [8,11,27,13] from small an-
notated datasets [36, 7] have shown more success. For instance, Vicente et al. [27,
29] optimized a multi-kernel Least-Squares SVM based on leave-one-out esti-
mates. This approach yielded accurate results on the UCF [36] and UIUC [7]
datasets, but its underlying training procedure and optimization method cannot
handle a large amount of training data.

To handle and benefit from a large amount of training data, recent shadow
detection methods have been developed based on the stochastic gradient de-
scent training of deep neural networks. Vicente et al. [30] proposed a stacked-
CNN architecture, combining an image-level Fully Convolution Neural Network
(FCN) with a patch-CNN. This approach achieved good detection results, but
it is cumbersome as the Fully Connected Network (FCN) has to be trained
before its predictions are used to train the patch-CNN. Similarly, testing was
computationally expensive as it requires the FCN prediction followed by predic-
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Fig.2: Adversarial training of a shadow detector. A-Net takes a shadow
image and its corresponding shadow mask as input, and generates an adversarial
example by attenuating the shadow regions in the input image. The attenuated
shadows are less discernible and therefore harder to detect. D-Net takes this
image as input and aims to recover the original shadow mask.

tions of densely sampled patches covering the testing image. Recently, Nguyen et
al. [20] presented scGAN, a method based on Generative Adversarial Networks
(GANS) [6]. They proposed a parametric conditional GAN [17] framework, where
the generator was trained to generate the shadow mask, conditioned on an in-
put RGB patch and a sensitivity parameter. To obtain the final shadow mask
for an input image, the generator must be run on multiple image patches at
multiple scales and the outputs are averaged. Their method achieved good re-
sults on the SBU dataset, but the detection procedure was computationally
expensive at test time. Our proposed method also uses adversarial training for
shadow detection, but it is fundamentally different from scGAN. scGAN uses
the generator to generate a binary shadow mask conditioned on the input im-
age, while our method uses the generator to generate augmented training images
in RGB space. Furthermore, while scGAN uses the discriminator as a regula-
tor to encourage global consistency, the discriminator in our approach plays a
more prominent role for shadow pixel classification. In contrast to scGAN, our
method does not require post processing or output averaging, leading to real-
time shadow detection. Another method that uses GAN for shadow detection is
Stacked Conditional GAN [32]. This method, however, requires the availability
of shadow-free images. Another recent approach [10] proposes to use contextual
information for a better shadow detection. Contextual information is incorpo-
rated by having several spatial-directional recurrent neural networks. While this
method yields excellent results on shadow detection benchmarks, it also requires
running a CRF as a post-processing step.

We propose a method to improve shadow detection with augmented training
examples, in sync with recent trends on data augmentation. For example, Zhang
et al. [35] proposed a simple augmentation method by enriching the dataset
with the linear combinations of pairs of examples and their labels to improve
the generalization of the network and its resistance toward adversarial exam-
ples. Another approach that used adversarial examples for training a network
was proposed by Shrivastava et al. [24]. They adversarially trained a Refiner
network that inputs synthetic examples and outputs more realistic images. The
refined examples can be used as additional training data. In a similar way, our
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proposed Attenuator (A-Net) takes original training images and generates realis-
tic images with attenuated shadows that act as additional training examples for
our shadow detector. The generation of adversarial examples is an integral part
of the joint training process with the detector (D-Net), in contrast to [24] where
the generated data is a preprocessing step to enrich the training set. The effects
of the shadow Attenuator can also be seen as related to adversarial perturba-
tions [18]: A-Net modifies the input images so as to fool the predictions of the
shadow detector D-Net. Adversarial examples also can be used to improve the
generalization of the network for domain adaptation [31] in which a conditional
GAN is used to perform feature augmentation.

