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Abstract. This paper proposes a fast video salient object detection
model, based on a novel recurrent network architecture, named Pyra-
mid Dilated Bidirectional ConvLSTM (PDB-ConvLSTM). A Pyramid
Dilated Convolution (PDC) module is first designed for simultaneously
extracting spatial features at multiple scales. These spatial features are
then concatenated and fed into an extended Deeper Bidirectional Con-
vLSTM (DB-ConvLSTM) to learn spatiotemporal information. Forward
and backward ConvLSTM units are placed in two layers and connected in
a cascaded way, encouraging information flow between the bi-directional
streams and leading to deeper feature extraction. We further augment
DB-ConvLSTM with a PDC-like structure, by adopting several dilated
DB-ConvLSTMs to extract multi-scale spatiotemporal information. Ex-
tensive experimental results show that our method outperforms previous
video saliency models in a large margin, with a real-time speed of 20 fps
on a single GPU. With unsupervised video object segmentation as an ex-
ample application, the proposed model (with a CRF-based post-process)
achieves state-of-the-art results on two popular benchmarks, well demon-
strating its superior performance and high applicability.

1 Introduction

Video saliency detection aims at finding the most interesting parts in each video
frame that mostly attract human attention. It can be applied as a fundamental
module in many visual tasks, such as video object segmentation, scene rendering,
object tracking, and so on. Similar to visual saliency detection in static images,
research on video saliency detection can also be divided into two categories, i.e.,
eye fixation prediction [41, 39] and salient object detection [49, 47]. The purpose
of eye fixation prediction is to locate the focus of human eyes when looking at
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a scene, which is helpful for understanding the mechanism of biological visual
attention. Salient object detection focuses on uniformly highlighting the most
salient objects with clear contour. In this paper, we focus on the latter task.

Most existing video saliency methods [8, 42, 43, 11], are built upon shallow,
hand-crafted features (e.g ., color, edge, etc.), and especially rely on motion in-
formation from optical flow. These methods are typically heuristic and suffer
from slow speed (due to time-consuming optical flow computation) and low
prediction accuracy (due to the limited representability of low-level features).
Currently, only a few works [44, 24] on video saliency detection, based on deep
learning, can be found in the literature. For example, Wang et al . [44] proposed
a fully convolutional network (FCN) based video saliency model, as a very early
attempt towards an end-to-end deep learning solution for this problem, achieves
a speed of 2 fps. In their method, temporal dynamics between only two adjacent
video frames are considered. Clearly, it faces difficulties to achieve a real-time
speed and lacks exploration of motion information from a longer time span.

To employ deep learning techniques for video saliency detection, two prob-
lems should be considered [44]. The first problem is how to describe the tem-
poral and spatial information and how to combine them together. Optical flow
offers explicit motion information, but also incurs significant computational cost,
which severely limits the applicability of current video saliency models. The sec-
ond problem is data. A sufficiently large, densely labeled video saliency training
data is desirable, but hard to obtain. Wang et al . [44] synthesize motion frames
from static images to enrich the video training data. However, the quality of the
synthesized data is unsatisfactory.

To address above issues, first, we base our model upon a convolutional LSTM
(ConvLSTM) structure [32], which captures the long and short-term memory of
video sequences and contains both temporal and spatial information, for im-
plicitly learning temporal dynamics and efficiently fusing temporal and spa-
tial features. For encouraging information exchange between LSTM units in
bi-directions, we propose a Deeper Bidirectional ConvLSTM (DB-ConvLSTM)
structure which learns temporal characteristics in a cascaded and deeper way,
i.e., the ConvLSTM units in the backward layer are built upon the forward
layer (instead of directly connecting to the inputs). Thus the forward ConvL-
STM units, each of which corresponds to a specific input frame, can exchange
their sequential knowledge with the backward layers. For further improving the
spatial learning ability of DB-ConvLSTM, we introduce a multi-scale receptive
field module, called Pyramid Dilated Convolution (PDC), into ConvLSTM to
obtain more spatial details. Second, we train our model with massive static-
image saliency data, in addition to video saliency data. In this way, our network
could capture different object appearances which are important for video saliency
prediction. Above designs lead to a powerful and very fast deep video saliency
model, which achieves state-of-the-art performance on three video datasets [31,
2, 43] with fast speed of 20 fps (all steps on one GPU). With unsupervised video
object segmentation as an example application task, we further show that the
proposed video saliency model, equipped with a CRF segmentation module,
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gains best performance over two popular video segmentation benchmarks (e.g .,
DAVIS [31] and FBMS [2]), which clearly demonstrates the high applicability of
our model.

