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Abstract. A capsule is a collection of neurons which represents different
variants of a pattern in the network. The routing scheme ensures only
certain capsules which resemble lower counterparts in the higher layer
should be activated. However, the computational complexity becomes
a bottleneck for scaling up to larger networks, as lower capsules need
to correspond to each and every higher capsule. To resolve this limita-
tion, we approximate the routing process with two branches: a master
branch which collects primary information from its direct contact in the
lower layer and an aide branch that replenishes master based on pattern
variants encoded in other lower capsules. Compared with previous iter-
ative and unsupervised routing scheme, these two branches are commu-
nicated in a fast, supervised and one-time pass fashion. The complexity
and runtime of the model are therefore decreased by a large margin.
Motivated by the routing to make higher capsule have agreement with
lower capsule, we extend the mechanism as a compensation for the rapid
loss of information in nearby layers. We devise a feedback agreement
unit to send back higher capsules as feedback. It could be regarded as
an additional regularization to the network. The feedback agreement is
achieved by comparing the optimal transport divergence between two
distributions (lower and higher capsules). Such an add-on witnesses a
unanimous gain in both capsule and vanilla networks. Our proposed En-
capNet performs favorably better against previous state-of-the-arts on
CIFAR10/100, SVHN and a subset of ImageNet.

Keywords: Network architecture design; capsule feature learning.

1 Introduction

Convolutional neural networks (CNNs) [1] have been proved to be quite suc-
cessful in modern deep learning architectures [2,3,4,5] and achieved better per-
formance in various computer vision tasks [6,7,8]. By tying the kernel weights
in convolution, CNNs have the translation invariance property that can identify
the same pattern irrespective of the spatial location. Each neuron in CNNs is a
scalar and can detect different (low-level details or high-level regional semantics)
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patterns layer by layer. However, in order to detect the same pattern with var-
ious variants in viewpoint, rotation, shape, etc., we need to stack more layers,
which tends to “memorize the dataset rather than generalize a solution” [9].

A capsule [10,11] is a group of neurons whose output, in form of a vector
instead of a scalar, represents various perspectives of an entity, such as pose,
deformation, velocity, texture, object parts or regions, etc. It captures the exis-
tence of a feature and its variant. Not only does a capsule detect a pattern but
also it is trained to learn the many variants of the pattern. This is what CNNs
are incapable of. The concept of capsule provides a new perspective on feature
learning via instance parameterization of entities (known as capsules) to encode
different variants within a capsule structure, thus achieving the feature equivari-
ance property3 and being robust to adversaries. Intuitively, the capsule detects a
pattern (say a face) with a certain variant (it rotates 20 degree clockwise) rather
than realizes that the pattern matches a variant in the higher layer.

One basic capsule layer consists of two steps: capsule mapping and agreement

routing, which is depicted in Fig. 1(a). The input capsules are first mapped into
the space of their higher counterparts via a transform matrix. Then the routing
process involves all capsules between adjacent layers to communicate by the rout-
ing co-efficients; it ensures only certain lower capsules which resemble higher ones
(in terms of cosine similarity) can pass on information and activate the higher
counterparts. Such a scheme can be seen as a feature clustering and is optimized
by coordinate descent through several iterations. However, the computational
complexity in the first mapping step is the main bottleneck to apply the capsule
idea in CNNs; lower capsules have to generate correspondence for every higher
capsule (e.g., a typical choice [10] is 2048 capsules with 16 dimension, resulting
in 8 million parameters in the transform matrix).

To tackle this drawback, we propose an alternative to estimate the original
routing summation by introducing two branches: one is the master branch that
serves as the primary source from the direct contact capsule in the lower layer;
another is the aide branch that strives for searching other pattern variants along
the channel and replenishes side information to master. These two branches
are intertwined by their co-efficients so that feature patterns encoded in lower
capsules could be fully leveraged and exchanged. Such a one-pass approximation
is fast, light-weight and supervised, compared to the current iterative, short-lived
and unsupervised routing scheme.