3 Adversarial Training and Attenuation

3.1 Framework Overview

We present a novel framework for shadow detection based on adversarial train-
ing and shadow attenuation. Our proposed model contains two jointly trained
deep networks. Fig. 2 illustrates the flow diagram of our framework. The shadow
attenuation network, called Attenuator or A-Net, takes as input a shadow im-
age and its corresponding shadow mask. Based on these inputs, the Attenuator
generates a version of the input image where the shadows have been attenuated.
Attenuation can be thought of as partial shadow removal. The image generated
by the Attenuator is fed into a shadow detection network, called Detector or
D-Net, which predicts the shadow areas. On each training iteration, D-Net also
takes the original input image, and learns to predict the corresponding annotated
ground-truth shadow mask.

A-Net is trained to attenuate shadow regions so as to fool the shadow detec-
tor. In particular, for pixels inside the provided shadow mask, A-Net manipulates
the values of the pixels to disguise them as non-shadow pixels so that they can-
not be recognized by D-Net. We further constrain the attenuation transformation
using a loss that incorporates physics-inspired shadow domain knowledge. This
enhances the quality of the generated pixels, improving the generalizability of
the detector. At the same time, A-Net learns not to change the values or the
pixels outside the shadow mask. We enforce this with a loss that penalizes the
difference between the generated image and the input image on the area out-
side of the shadow mask (non-shadow pixels). The adversarial training process
with all the aforementioned constraints and the back propagation error from the
shadow detection network guides A-Net to perform shadow attenuation.

The detector network, D-Net, takes the adversarial examples generated by
A-Net and predicts shadow masks. Shadow areas in the images generated by
A-Net are generally harder to detect than in the input images, since A-Net is
trained to attenuate the shadows to fool D-Net. As a result, D-Net is trained
with challenging examples in addition to the original training examples. As D-
Net improves its ability to detect shadows, A-Net also improves its ability to
attenuate shadows to confound D-Net with tougher adversarial examples. This
process strengthens the shadow detection ability of D-Net.
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Fig.3: A-Net. The area outside the shadow mask is constrained by the differ-
ence loss with respect to the input image. The area inside the shadow mask is
constrained by the feedback from D-Net and the physics based constraint.

3.2 Physics-based Shadow and Illumination Model

We use a physics-based illumination model to guide the data generation process
and avoid label noise. We use the simplified illumination model used by Guo
et al. [7,8] where, each pixel is lit by a combination of direct and environment
lights: I; = (k;Lq + L) R;, where I is an image and I; denotes the color of the
i'" pixel of the image. R; is the surface reflectance corresponding to the i** pixel.
Ly and L. are 3 x 1 vectors representing the colors and intensities of the direct
light and the environment light (which models area sources and inter reflections),
respectively. k; € [0,1] is the shadowing factor that indicates how much of the
direct light reaches the pixel i. k; remains close to 0 for the umbra region of the
shadow, while it gets increasingly close to 1 in the penumbra region. For pixels
inside shadow-free areas k; = 1. We can relate the original shadow region and
its corresponding shadow-free version by the ratio:

Iishadow—free B Ld + Le
IiShadOW - kiLq+ L. :

By taking the ratio between the shadow-free and in-shadow values, we have
eliminated the unknown reflectance factor. We assume that the direct light is
constant over the scene depicted by the image, and the effects of the environment
light are similar for all pixels. We incorporate this model into the training process
of both A-Net and D-Net:

— A-Net: We design the physics loss to enforce the illumination ratios for
pixels inside an attenuated shadow area to have a small variance.

— D-Net: We directly estimate the illumination ratio between the areas inside
and outside the shadow mask to measure shadow strength in the attenuated
images to avoid training label noise.

3.3 A-Net: Shadow Attenuator Network

The shadow attenuator network A-Net is trained to re-illuminate only the shadow
areas so that they cannot be detected by the detector network D-Net. To obtain
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useful and realistic attenuated shadows, A-Net aims to fool D-Net while respect-
ing a physical illumination model. Fig. 3 shows the training process of A-Net,
which attenuates shadow areas under the following constraints and objectives: 1)
Values of non-shadow pixels are preserved. 2) Shadow pixels are re-illuminated
such that D-Net cannot recognize them as shadow pixels. 3) The resulting pixel
transformation obeys physics-inspired illumination constraints.