2 Related Work

Image/Video Salient Object Detection. Recently, with the popularity of
deep neural network, various deep learning based image salient object detec-
tion models were proposed, e.g ., multi-stream network with embedded super-
pixels [22, 25], recurrent module [26, 40], and multi-scale and hierarchical feature
fusion [16, 51, 36], etc. These models generally achieve far better performance
compared with traditional static saliency models [49, 45].

Conventional video salient object detection methods [8, 9, 28, 42] extract spa-
tial and temporal features separately and then integrate them together to gen-
erate a spatiotemporal saliency map. The spatiotemporal result can be refined
by various mechanisms [43, 27]. The computational cost, especially for tempo-
ral features, is usually expensive. Recently, Wang et al . [44] introduced FCN to
video salient object detection by using adjacent pairs of frames as input, which
substantially improves the precision and achieves a speed of 2 fps. However, this
speed is still so slow for real-time processing, and more spatiotemporal informa-
tion should be explored by considering more frames in video sequences.
Unsupervised Video Segmentation. Some unsupervised video segmentation
tasks, like temporal superpixel/supervoxel over-segmentation [48, 3] and motion
segmentation [2], are typically based on clustering methods with low-level ap-
pearance and motion information. The unsupervised video primary object seg-
mentation [46], which is the most related video segmentation topic to our ap-
proach, aims at extracting the primary object(s) in video sequences with the
use of object-level information (e.g ., object proposal) and various heuristics [38,
10, 7]. Those models have similar goal with video salient object detection, aside
from they seeking to get a binary fore-/background mask for each video frame.
As demonstrated in [42], video saliency models are able to offer valuable infor-
mation for guiding video object segmentation. Recent unsupervised video object
segmentation methods are mainly based on deep learning models, such as two-
stream architecture [19], recurrent neural network [34], bottom-up top-down
model [33], FCN network [5], etc. In this work, we show our model is well appli-
cable to unsupervised video object segmentation task.

3 Our Approach

This section elaborates on the details of the proposed video salient object detec-
tion model, which consists of two key components. The first one, named Pyra-
mid Dilated Convolution (PDC) module, is used for explicitly extracting spatial
saliency features on multi-scales (as shown in Fig. 2). This is achieved via a
set of parallel dilated convolution layers with different sampling rates (§ 3.1).
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Fig. 1. Architecture overview of the proposed video salient object detection
model, which consists of two components, e.g ., a spatial saliency learning module based
on Pyramid Dilated Convolution (PDC) (§ 3.1) and a spatiotemporal saliency learning
module via Pyramid Dilated Bidirectional ConvLSTM (PDB-ConvLSTM) (§ 3.2).

The second module, named Pyramid Dilated Bidirectional ConvLSTM (PDB-
ConvLSTM), which augments the vanilla ConvLSTM with the powerful struc-
ture of PDC module and is improved with a cascaded bi-directional feature
learning process, i.e., learning deeper, backward information upon forward fea-
tures. PDB-ConvLSTM takes the spatial features learnt from the PDC module
as inputs, and outputs improved spatiotemporal saliency representations for fi-
nal video salient object prediction (§ 3.2). In § 3.3, detailed implementations of
our model are presented.

3.1 Spatial Saliency Learning via PDC Module

A typical CNN model is comprised of a stack of convolution layers, interleaved
with non-linear downsampling operation (e.g ., max pooling) and point-wise non-
linearity (e.g ., ReLU ). Downsampling operation is effective for enlarging the
receptive field, but quite harmful for pixel-wise prediction tasks, such as video
salient object detection, since too many spatial details are lost. The recently
proposed dilated convolution [50] provides a good alternative that efficiently
computes dense CNN features at any receptive field sizes without loss of reso-
lution. This is achieved by a specially designed ‘hole’ kernel which has sparsely
aligned weights.

Additionally, multi-scale information often plays an important role for many
computer vision tasks, such as image classification [13] and semantic segmenta-
tion [53, 4]. Previous studies [18, 39] in cognitive psychology also emphasized the
multi-scale nature as an essential element of visual saliency. Motivated by above
research, we utilize a PDC module, which consists of a set of dilated convolu-
tions with different dilation rates, for emphasizing multi-scale spatial saliency
representation learning (see Fig. 2).

