
Deep Randomized Ensembles for Metric

Learning

Hong Xuan1, Richard Souvenir2, Robert Pless1

1Department of Computer Science,
George Washington University
{xuanhong,pless}@gwu.edu

2Department of Computer and Information Sciences,
Temple University

souvenir@temple.edu

Abstract. Learning embedding functions, which map semantically re-
lated inputs to nearby locations in a feature space supports a variety of
classification and information retrieval tasks. In this work, we propose
a novel, generalizable and fast method to define a family of embedding
functions that can be used as an ensemble to give improved results.
Each embedding function is learned by randomly bagging the training
labels into small subsets. We show experimentally that these embedding
ensembles create effective embedding functions. The ensemble output
defines a metric space that improves state of the art performance for
image retrieval on CUB-200-2011, Cars-196, In-Shop Clothes Retrieval
and VehicleID.

1 Introduction

Image embeddings are commonly optimized to map semantically similar inputs
to nearby locations in feature space. Thereafter, tasks such as classification and
image retrieval can be recast as simple operations, such as neighborhood lookups,
in the learned feature space. This approach has been applied across many prob-
lems.

Deep learning approaches to embedding are trained with data from many
classes and optimize loss functions based on pairs of images from the same or
different classes [3,5], triplets of images where inputs from the same class are
forced to be closer than inputs from different classes [16], or functions of large
collections of images [9,2,20,7].

For many of these optimization functions, embedding the input images into
a high dimensional space leads to poor performance due to over-fitting. Some
recent work [13] suggests an approach to high-dimensional embedding with an
ensemble approach, learning to map images to a collection of independent output
spaces, using boosting to re-weight input examples to make each output space
independent.

We propose a different approach to learning a robust, high-dimensional em-
bedding space. Instead of re-weighting input examples to create independent

https://orcid.org/0000-0002-4951-3363


2 Hong Xuan, Richard Souvenir, Robert Pless

Fig. 1. Standard deep embedding approaches (left) train a network to map all images
from a class to nearby locations in an output space. Our approach (right) learns an
ensemble of mappings. Each model of the ensemble learns a mapping that groups small
subsets of classes. Images are mapped by each model in the ensemble, and the output
coordinates are concatenated.

output embeddings, we propose to group class labels. Figure 1 illustrates the
idea. We learn a collection of embeddings all trained with the same input data,
but differing in the label assigned to the data points. We group classes into meta-
classes (each containing a few classes), and learn embeddings with inputs labelled
by their meta-class. We show a visual example of the meta-classes in Figure 2
based on data from the CARS196 dataset. The first meta-class groups together
images from particular models of Porches and Audi, so the first embedding will
seek to map all these images to the same location.

For each grouping of classes into meta-classes, an embedding is learned that
embeds all elements of the same meta-class similarly. We train many such em-
beddings, with different random groupings of classes into meta-classes. The final
embedding is the concatenation of the coordinates of each low-dimensional em-
bedding.

This approach fits to many choices of embedding architectures. We show
experimental results using the ResNet-18 [6] and Inception V3 [19] architectures,
and demonstrate that our ensemble method improves upon the state of the art
across a number of problem domains. Our contributions are as follows.



Deep Randomized Ensembles for Metric Learning 3

– We introduce the idea of randomly grouping labels as an approach to making
a large family of related embedding models that can be used as an ensemble.

– We illustrate the effect of different parameter choices relating to the embed-
ding size and number of embeddings within the ensemble.

– We demonstrate improvement over the state of the art for retrieval tasks
for the CUB-200-2011 [21], Cars-196 [8], In-Shop Clothes Retrieval [24] and
VehicleID [10] datasets.

2 Related Work

2.1 Image Embeddings

Image embedding falls under the umbrella of distance metric learning. There
has been quite a bit of work in this area from both the machine learning and
computer vision perspectives. Here, we focus on recent methods which employ
convolutional neural networks for image embedding.

There are many ways to learn embedding functions. Triplet loss (e.g. [16])
defines a loss function based on triplets of images (two from the same class,
and one from a different class), and penalizes the network if it does not map the
same class inputs to be closer than the different classes. Because training is often
performed in batches, it is natural to consider loss functions that optimize the
embedded location of all images in the batch, either by considering all triplets
(defined by the batch) simultaneously or by penalizing the histograms of distance
between same-class and different class images [7,12,20].