These constraints and objectives can be incorporated in the training of A-Net
by defining a proper loss function. Let I denote an input image, and M (I) be
the shadow mask of I. Let A(]) denote the output of A-Net for the input pair
of I and M(I) (here we write A(I) as the short form for A(I, M(I))). Let D(I)
denote the output of D-Net for an input image I, i.e. the predicted shadow mask.
Ideally, the output should be 1 for shadow pixels and 0 otherwise. The objective
of A-Net’s training is to minimize a weighted combination of three losses:

,CA(I) = )\nsd»cnsd(]) + )\sd»csd(-[) + )\phﬁph(f), (1)

where L, 54 is the loss that penalizes the modification of values for pixels outside
the shadow mask M (1) for the input image I: Ly5q(I) = mean;gprpy [[A(L); — L, -
Lsq is the adversarial loss. It penalizes the correct recognition of D-Net for
shadow pixels on the generated image, restricted to the area inside the training
shadow mask M (I): Lsq(I) = mean;en(r)[D(A(]))i]. Lpn is a physics-inspired
loss to ensure that the shadow area in the generated image is re-illuminated in a
physically feasible vs(/a)y. Based on the illumination model described in Section 3.2,
AL,

we want the ratio = * to be similar for all pixels ¢ inside a re-illuminated shadow

area. We model thiszby adding a loss term for the variance of the log ratios

LoD) = 3 Variance log(A(D);) — log(I})].
ce{R,G,B}

where (-)¢ denotes the pixel value in the color channel ¢ of the RGB color image.

Fig. 4 shows some examples of attenuated shadows that were generated by
A-Net during the adversarial training process. The two original input images
contain easy to detect shadows with strengths 3.46 and 2.63. The heuristic to
measure these shadow strength values are described in Section 3.4. The outputs
of A-Net given these input images and shadow masks are shown in columns
(c, d, e), obtained at epochs 1, 5, and 40 during training. The shadows in the
generated images become harder to detect as training progresses. Numerically,
the shadow strength of the attenuated shadows decreases over time. Moreover,
A-Net also learns to not change the non-shadow areas.

3.4 D-Net: Shadow Detector Network

The D-Net is central to our framework. It learns to detect shadows from adver-
sarial examples generated by the A-Net as well as original training examples. On
each training iteration, both the original input and the adversarially attenuated
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Fig. 4: Examples of attenuated shadows. (a) Input image. (b) Ground truth
shadow mask. (c, d, e): adversarial examples with attenuated shadows gener-
ated by A-Net from epoch 1, 5, and 40 respectively. The corresponding shadow
strength are shown as black text on the top-left corner of each image.

image are used to train D-Net. The learning objective for D-Net is to minimize
the following loss function:

Lp(I) = Aear [|D(I) = MD)||; + Xago (A(D)) |D(A(D)) = M(I)|ly,  (2)

where Areqr and Aggy (A(I)) control how much D-Net should learn from the real
sample I and the adversarial example A(I) respectively. Aqq,(A(I)) depends
on how much the shadow in I has been attenuated. If A(I) is the completely
shadow-free version of I, A\;q,(A(I)) should ideally be zero. Otherwise, this loss
function corresponds to having label noise as it requires the output of the shadow
detector D-Net for the input A(I) to be the same as the shadow mask M(I),
while A(I) is a shadow-free image.