More specially, let F ∈ R
W×H×M denote the input 3D feature tensor, a set

of K dilated convolution layers with kernels {Ck ∈ R
c×c×C}Kk=1 and different

dilation factors {rk}
K
k=1 (strides are set as 1) are adopted for generating a set of
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Fig. 2. Illustration of PDC module, where features from 4 parallel dilated convo-
lution branches with different dilated rates are concatenated with the input features
for emphasizing multi-scale spatial feature learning. See § 3.1 for details.

output feature maps {Tk ∈ R
W×H×C}Kk=1:

Tk = Ck ⊛ F. (1)

Here ‘⊛’ indicates the dilated convolution operation. For a certain dilated con-
volution layer with c× c kernel and rk dilation rate, it could preserve a receptive
field with size of [(c−1)rk+1]2. Thus the dilated convolution increases receptive
field size exponentially while with linear parameter accretion. Although the sizes
of the output features are identical, the receptive field sizes [(c−1)rk+1]2 differ
significantly with the change of the dilation rate rk, sometimes even being much
larger than the input frame size. This is similar to observing the image from
different distances. A region will be reasonably salient if only we see it from a
proper distance and see its proper spatial context.

After that, multi-scale spatial features {Tk}
K
k=1 are concatenated together

and fed into PDB-ConvLSTM (detailed in next section), thus the network is able
to learn the importance of the scales automatically (such as learning saliency fea-
ture from a proper distance). The combined featureX ∈ R

W×H×KC is calculated
as:

X = [T1, T2, . . . , TK ], (2)

where ‘[., .]’ represents the concatenation operation.
Inspired by the residual connection [14], we further combine the original input

feature F into X to address the degradation problem. Thus X ∈ R
W×H×(KC+M)

in above equation is improved in a residual form:

X = [F, T1, T2, . . . , TK ]. (3)

In comparison, [4] proposes an Atrous Spatial Pyramid Pooling (ASPP) mod-
ule, which applies multiple parallel atrous (dilated) convolutions with different
sampling rates. Our PDC module has similar structure. However, ASPP simply
performs element-wise sum operation (denoted by ‘⊕’) on the output features
from dilated convolution layers: X = T1 ⊕T2 ⊕ . . .⊕TK , treating the features
from different scales equally. Differently, PDC lets the network automatically
learn the weights of different features. Our design is more intuitive and effective,
which will be further quantitatively verified in § 4.4. With above definition, we
build a powerful spatial feature learning model that emphasizes multi-scales. In
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Fig. 3. Illustration of (a) Bidirectional ConvLSTM and (b) the proposed
DB-ConvLSTM module. In PDB-ConvLSTM module, two DB-ConvLSTMs with
different dilate rates are adopted for capturing multi-scale information and encouraging
information flow between bi-directional LSTM units. See § 3.2 for details.

next section, we will improve traditional ConvLSTM with deeper spatiotemporal
information extraction and a PDC-like structure.

3.2 Spatiotemporal Saliency Learning via PDB-ConvLSTM Module

Given an input video sequence {It}
T
t=1 with T frames, we adopt PDC Mod-

ule to produce a corresponding sequence of multi-scale spatial saliency features
{Xt}

T
t=1. Then these spatial features are fed into a modified ConvLSTM struc-

ture, called Pyramid Dilated Bidirectional ConvLSTM (PDB-ConvLSTM), for
interpreting the temporal characteristics of video frames and fusing spatial and
temporal features automatically. The PDB-ConvLSTM is improved in two ways.
First, previous shallow, parallel bi-directional feature extraction strategy is re-
placed with a deeper and cascaded learning process, i.e., building backward
LSTM unit upon spatiotemporal features learnt in forward process. Second,
incorporating pyramid dilated convolutions into LSTM for learning saliency fea-
tures in multi-scales. Before detailing the proposed PDB-ConvLSTM module,
we first give a brief introduction of classic ConvLSTM.
Vanilla ConvLSTM. ConvLSTM [32], as a convolutional counterpart of con-
ventional fully connected LSTM (FC-LSTM) [15], introduces convolution op-
eration into input-to-state and state-to-state transitions. ConvLSTM preserves
spatial information as well as modeling temporal dependency. Thus it has been
well applied in many spatiotemporal pixel-level tasks, such as dynamic visual
attention prediction [41], video super-resolution [12]. Similar to FC-LSTM, Con-
vLSTM unit consists of a memory cell ct, an input gate it, an output gate ot