No Fuss Embeddings [11] shows that using the output layer of classification
networks provide very useful embedding functions for one-shot learning and im-
age retrieval tasks. This has the advantage of faster convergence (because each
input image has a specific label, and the loss function does not depend on where
other inputs are mapped), which removes some challenges in hard-example min-
ing that plague some triplet-loss approaches. While triplet-loss approaches can
be designed to mitigate these challenges [7], we choose to use [11] as our embed-
ding approach in our experiments primarily for its speed.

2.2 Ensemble CNNs

Ensemble algorithms have been more widely used for classification problems. One
example applies a variation of the boosting model that adds extra network layers
trained on examples for which a smaller network fails [22]. Other approaches to
create diversity in the ensemble is to train a collection of networks of different
architectures to solve the same problem and combine the results [4].

To the best of our knowledge, the only work that creates an ensemble for
embedding is BIER [13]. This follows a boosting model to incrementally create
an ensemble embedding by re-weighting examples so that subsequent embeddings
are driven to correct errors in earlier embeddings. Compared to this approach,
our method is not sequential, and therefore trivially parallelized. Additionally, as
we demonstrate in Section 4, our method outperforms BIER on many benchmark
datasets.



4 Hong Xuan, Richard Souvenir, Robert Pless

Fig. 2. Meta-classes for the CAR196 dataset. It may be counter-intuitive that it is
helpful to group specific models of Porches and Audis into one class and learn embed-
dings where those classes are mapped to the same location, but this approach makes it
easy to define many different but related embedding problems that become an effective
ensemble.

3 Training Randomized Ensemble Embedding

Our training approach is to create a collection of related models and learn an
embedding for each one. To create one member of our ensemble, model i, we
partition the set of class labels from the training set Y into a set of meta-classes
Mi, where the number of meta-classes is a parameter D, and each meta-class is
roughly the same size. All model in the ensemble are computed the same way,
with the only difference being that the mapping, φi, based on meta-classes, Mi,
come from a different random partitions of Y .

We define the number of embeddings as L. To compute the final embedding
for a new input x, we concatenate the output of each embedding to get a final
output vector, Φ = 〈φ1(x), φ2(x), . . . φL(x)〉. For one-shot learning or image re-
trieval tasks, this function Φ takes the place of standard embedding functions.



Deep Randomized Ensembles for Metric Learning 5

Overall this approach has a collection of parameters and choices, with the two
most prominent being:

1. D, the number of meta-classes into which the class label set Y is partitioned,
and

2. L, the number of embeddings functions included in the ensemble.

There are a collection of choices that relate to learning φi based on the embedding
problem defined by the class partition Mi. If φi is represented as a deep neural
network, we consider the following questions:

1. What is output embedding dimension of φi?
2. What is the network architecture that represents the function φi?
3. What is the loss function used to train φi?

We chose to experiment with ResNet-18 and Inception V3 architectures and
follow the no-fuss-embedding approach [11] with an output dimension equal
to the number of meta-classes, D (except where noted). Given these choices,
Section 4 characterizes performance as a function of the number of meta-classes
(and therefore the size of each meta-class) and the size of the ensemble used.

All tests are run on the PyTorch platform [14]. For our experiments, we use
the ResNet18 and Inception V3 implementations from the PyTorch model zoo,
which are pretrained on ILSVRC 2012-CLS data [15]. The input images are
re-sized to 256 by 256 pixels. We adopt a standard data augmentation scheme
(random horizontal flip and random crops padded by 10 pixels on each side). For
pre-processing, we normalize the images using the channel means and standard
deviations. All networks are trained using stochastic gradient descent (SGD). On
all datasets we train using a batch size of 128 for 9 epochs. The initial learning
rate is set to 0.01 and divided by 10 every 3 epochs.

4 Experimental Evaluation

We compare our method, Deep Randomized Ensembles for Metric Learning
(DREML) with 7 state-of-art methods (using published results where avail-
able): Triplet Learning with semi-hard negative mining [17], N-Pairs deep met-
ric loss [18], Proxy-based method [11], Hard-Aware Deeply Cascaded Embedding
(HDC) [23], Boosting Independent Embeddings Robustly (BIER) [13], the Fash-
ionNet benchmark [24] and Group Sensitive Triplet Sampling (GS-TRS) [1].