To determine if A(T) is a shadow-free image, we derive a heuristic based on
the illumination model described in Sec. 3.2. We first define two areas alongside
the shadow boundary, denoted as By, and B,yt, illustrated in Fig. 5. B,y (green)
is the area right outside the boundary, computed by subtracting the shadow
mask from its dilated version. The inside area B, (red) is computed similarly
with the eroded shadow mask. We define the shadow strength kg¢rengtn as the

ratio of average pixel intensities of the two boundary areas: kstrengtn(A()) =
mean;eB,, [A(T):]
mean;es,,, [A(1)4]
strengths; an image with a darker shadow (relative to the non-shadow area) has
a higher value of Kstrengtr and vice versa.

We use the shadow strength of the attenuated image to decide if D-Net
should learn from the attenuated shadow image. Heuristically, the shadow might
be completely removed if the shadow strength Ksrengen is too close to 1, i.e.,
the two areas on the two sides of the shadow boundary have the same average
intensities. Based on this heuristic, we set the weight for the adversarial example

. Fig. 5 shows two examples of images with two different shadow
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Fig.5: Estimating the shadow strength. From the ground-truth shadow
mask, we define two area By, (red) and B,,; (green) obtained by dilation and
erosion of the shadow mask. The shadow strength kgrengn is computed as the
ratio between the average intensity of pixels in B,,; over the average intensity
of pixels in B;,. (a) an image with very a strong dark shadow, ksrengen = 4.16.
(b) light shadow ksirengen = 1.15.

A(I) as follows:

/\0

Aado(A(D)) = {Oadv if Estrengtn (A(I)) > 1+ €

otherwise, (3)
where \Y, 'is a tunable baseline factor for adversarial examples and € is a small
threshold which we empirically set to 0.05.

3.5 Network Architectures

Both A-Net and D-Net were developed based on the U-Net architecture [23].
Following [12], we created networks with seven skip-connection modules, each
of which contains a sequence of Convolutional, BatchNorm, and Leaky-ReLu
[9] layers. The A-Net input is a four channel image, which is the concatenation
of the RGB image and the corresponding shadow mask. The A-Net output is a
three channel RGB image. The input to D-Net is an RGB image, and the output
is a single channel shadow mask.

4 Experiments and Results

We experiment on several public shadow datasets. One of them is the SBU
Shadow dataset [30]. This dataset consists of pairs of RGB images and cor-
responding annotated shadow binary masks. The SBU dataset contains 4089
training images, and 638 testing images, and is currently the largest and most
challenging shadow benchmark. We also perform cross-dataset experiments on
the UCF testing set [36], which contains 110 images with corresponding shadow
masks. We quantitatively evaluate shadow detection performance by compar-
ing the testing ground-truth shadow masks with the prediction masks produced
by D-Net. As is common practice in the shadow detection literature, we will
use the Balanced Error Rate (BER) as the principal evaluation metric. The
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BER is defined as: BER = 1~ } (7beg + 73 ), where TP, TN, FP, FN

are the total numbers of true positive, true negative, false positive, and false
negative pixels respectively. Since natural images tend to overwhelmingly more
non-shadow pixels, the BER is less biased than mean pixel accuracy. We also
provide separate mean pixel error rates for the shadow and non-shadow classes.

Training and implementation details. We use stochastic gradient descent
with the Adam solver [14] to train our model. We use mini batch SGD with
batch size of 64. On each training iteration, we perform three forward passes
consecutively: forward the input shadow image I to A-Net to get the adversarial
example A(I), then separately forward the adversarial image and shadow in-
put image to D-Net. We alternate one parameter update step on D-Net with
one update step on A-Net, as suggested by [6]. Before training and testing, we
transform the images into log-space. We experimentally set our training param-
eters as: (Ansd, Asds Aphs Areal, Aoy, ) = (30,1,100,0.8,0.2). We implemented our
framework on PyTorch. More details can be found at: www3.cs.stonybrook.
edu/~cvl/projects/adnet/index.html

4.1 Shadow Detection Evaluation

We evaluate the shadow detection performance of the proposed D-Net on the
SBU and UCF datasets. To detect shadows in an image, we first resize the
image to 256 x 256. We input this image to D-net to produce a shadow mask of
size 256 x 256, which will be compared with the ground-truth shadow mask for
evaluation (in the original size).