and a forget gate ft. The memory cell ct, acting as an accumulator of the state
information, is accessed, updated and cleared by self-parameterized controlling
gates: it, ot and ft. As soon as an input arrives, the new data will be accumu-
lated to the memory cell if the input gate is activated. Similarly, the past cell
status ct−1 could be forgotten if the forget gate ft is switched on. Whether the
latest memory cell’s value ct will be transmitted to the final state ht is further
controlled by the output gate ot. With above definitions, ConvLSTM can be
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formulated as follows:

it = σ(WX
i ∗Xt +WH

i ∗Ht−1),

ft = σ(WX
f ∗Xt +WH

f ∗Ht−1),

ot = σ(WX
o ∗Xt +WH

o ∗Ht−1),

ct = ft ◦ ct−1 + it ◦ tanh(W
X
c ∗Xt +WH

c ∗Ht−1),

Ht = ot ◦ tanh(ct),

(4)

where ‘∗’ denotes the convolution operator and ‘◦’ denotes the Hadamard prod-
uct. For simplicity, bias terms are omitted. All the gates i, f ,o, memory cell c,
hidden state H and the learnable weights W are 3D tensors.

It can be seen that above ConvLSTM simply ‘remembers’ the past sequences,
since it accumulates the past information in the memory cells. However, in video
sequences, information from both the forward and backward frames are impor-
tant and complementary for predicting video saliency. Thus Bidirectional Con-
vLSTM (B-ConvLSTM) should be used for capturing temporal characteristics
in bi-directions (see Fig. 3 (a)):

Yt = tanh(WHf

y ∗Hf
t +WHb

y ∗Hb
t−1), (5)

where Hf and Hb indicates the hidden states from forward and backward Con-
vLSTM units, and Yt indicates the final output considering bidirectional spa-
tiotemporal information.
Deeper Bidirectional ConvLSTM. In B-ConvLSTM, there is no information
exchange between the forward and backward directional LSTM units. We first
improve B-ConvLSTM by organizing the forward and backward ConvLSTM
units in a cascaded and tighter way, called Deeper Bidirectional ConvLSTM
(DB-ConvLSTM). The DB-ConvLSTM has two layers, a shallow, forward layer
and a deeper, backward layer (see Fig. 3 (b)). The ConvLSTM units in the
forward layer receive spatial feature maps {Xt}

T
t=1 from T frames as inputs,

and output forward sequential feature maps {Hf
t }

T
t=1 (according to Eq. 4). The

deeper layer is constituted of the backward units that receive the output features
from the forward layer {Hf

t }
T
t=1 as inputs. Formally, the backward ConvLSTM

unit is formulated as:

ibt = σ(WHf

i ∗Hf
t +WHb

i ∗Hb
t+1),

f bt = σ(WHf

f ∗Hf
t +WHb

f ∗Hb
t+1),

ob
t = σ(WHf

o ∗Hf
t +WHb

o ∗Hb
t+1),

cbt = f bt ◦ cbt+1 + ibt ◦ tanh(W
Hf

c ∗Hf
t +WHb

c ∗Hb
t+1),

Hb
t = ob

t ◦ tanh(cbt ).

(6)

Then the forward features {Hf
t }

T
t=1 and the backward features {Hb

t}
T
t=1 are

combined for final outputs: {Yt}
T
t=1, using Eq. 5. In this way, information are
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encouraged to flow between the forward and backward ConvLSTM units, and
deeper spatiotemporal features can be extracted by the backward units.

Deeper Bidirectional ConvLSTM with Pyramid Dilated Convolution.
In order to extract more powerful spatiotemporal information and let the net-
work adapt to salient targets at different scales, we further extend DB-ConvLSTM
with a PDC-like structure. Specifically, the outputs {Xt}

T
t=1 from the spatial

PDC module are fed into several parallel DB-ConvLSTMs (see Fig. 1). In these
DB-ConvLSTM modules, convolution operation ‘∗’ is further replaced by dilated
convolution ‘⊛’ and different dilation factors are adopted. Such designs lead to a
more powerful ConvLSTM structure, named Pyramid Dilated Bidirectional Con-
vLSTM (PDB-ConvLSTM). It is able to utilize different features from different
receptive fields for capturing more complementary spatiotemporal features.

3.3 Detailed Network Architecture

Base Network. At the bottom the suggested model resides a stack of convo-
lutional layers, which are borrowed from the first five convolution blocks of the
model in [53] (a ResNet-50 [14]-like model). Given an input frame I with resolu-
tion of 473×473, the feature F ∈ R

60×60×2048 extracted from the last convolution
block is fed into our PDC module for multi-scale spatial feature learning.