Furthermore, the routing effect in making higher capsule have agreement
with lower capsule can be extended as a direct loss function. In deep neural net-
works, information is inevitably lost through stack of layers. To reduce the rapid
loss of information in nearby layers, a loss function can be included to enforce
that neurons or capsules in the higher layer can be used for reconstructing the
counterparts in lower layers. Based on this motivation, we devise an agreement
feedback unit which sends back higher capsules as a feedback signal to better
supervise feature learning. This could be deemed as a regularization on network.
Such a feedback agreement is achieved by measuring the distance between the

3 Equivariance is the detection of feature patterns that can transform to each other.
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Fig. 1. (a) One capsule operation includes a capsule mapping and an agreement rout-
ing. (b) Capsule implemented in a convolutional manner by [10,11] where lower capsules
are mapped into the space of all higher capsules and then routed to generate the output
capsule. (c) Our proposed capConv layer: approximate routing with master and aide
interaction to ease the computation burden in the current design in (b).

two distributions using optimal transport (OT) divergence, namely the Sinkhorn
loss. The OT metric (e.g., Wasserstein loss) is promised to be superior than other
options to modeling data on general space. This add-on regularization is inserted
during training and disposed of for inference. The agreement enforcement has
witnessed a unanimous gain in both capsule and vanilla neural networks.

Altogether, bundled with the two mechanisms aforementioned, we (i) encap-
sulate the neural network in an approximate routing scheme with master/aide
interaction, (ii) enforce the network’s regularization by an agreement feedback
unit via optimal transport divergence. The proposed capsule network is denoted
as EncapNet and performs superior against previous state-of-the-arts for image
recognition tasks on CIFAR10/100, SVHN and a subset of ImageNet. The code
and dataset are available https://github.com/hli2020/nn capsulation.

2 CapNet: Agreement Routing Analysis

2.1 Preliminary: capsule formulation

Let ui,vj denote the input and output capsules in a layer, where i, j indicates
the index of capsules. The dimension and the number of capsules at input and
output are d1, d2, n1, n2, respectively, i.e., {ui ∈ R

d1}n1
i=1, {vj ∈ R

d2}n2
j=1. The

first step is a mapping from lower capsules to higher counterparts: v̂j|i = wij ·ui,

where wij ∈ R
d1×d2 is a transform matrix and we define the intermediate output

v̂j|i ∈ R
d2 as mapped activation (called prediction vector in [10]) from i to j.

The second step is an agreement routing process to aggregate all lower capsules
into higher ones. The mapped activation is multiplied by a routing coefficient

cij through several iterations in an unsupervised manner: s
(r)
j =

∑

i c
(r)
ij v̂j|i.

This is where the highlight of capsule idea resides in. It could be deemed as
a voting process: the activation of higher capsules should be entirely dependent
on the resemblance from the lower entities. Prevalent routing algorithms include
the coordinate descent optimization [10] and the Gaussian mixture clustering via
Expectation-Maximum (EM) [11], to which we refer as dynamic and EM routing,

https://github.com/hli2020/nn_capsulation
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respectively. For dynamic routing, given b
(0)
ij ← 0, r ← 0, we have:

b
(r+1)
ij ← b

(r)
ij + v̂j|i · v

(r)
j , (1)

where b is the softmax input to obtain c; v(r) is computed from s
(r) via squash(·),

i.e., v = ‖s‖2

1+‖s‖2
s

‖s‖ . The update of the routing co-efficient is conducted in a

coordinate descent manner which optimizes c and v alternatively. For EM routing,

given c
(0)
ij ← 1/n2, r ← 0, and the activation response of input capsules ai, we

iteratively aggregate input capsules into d2 Gaussian clusters:

a
(r)
j ,µ

(r)
j ,σ

(r)
j ← M-step

[
ai, c

(r)
ij , v̂j|i

]
, (2)

c
(r+1)
ij ← E-step

[
a
(r)
j , pj|i

(
v̂j|i,µ

(r)
j ,σ

(r)
j

)]
, (3)

where the mean of cluster µj is deemed as the output capsule vj . M-step gen-
erates the activation aj alongside the mean and std w.r.t. higher capsules; these
variables are further fed into E-step to update the routing co-efficients cij . The
output from a capsule layer is thereby obtained after iterating R times.