In Table 1, we compare the performance of our method with the state-of-the-
art methods Stacked-CNN [30], scGAN [20], ST-CGAN [32], and DSC [10]. We
also consider a variant of D-Net, trained without the attenuated shadow images
from A-Net. All methods are trained on the SBU training set. Performance is
reported in terms of BER, as well as shadow and non-shadow error rates. Note
that DSC [10] only reported BER numbers on the SBU dataset and its cross-
domain results were obtained on testing data that is different from the commonly
used UCF test dataset (as proposed by [36]).

On the SBU test set, our detector (D-Net) outperforms the previous state-of-
the-art methods. Compared to the Stacked-CNN we obtain a 51% error reduc-
tion. Compared to scGAN and ST-CGAN, D-Net brings a 41% error reduction
and a 33% error reduction respectively. D-Net outperforms DSC by 0.2% BER,
aeven though it is significantly simpler. D-Net is fully convolutional, without the
need of for running recurrent neural networks and CRF post processing.

For the cross-dataset experiments, the detectors are trained on the SBU
training set, but they are evaluated on the test set of the UCF dataset [36].
These datasets are disjoint; while SBU covers a wide range of scenes, UCF focuses
on images where dark shadows as well dark albedo objects are present. Again,
we compare our method with the previous state-of-the-art methods: Stacked-
CNN [30], scGAN [20], and ST-CGAN [32]. In terms of BER, our proposed D-Net
yields significant error reductions of 18% and 16% with respect to scGAN and



Shadow Detection with Adversarial Shadow Attenuation 11

ST-CGAN, respectively. The performance gap between D-Net trained with and
without attenuated shadow images is very significant, highlighting the benefits
of having attenuated shadow examples for training.

Table 1: Evaluation of shadow detection methods on the SBU Shadow
dataset [30] and for cross-dataset detection on UCF [36]. All methods
are trained on the SBU training data. Both Balanced Error Rate (BER) and per
class error rates are shown. DSC [10] only reported BER numbers, and used a
different UCF test dataset, so cross-domain performance cannot be compared.
Best performances is printed in bold.

Evaluated on SBU Testset [30] Evaluated on UCF Testset [36]

Method BER Shadow Non Shad. BER Shadow Non Shad.
stacked-CNN [30] 11.0 9.6 12.5 13.0 9.0 17.1
scGAN [20] 9.1 7.8 10.4 11.5 7.7 15.3
ST-CGAN [32] 8.1 3.7 12.5 112 5.0 17.5
DSC [10] 5.6 - - - - -
D-Net (w/o A-Net) 8.8 8.1 9.3 11.8 8.9 14.7
D-Net (with A-Net) 5.4 53 5.5 94 70 11.8

4.2 Qualitative Results

In Fig. 6 (i) and (ii), we show shadow detection results on the SBU dataset. The
columns show input images, ground truth shadow masks, and D-Net outputs,
respectively. In Fig. 6.(i), we see how the D-Net correctly predicts shadows on
different types of scenes such as desert, mountain, snow, and under different
weather conditions from sunny to cloudy and overcast. In Fig. 6.(ii), notice how
the D-Net accurately predicts shadows in close-ups as well as long-range shots,
and in aerial images. Fig. 7 shows qualitative comparisons with the shadow de-
tection results of scGAN [20]. In general, D-Net produces more accurate shadows
with sharper boundaries.