PDC Module. In PDC module, four parallel dilated convolution layers (K = 4)
are adopted, where the size of the kernel is set as c = 3, C = 512, and the four
dilation factors are set as rk = 2k (k = {1, . . . , 4}). Thus the PDC module is
able to extract features on four different scales. Following Eq. 3, the outputs
{Tk ∈ R

60×60×512}4k=1 of the four dilated convolution branches and the inputs
F ∈ R

60×60×2048 of the PDC module are further concatenated for generating a
multi-scale spatial saliency feature X ∈ R

60×60×4096. A 1 × 1 convolution layer
with 32 channels is then applied for feature dimension reduction. Therefore,
for the input video {It}

T
t=1, PDC module produces a sequence of multi-scale

spatial features {Xt ∈ R
60×60×32}Tt=1, which will be further fed into the PDB-

ConvLSTM module for spatiotemporal saliency prediction.

PDB-ConvLSTM Module. PDB-ConvLSTM module consists of two DB-
ConvLSTMs, which are equipped with 3× 3 kernels (32 channels). The dilation
factors are set as 1 and 2 respectively, due to our limited computational resources.
Note that, when the dilation factor is set as 1, the dilation kernel can be viewed
as a normal convolution kernel without any ‘holes’. For each frame, the outputs
of the two DB-ConvLSTM branches in the PDB-ConvLSTM module are further
concatenated as a multi-scale spatiotemporal saliency feature with 60× 60× 64
dimensions. Then the output features from the PDB-ConvLSTM module are
fed into a 1 × 1 convolution layer with 1 channel and sigmoid activation for
producing final saliency map. The saliency map is upsampled into the original
input frame size, i.e., 473× 473, via bilinear interpolation.

Loss Function. For producing better saliency prediction and training the sug-
gested model more efficiently, we propose here a fused loss function that ac-
counts for multiple evaluation metrics, inspired by [40]. Let G ∈ {0, 1}473×473
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and S ∈ [0, 1]473×473 denote the groundtruth saliency map and predicted saliency
respectively, the overall loss L can be formulated as follows:

L(S,G) = Lcross entropy(S,G) + LMAE(S,G), (7)

where Lcross entropy and LMAE indicate cross entropy loss and MAE loss respec-
tively. Lcross entropy is computed as:

Lcross entropy(S,G) = −
1

N

∑N

i=1
[gilog(si) + (1− gi)log(1− si)] (8)

where gi ∈ G, and si ∈ S.N indicates the total pixel number, i.e.,N = 473×473.
LMAE is based on MAE metric, which is widely used in salient object de-

tection. LMAE computes the absolute difference between the predicted saliency
map S and the corresponding ground truth G:

LMAE(S,G) =
1

N

∑N

i=1
|gi − si|. (9)

Training Settings. During training, with training batch size H, the network
can be fed with H video frames or H copies of the same image. The latter
one can be interpreted as using the PDB-ConvLSTM to refine the single-image
saliency map for 2H times in each DB-ConvLSTM branch. This means we can
utilize the massive static-image saliency data to let the network capture more
appearances of the objects and the scenes. Therefore, our training procedure has
three steps. First, we pre-train the spatial-learning part (including PDC module
and base network) using two image saliency datasets: MSRA10K [6], and DUT-
OMRON [49], and one video dataset: the training set of DAVIS dataset [31].
Initial learning rate of SGD algorithm is 10−8. Then we set the learning rate
of spatiotemporal learning part (PDB-ConvLSTM module) as 10−6, and use
above static and video data to train the whole model. After that, we fix the
weights of the spatial-learning part and fine-tune the spatiotemporal learning
part with the training set of DAVIS dataset only (learning rate is set as 10−6).
In this way, although the densely labelled video saliency data is scarce, our
video saliency detection model still achieves good generalization performance
for unseen videos. Quantitative experiments regarding to our training strategy
can be found in § 4.4. The proposed videos saliency model is implemented using
PYTHON, with the Caffe toolbox. Momentum and weight decay are set to 0.9
and 0.0005 respectively. The length of the training video frames H is set to 5.
Data Augmentation. We use data augmentation by mirror reflection, rotation
(four rotation angles, 0◦, 90◦, 180◦, and 270◦) and image cropping to relieve over-
fitting. For each training sample instance (static images or video frames), we crop
out the most top, bottom, left, and right slices of the border. Meanwhile, con-
sidering the video sequences may have different frame rates, we utilize different
sampling steps in time axis to increase training samples. Specifically, for each
video training iteration, we first randomly select a video frame from video data
as the first frame in the training batch. Then we pick up following frames with
a certain sampling step (={1,2,3,4,5,6}) until obtaining a training batch of 5
frames. The total training time is about 40 hours on one GTX 1080Ti GPU
(11G Memory).
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4 Experiments