4.1 Parameter Selection

Figure 3 shows the performance tradeoffs for different choices of the number of
embeddings to include in the ensemble (our parameter L), and the number of
meta-classes (our parameter D), for the CAR196 dataset. The left graph shows
a dramatic improvement as the ensemble size grows while it is small, and a clear
asymptotic behavior beyond which adding new embeddings does not help. The



6 Hong Xuan, Richard Souvenir, Robert Pless

right graph shows that the performance also depends on the size of the meta-
class. When D is small, the number of classes per meta-class is large making a
harder embedding problem; when D is large, the number of classes per meta-class
is small leading to less diversity in the ensemble.

Figure 4 explores the effect of increasing ensemble size for a fixed meta-
class size. We see that the distribution of dot-products between embeddings
of objects in the same class (solid) and different classes (dashed) becomes more
separated for the CAR196 dataset, for both the training and validation datasets.
Additionally, the number of pairs from different classes that have a large dot-
product (for example, greater than 0.75) decreases. This is consistent with the
observed improvement in the recall performance.

For the remaining experiments, we employ multiple DREML models, de-
noted as DREML ({I,R}, D, L) where the tuple indicates the architecture
(I)nceptionV3 or (R)esNet18 and values for D and L.

Fig. 3. Left: Recall@1 accuracy on the CAR196 dataset with various D (different lines)
and L (on the x-axis). Right: Recall@1 accuracy of the largest ensemble models with
various D. Extreme cases have poorer performance because the individual models must
deal with either many meta-classes per class (small D) or a lack of diversity (large D).

Table 1. Retrieval and Clustering Performance on the CUB200 and CAR196 dataset.

CUB200 CAR196

Method R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI

TRIPLET 42.6 55.0 66.4 77.2 55.4 51.5 63.8 73.5 81.4 53.4
N-PAIRS 51.0 63.3 74.3 83.2 60.4 71.1 79.7 86.5 91.6 64.0
PROXY 49.2 61.9 67.9 72.4 59.5 73.2 82.4 86.4 88.7 64.9
HDC 53.6 65.7 77.0 85.6 − 73.7 83.2 89.5 93.8 −
BIER 55.3 67.2 76.9 85.1 − 78.0 85.8 91.1 95.1 −

DREML (I,12,48) 78.5 86.2 91.3 94.4 79.3 89.8 94.0 96.6 97.9 79.1
DREML (R,12,48) 80.5 87.4 91.9 94.7 79.4 86.0 91.7 95.0 97.2 76.4



Deep Randomized Ensembles for Metric Learning 7

Fig. 4. Pair-wise dot product distribution of image feature vectors in the same classes
(solid) and in different classes (dashes), for images from the training classes (red) and
validation classes (blue). Shown are the distributions for 1, 4, 24 network ensembles,
all with an output dimension of 24. As the number of networks grow, the distributions
for same and different categories separate.

4.2 Retrieval performance

We follow the evaluation protocol described in [12] to evaluate the Recall@K and
Normalized Mutual Information (NMI) values on two datasets, CUB200 and
CAR196. For the In-Shop Clothes Retrieval and PKU VehicleID datasets, we
follow the evaluation protocol described in [24] and [10] and evaluate Recall@K.

Table 1 shows retrieval performance results on the CUB200 and CAR196
datasets. The CUB200 dataset [21] contains 200 classes of birds with 11,788
images. We split the first 100 classes for training (5,864 images) and the rest
of the classes for testing (5,924 images). The CAR196 dataset [8] contains 196
classes of cars with 16,185 images. We use the standard split with the first 98
classes for training (8,054 images) and the rest of the classes for testing (8,131
images). For each dataset, Table 1 shows the Recall@K for K = 1, 2, 4, 8. Addi-
tionally, the normalized mutual information (NMI) score is included as a measure
of clustering performance, as suggested in [12]. The results show dramatic im-
provement in both retrieval accuracy and clustering performance across both
datasets. Boths datasets contain substantial intra-class variability; in CUB200,
birds are shown in different poses in front of very different backgrounds. Figure 6
(top left) highlights this variability and shows example retrieval results from our
method for CUB200 (top left) and CAR196 (top right).