4.3 Failure Cases

Some failure cases of our method are shown in Fig. 8. Many are due to dark
albedo material regions being incorrectly classified as shadows. We also investi-
gate the locations of wrongly classified pixels to understand the causes of failure.
Fig. 9 shows the proportion of wrongly predicted pixels with respect to their dis-
tances to the closest ground-truth shadow boundary on the SBU testing set. A
large portion of missed shadow pixels is within a small distance to a boundary.
Specifically, 65% of false negative cases are within 10 pixels of a shadow bound-
ary. This means the shadow pixels missed by our method are probably either
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Fig.6: Shadow detection results. Our proposed method accurately detects
shadows on: (i) different scenes, and illumination conditions; (ii) close-ups and
long-range shots, as well as aerial images.

around the shadow boundaries or inside very small shadow regions. Meanwhile
a large portion of false positive prediction is far away from a shadow boundary.
This is perhaps due to the misclassifications of dark objects as shadows.

4.4 Ablation Study and Parameter Analysis

We conducted experiments to analyze the impact of the physics-based loss (L)
and the weight function \,4, in our framework. We trained our model with two
additional scenarios for comparison: 1) without the physics-based loss and with-
out the weight function \,4,, and 2) with the physics-based loss but without
the weight function Ayq,. We denote these two configurations as (—Lpn, —Aqdw)
and (+Lpn, —Aadv) respectively. Table 2 shows the shadow detection results
of the models trained with these modified conditions. We tested the models,
trained on SBU, on both the UCF and SBU testing sets. As can be seen from
Table 2, dropping the weight function A,4, increased error rates slightly, while
dropping the physics-based loss drastically increased error rates. In Fig. 10, we
compare adversarial examples generated by the model trained with and without
the physics-based loss. Incorporating this loss produces images with more real-
istic attenuated shadows. Thus, the produced examples aid the training of the
shadow detector D-Net. In our experiments, at the 50" training epoch, approx-
imately 6% of all images generated by A-Net, were not used based on Ag,.

We conducted experiments to study the effect of the parameters of our frame-
work. We started from the parameter settings reported in Section 4. When we
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Fig.7: Comparison of shadow detection on SBU dataset. Qualitative
comparison between our method and the state-of-the-art method scGAN [20].
(a) Input image. (b) Ground-truth shadow mask. (c¢) Predicted shadow mask by
scGAN [20]. (d) Predicted shadow mask by our method.
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method.

chose \yq = 10, D-Net achieved 6.5% BER. As )\gq increases, A-Net attenuates
the shadow more dramatically but also tends to change the non-shadow part,
generating lower quality images in general. In the second experiment, we rescaled
the ratio between the real and adversarial images being input to D-Net. When
we chose A0, = 0.5 and Ayeq; = 0.5, D-Net achieved 7.0% BER.

adv
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Table 2: Ablation study. Comparison of shadow detection results of our frame-
work with and without inclusion of the physics based loss L. Detection per-
formance significantly profits from incorporating the physics based loss Ly, into
the training process: 20% reduction of BER in SBU[30] testing set, and 27%
error reduction in UCF [36] (cross-dataset task)

Evaluated on SBU Testset Evaluated on UCF Testset

Method BER Shadow Non Shad. BER Shadow Non Shad.
D-Net (+Lpn, +Aaaw) 5.4 5.3 55 94 7.0 11.8
D-Net (+Lph, —Aagw) 5.7 6.2 5.2 9.9 7.3 12.5
D-Net (—Lpn, —Aagw) 7.1 7.6 67 136 159 11.3
(a) Input (b) Result w/o Ly (c) Result w/ Ly

Fig. 10: Examples of adversarial examples generated with and without
physics. (a) Input image I. (b) Adversarial example generated by A-net trained
without physics based loss. (¢) Adversarial example generated by A-net trained
with physics based loss.

5 Summary

In this paper, we have presented a novel framework for adversarial training of a
shadow detector using shadow attenuation. We have shown experimentally how
our model is able to effectively learn from both real shadow training examples
as well as adversarial examples. Our trained model outperforms the previous
state-of-art shadow detectors in two benchmark datasets, demonstrating the
effectiveness and generalization ability of our model. Furthermore, to the best
of our knowledge, this is the first shadow detector that can detect shadows
accurately at real-time speed, 45 fps.
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