In this section, two sets of experiments are first performed. One is for examining
the performance of the proposed model for the main purpose, video salient object
detection (§ 4.1). The other one is for evaluating the effectiveness of the proposed
model on unsupervised video object segmentation, as salient object detection has
been shown as an essential preprocessing step for unsupervised segmentation task
(§ 4.2). After that, in § 4.3, we present runtime analysis. Finally, an ablation
study is performed to gain a deeper insight into the proposed model (§ 4.4).

For video salient object detection, we evaluate the performance on three
public datasets, i.e., Densely Annotated VIdeo Segmentation (DAVIS) [31],
Freiburg-Berkeley Motion Segmentation (FBMS) [2] and the Video Salient ob-
ject detection (ViSal) [43]. DAVIS consists of 50 high-quality videos, totaling
3455 frames with fully annotated pixel-level ground truths. We utilize its train-
ing set that consists of 30 videos, totaling 2079 frames, to train our model. We
test the models on the test set, which contains 20 videos, totaling 1376 frames.
FBMS contains 59 natural video sequences, in which 29 are for training and 30
are for testing. We report the performance of our method on the test set. ViSal
is the first dataset specially designed for video salient object detection and in-
cludes 17 challenging video clips. The length of videos in ViSal ranges from 30
to 100 frames, and totally 193 frames are manually annotated. The whole ViSal
dataset is used for evaluation. For unsupervised video object segmentation task,
we perform experiments on the test sets of DAVIS and FBMS datasets, which
are the most popular benchmarks currently.

4.1 Performance on Video Salient Object Detection

We compared our model with 18 famous saliency methods, including 11 image
salient object detection models: Amulet [51], SRM [36], UCF [52], DSS [16],
MSR [23], NLDF [29], DCL [25], DHS [26], ELD [22], RFCN [35], KSR [37]; and

Fig. 4. Quantitative comparison against 18 saliency methods using PR curve
on DAVIS [31], FBMS [2] and ViSal [43] datasets. Please see § 4.1 for more details.
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Table 1. Quantitative comparison results against 18 saliency methods using
MAE and maximum F-measure on DAVIS [31], FBMS [2] and ViSal [43]. The best
scores are marked in bold. See § 4.1 for more details.

DAVIS FBMS ViSal
Methods Year MAE↓ Fmax↑ MAE↓ Fmax↑ MAE↓ Fmax↑

Amulet [51] ICCV’17 0.082 0.699 0.110 0.725 0.032 0.894
SRM [36] ICCV’17 0.039 0.779 0.071 0.776 0.028 0.890
UCF [52] ICCV’17 0.107 0.716 0.147 0.679 0.068 0.870
DSS [16] CVPR’17 0.062 0.717 0.083 0.764 0.028 0.906

Image MSR [23] CVPR’17 0.057 0.746 0.064 0.787 0.031 0.901
Saliency NLDF [29] CVPR’17 0.056 0.723 0.092 0.736 0.023 0.916
Models DCL [25] CVPR’16 0.070 0.631 0.089 0.726 0.035 0.869

DHS [26] CVPR’16 0.039 0.758 0.083 0.743 0.025 0.911
ELD [22] CVPR’16 0.070 0.688 0.103 0.719 0.038 0.890
KSR [37] ECCV’16 0.077 0.601 0.101 0.649 0.063 0.826

RFCN [35] ECCV’16 0.065 0.710 0.105 0.736 0.043 0.888

FGRNE [24] CVPR’18 0.043 0.786 0.083 0.779 0.040 0.850
FCNS [44] TIP’18 0.053 0.729 0.100 0.735 0.041 0.877
SGSP* [27] TCSVT’17 0.128 0.677 0.171 0.571 0.172 0.648

Video GAFL* [43] TIP’15 0.091 0.578 0.150 0.551 0.099 0.726
Saliency SAGE* [42] CVPR’15 0.105 0.479 0.142 0.581 0.096 0.734
Models STUW* [8] TIP’14 0.098 0.692 0.143 0.528 0.132 0.671

SP* [28] TCSVT’14 0.130 0.601 0.161 0.538 0.126 0.731
Ours ECCV’18 0.030 0.849 0.069 0.815 0.022 0.917

∗ Non-deep learning model.