The In-Shop Clothes Retrieval (ICR) dataset [24] contains 11,735 classes
of clothing items with 54,642 images. Following the settings in [24], only 7,982
classes of clothing items with 52,712 images are used for training and testing.
3,997 classes are for training (25,882 images) and 3,985 classes are for testing
(28,760 images). The test set are partitioned to query set and gallery set, where
query set contains 14,218 images of 3,985 classes and gallery set contains 12,612
images of 3,985 classes. Then, given a target image in test set, we retrieve the
most similar image in the gallery set.

Table 2 shows retrieval and clustering results showing a slight improvement
over the BIER results. In absolute terms, DREML underperforms on the In



8 Hong Xuan, Richard Souvenir, Robert Pless

Shop Clothes dataset compared to other datasets; this dataset has more classes,
fewer examples per class, and substantial intra-class variation. Example results
showing this variation are shown in Figure 6 (bottom left).

Table 2. Retrieval Performance on the In-Shop Clothes dataset.

Method R@1 R@10 R@20 R@30

FashionNet 53.0 73.0 76.0 77.0
HDC 62.1 84.9 89.0 91.2
BIER 76.9 92.8 95.2 96.2
DREML (R,192,48) 78.4 93.7 95.8 96.7

The PKU VehicleID (VID) [10] dataset contains 221,763 images of 26,267
vehicles captured by surveillance cameras. The training set contains 110,178 im-
ages of 13,134 vehicles and the testing set contains 111,585 images of 13,133
vehicles. We follow the standard experimental protocol [10] to test on the small,
medium and large test set which contains 7,332 images of 800 vehicles, 12,995
images of 1,600 vehicles and 20,038 images of 2,400 vehicles respectively. Ta-
ble 3 shows retrieval and clustering results for the PKU Vehicle-ID dataset. This
dataset has substantially less intra-class variability, but some nearby classes are
quite similar. Example retrieval results and images are shown in Figure 6 (bot-
tom right).

Table 3. Retrieval Performance on the VID dataset.

Data Size small medium large

Method R@1 R@5 R@1 R@5 R@1 R@5

GS-TRS 75.0 83.0 74.1 82.6 73.2 81.9
BIER 82.6 90.6 79.3 88.3 76.0 86.4
DREML (R,192,12) 88.5 94.8 87.2 94.2 83.1 92.4

4.3 Embedding Unseen Classes

Our approach performs well to embed unseen classes, scattering new examples
more effectively across the feature space. We believe that this property helps
explain the improved performance of our method on retrieval tasks. We use the
No Fuss Embedding approach with 96 training classes to define a 96 dimensional
embedding. We then map inputs from the 98 standard testing classes onto this
embedding. Because the No Fuss Embedding forces points to lie on a hypersphere
we use the dot-product as a measure of similarity, and compute the similarity of
each point in an unseen class to the most sim ilar point from any of the training
classes.



Deep Randomized Ensembles for Metric Learning 9

Fig. 5. Dot product for each testing image to the closest training image on CAR196
dataset.

Figure 5 shows this distribution. The blue line is the distribution for a single
network, with most unseen examples having a maximum similarity score to a
training class of greater than 0.9. This shows that when mapping new classes
into the embedding space, they are often mapped very close to existing classes,
and this crowding within the embedding space may limit recall performance.

We repeat this experiment with 3 other networks. For the same 96 training
categories, we group them into 24 meta-classes, each of size 4 and perform the
same experiment (shown in the orange curved, shifted second farthest to the
right). This is not an ensemble embedding, but we hypothesize that the meta-
classes comprised of dis-similar input encourages an embedding that pushes novel
images farther away from existing images.

The final two curves show the results of the ensemble embedding, using 4
(green) and 24 (red) total embedding functions respectively. In these embed-
dings, new images are mapped to locations where they tend to be much farther
from the training images, and because they are more spread out the embedding
may be more effective at representing unseen categories.