7 video salient object detection approaches: SGSP [27], GAFL [43], SAGE [42],
STUW [8], SP [28], FCNS [44], and FGRNE [24]. Note that FCNS and FGRNE
are deep learning based video salient object detection models.

For quantitative evaluation, we employ three widely used metrics, namely PR
curve, F-measure and MAE score. We refer readers to [44] for more details. Fig. 4
plots the PR curves on the test sets of DAVIS and FBMS datasets, as well as the
whole ViSal dataset. It can be observed that our model outperforms other com-
petitors. The maximum F-measures and MAE scores on above three datasets are
reported in Table 1. Overall, our model achieves the best performance over three
datasets using all the evaluation metrics. Fig. 5 presents some visual comparison
results on three example video sequences: horsejump-high (from DAVIS), tennis
(from FBMS), and bird (from ViSal). As seen, our model consistently produces
accurate salient object estimations with various challenging scenes.

4.2 Performance on Unsupervised Video Object Segmentation

Video salient object detection model produces a sequence of probability maps
that highlight the most visually important object(s). As demonstrated in [42],
such salient object estimation could offer meaningful cue for unsupervised video
primary object segmentation, which seeks to a binary foreground/background
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Fig. 5. Qualitative comparison against other top-performing saliency meth-
ods with groundtruths on three example video sequences. Zoom-in for details.

Table 2. Comparison with 7 representative unsupervised video object seg-
mentation methods on the test sets of DAVIS and FBMS datasets. The best scores
are marked in bold. See § 4.2 for details.

Dataset Metric
Method

ARP*[20] LVO[34] FSEG[19] LMP[33] SFL*[5] FST*[30] SAGE*[42] Ours Ours+

DAVIS J ↑ 76.2 75.9 70.7 70.0 67.4 55.8 41.5 74.3 77.2
F ↑ 70.6 72.1 65.3 65.9 66.7 51.1 36.9 72.8 74.5

FBMS J ↑ 59.8 65.1 68.4 35.7 55.0 47.7 61.2 72.3 74.0
∗ Non-deep learning model.

classification of each pixel. Thus video salient object detection can be used as a
pre-processing step for unsupervised video segmentation. For better demonstrat-
ing the advantages of the proposed video saliency model, we extend our model
for unsupervised video object segmentation and test it on DAVIS and FBMS
datasets in segmentation settings.

Given an input frame It and corresponding saliency estimation St, we for-
mulate the segmentation task as an energy function minimization problem. The
segmentation energy function is based on fully connected CRF model [21], where
the foreground (or background) label assignment probability in binary term is
St (or 1−St). The pairwise potential is defined as [21]. With the publicly avail-
able implementation of [21], our model takes about 0.5 ∼ 1 second per frame to
generate a segmentation mask.

We compare our segmentation results with 7 representative unsupervised
video segmentation methods [20, 34, 19, 33, 5, 30, 42], on the test sets of DAVIS
and FBMS datasets. Following the experimental settings of DAVIS dataset, we
employ the intersection-over-union metric (J ) and contour accuracy (F) metrics
for quantitative evaluation. For FBMS dataset, we adopted intersection-over-
union score, as done by previous methods. Table 2 summarizes the results, where
Ours indicates the results obtained via a simple thresholding strategy (= 0.42,
validated on the training set of DAVIS) and Ours+ indicates the results obtained
via the CRF optimization. It can be observed that our model is able to produce
more accurate segmentation results. This is mainly because the proposed PDB-
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Table 3. Runtime comparison with 6 existing video saliency methods.

Method SGSP[27] SAGE[42] GAFL[43] STUW[8] SP[28] FCNS[44] Ours

Time(s) 1.70*(+) 0.88*(+) 1.04*(+) 0.78*(+) 6.05*(+) 0.47 0.05
∗ CPU time.

(+) indicates extra computation of optical flow. For reference, LDOF [1] takes about 49.64s per
frame, Flownet v2.0 [17] takes about 0.05s per frame.

ConvLSTM offers a powerful spatiotemporal learning framework that captures
multi-scale features efficiently.

4.3 Runtime Analysis

In Table 3, we report the runtime comparison results with other 6 video saliency
models, namely SGSP, SAGE, GAFL, STUW, SP, FCNS. For all the methods,
we exclude their computation time of optical flow and the I/O time. All timings
are measured on the same computer configuration Intel Core i7-6700 @3.4GHz
and GTX 1080Ti GPU. SGSP, SAGE, STUW and SP are run on CPU and take
optical flow as extra input. FCNS needs to calculate static saliency first. In com-
parison, our model extracts spatial features for each input frame independently,
and leans temporal dynamics via the efficient PDB-ConvLSTM module without
optical flow. Additionally, our model does not need any pre-/post-processing.
For a 353× 353 input frame, our model achieves the fastest speed of 20 fps.

4.4 Ablation Study

PDC Module. In order to analyze the effect of PDC module, we derive four
variants, each of which only adopts one single dilate rate, i.e., r is set to 2, 4, 8,
or 16. We also replace our PDC module with ASPP [4], which adopts element-
wise sum operation, instead of concatenation, over all the features from different
scales. The experimental results are summarized in Table 4. We can observe
performance drops when only considering single scale and features extracted
from different scales would have different impacts on the final results. Confusing
multi-scale features (baseline: r={2, 4, 8, 16}) brings the best performance. The
results also demonstrate that the proposed PDC module is more favored, com-
pared with ASPP, since PDC module lets the network automatically learn the
importance of each scale via concatenation operation.

Table 4. Ablation study for PDC module on DAVIS and FBMS datasets.

Dataset Metric
PDC Module

ASPP [4]
r = 2 r = 4 r = 8 r = 16 r = {2, 4, 8, 16}

DAVIS Fmax ↑ 0.703 0.704 0.715 0.708 0.774 0.769
MAE ↓ 0.079 0.077 0.074 0.074 0.047 0.045

FBMS Fmax ↑ 0.707 0.702 0.714 0.716 0.744 0.730
MAE ↓ 0.110 0.109 0.107 0.108 0.103 0.111
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Table 5. Ablation study for PDB-ConvLSTM on DAVIS and FBMS datasets.

Dataset Metric FC-LSTM ConvLSTM B-ConvLSTM DB-ConvLSTM PDB-ConvLSTM

DAVIS Fmax ↑ 0.705 0.783 0.786 0.809 0.849
MAE ↓ 0.056 0.043 0.039 0.036 0.030

FBMS Fmax ↑ 0.672 0.755 0.757 0.799 0.815
MAE ↓ 0.121 0.096 0.094 0.072 0.069

PDB-ConvLSTM module. Four baselines are used to discuss the contri-
bution of our PDB-ConvLSTM module in spatiotemporal information learn-
ing, namely Fully Connected LSTM (FC-LSTM), Convolutional LSTM (Con-
vLSTM), Bidirectional ConvLSTM (B-ConvLSTM), and Deeper Bidirectional
ConvLSTM (DB-ConvLSTM). In comparison, we replace our PDB-ConvLSTM
module with above variants and report the corresponding performance using
maximum F-score and MAE over the DAVIS and FBMS datasets. The results
are summarized in Table 5. It can be observed that, no surprisingly, FC-LSTM
gains worst performance since it totally loses spatial details. DB-LSTM per-
forms better than ConvLSTM and B-ConvLSTM due to its deeper fusion of
bidirectional information. PDB-ConvLSTM further advances the performance
by considering multi-scales.
Training Protocol. Now we assess the our training strategy, i.e., using massive
data from static images and video frames. On DAVIS dataset, we find Our w.
static data (Fmax ↑: 0.849, MAE ↓: 0.030) outperforms Our w/o. static data
(Fmax ↑: 0.753, MAE ↓: 0.049). This demonstrates that using static data to
train the model can avoid the risk of over-fitting on relatively small amount of
video data and improve the generalization ability of our model.

5 Conclusions

This paper proposed a deep video salient object detection model which con-
sists of two essential components: PDC module and PDB-ConvLSTM module.
In the PDC module, a set of parallel dilated convolutions are adopted for ex-
tracting multi-scale spatial features through different receptive fields. In the
PDB-ConvLSTM module, conventional ConvLSTM is extended with deeper in-
formation extraction and parallel two dilated ConvLSTMs to extract sequential
features at different scales. The proposed model leverages both labeled video
data and also the massive amount of labeled static-image data for training, so
as to increase its generalization to diverse videos. The proposed model gener-
ates high-quality saliency maps with a real-time processing speed of 20 fps. The
experiments also demonstrate the proposed model is well applicable to unsuper-
vised segmentation task and achieves most accurate segmentation results.
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