5 Discussion

Deep Randomized Ensembles for Metric Learning (DREML) is a simple ap-
proach to creating an ensemble of diverse embedding functions. We think this is
a handy tool that may have broad applicability and have demonstrated results
on four datasets spanning problem domains from a medium number of cate-
gories in CUB200 and CAR196, to the In-Shop Clothes and Vehicle ID datasets
with tens of thousands of categories. Ensemble based approaches, both ours and



10 Hong Xuan, Richard Souvenir, Robert Pless

Fig. 6. Retrieval results on the CUB200, CAR196, In-Shop Clothes Retrieval and PKU
VehicleID dataset. We retrieve the 4 most similar images to the query image. Correct
results are highlighted green and incorrect results are highlighted in red.



Deep Randomized Ensembles for Metric Learning 11

BIER paper outperform the non-ensemble approaches by a dramatic margin on
all four datasets.

The CARS196 and CUB200 datasets have a moderate amount of training
data, and we believe that our approach of building meta-classes creates a ver-
sion of ”label augmentation” that effectively allows our ensemble to have more
independent embeddings. For larger datasets, our approach is similar in perfor-
mance to BIER for the In-Shop Clothes Retrieval dataset, which has substantial
in-class variation due to color and pose changes, and is overall less balanced
with many classes that have few examples per class. We outperform BIER for
the PKU Vehicle ID dataset for all dataset sizes, perhaps because our ensemble
approach is more robust that BIER to the relatively smaller intra-class variation.

The downside to our approach is that we train a large number of networks,
in the cases where we outperform BIER, we showed results with an ensemble of
12 networks (for In-Shop Clothes dataset) and 48 networks (for the CUB, CAR,
and VID dataset), something which affects both the training phase and the test
time computational requirements. It is interesting to explore if the benefits of
this ensemble approach can be replicated within a single network.

References

1. Bai, Y., Gao, F., Lou, Y., Wang, S., Huang, T., Duan, L.: Incorporating intra-
class variance to fine-grained visual recognition. CoRR abs/1703.00196 (2017),
http://arxiv.org/abs/1703.00196

2. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet
network for person re-identification. In: Proc. CVPR. vol. 2 (2017)

3. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on. vol. 1, pp. 539–546.
IEEE (2005)

4. Guo, J., Gould, S.: Deep cnn ensemble with data augmentation for object detection.
arXiv preprint arXiv:1506.07224 (2015)

5. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: Computer vision and pattern recognition, 2006 IEEE computer
society conference on. vol. 2, pp. 1735–1742. IEEE (2006)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016)

7. Hermans*, A., Beyer*, L., Leibe, B.: In Defense of the Triplet Loss for Person
Re-Identification. arXiv preprint arXiv:1703.07737 (2017)

8. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-
grained categorization. In: 4th International IEEEWorkshop on 3D Representation
and Recognition (3dRR-13). Sydney, Australia (2013)

9. Law, M.T., Thome, N., Cord, M.: Quadruplet-wise image similarity learning. In:
Computer Vision (ICCV), 2013 IEEE International Conference on. pp. 249–256.
IEEE (2013)

10. Liu, H., Tian, Y., Wang, Y., Pang, L., Huang, T.: Deep relative distance learning:
Tell the difference between similar vehicles. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2167–2175 (2016)

http://arxiv.org/abs/1703.00196


12 Hong Xuan, Richard Souvenir, Robert Pless

11. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss dis-
tance metric learning using proxies. In: The IEEE International Conference on
Computer Vision (ICCV) (Oct 2017)

12. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2016)

13. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Bier - boosting independent
embeddings robustly. In: The IEEE International Conference on Computer Vision
(ICCV) (Oct 2017)

14. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS-W (2017)

15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

16. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

17. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015)

18. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In:
Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 29, pp. 1857–1865. Curran Associates,
Inc. (2016)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the in-
ception architecture for computer vision. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2016)

20. Ustinova, E., Lempitsky, V.: Learning deep embeddings with histogram loss. In:
Advances in Neural Information Processing Systems. pp. 4170–4178 (2016)

21. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona,
P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of
Technology (2010)

22. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. CoRR
abs/1611.05720 (2016), http://arxiv.org/abs/1611.05720

23. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. In: The
IEEE International Conference on Computer Vision (ICCV) (Oct 2017)

24. Ziwei Liu, Ping Luo, S.Q.X.W., Tang, X.: Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2016)

http://arxiv.org/abs/1611.05720