2.2 Agreement routing analysis in CapNet

Effectiveness of the agreement routing. Figure 2 illustrates the training dy-
namics on routing between adjacent capsules as the network evolves. In essence,
the routing process is a weighted average from all lower capsules to the higher
entity (Eqn.(4)). Intuitively, given a sample which belongs to the j-th class, the
network tries to optimize capsule learning such that the length (existence prob-
ability) of vj in the final capsule layer should be the largest. This requires the
magnitude of its lower counterparts who resemble capsule j should occupy a ma-
jority and have a higher length compared to others that are dissimilar to j. Take
the top row of Dynamic case for instance. At the first epoch, the kernel weights
wij are initialized with Gaussian hence most capsules are orthogonal to each
other and have the same length. As training goes (epoch 20 and 80), the per-
centage and length of “blurring” capsules, whose cosine similarity is around zero,
goes down and the distribution evolves into a polarization: the most similar and
dissimilar capsules gradually take the majority and hold a higher length than
other i’s. As training approaches termination (epoch 200), such a phenomenon
is further polarized and the network is at a stable state where the most resem-
bled and non-resembled capsules have a higher percentage and length than the
others. The role of agreement routing is to adjust the magnitude and relevance
from lower capsules to higher capsules, such that the activation of relevant higher
counterparts could be appropriately turned on and the pattern information from
lower capsules be passed on.

The analysis for EM routing draws a unanimous conclusion. The polarization
phenomenon is further intensified (c.f. (h) vs (d) in Fig. (2)). The percentage of
dissimilar capsules is lower (20% vs 37%) whilst the length of similar capsules is
higher (0.02 vs 0.01): implying that EM is potentially a better routing solution
than dynamic, which is also verified by (a) vs (b) in Table 1.
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Fig. 2. Training dynamics as network evolves. Routing tends to magnify and pass on
pattern variants of lower capsules to higher ones which mostly resemble the lower coun-
terparts. Top: Dynamic routing. Bottom: EM routing. We show the cosine similarity
between vj and the mapped lower capsules, i.e., cos sim(vj , v̂j|i). Blue line represents
the average (across all samples) length ‖v̂j|i‖ and gray indicates the percentage (%) of
how many lower capsules i’s agree with j at a given resemblance.

Moreover, it is observed that replacing scalar neurons in traditional CNNs
with vector capsules and routing is effective, c.f. (a-b) vs (c) in Table 1. We
adopt the same blob shape for each layer in vanilla CNNs for fair comparison.
However, when we increase the parameters of CNNs to the same amount as
that of CapNet, the former performs better in (d). Due to the inherent design,
CapNet requires more parameters than the traditional CNNs, c.f. (a) vs (c) in
Table 1 with around 152 Mb for CapNet vs 24 Mb for vanilla CNNs.

The capsule network is implemented in a group convolution fashion by [10,11],
which is depicted in Fig. 1(b). It is assumed that the vector capsules are placed
in the same way as the scalar neurons in vanilla CNNs. The spatial capsules
in a channel share the same transform kernel since they search for the same
patterns in different locations. The channel capsules own different kernels as
they represent various patterns encapsulated in a group of neurons.

Computational complexity in CapNet. From an engineering perspec-
tive, the original design for capsules in CNN structure (see Fig. 1(b)) is to save
computation cost in the capsule mapping step; otherwise it would take 64× more
kernel parameters (assuming spatial size is 8) to fulfill the mapping step. How-
ever, the burden is not eased effectively since step one has to generate a mapping
for each and every capsule j in the subsequent layer. The output channel size
of the transform kernel in Tab. 1(a-b) is 1,048,576 (16 × 32 × 2048). If we feed
the network with a batch size of 128 (even smaller option, e.g., 32), OOM (out-
of-memory) occurs due to the super-huge volume of the transform kernel. The
subtle difference of parameter size between dynamic and EM is that additionally
the latter has a larger convolutional output before the first capsule operation to
generate activations; and it has a set of trainable parameters in the EM routing.
Another impact to consider is the routing co-efficient matrix of size n1 × n2,
the computation cost for this part is lightweight though and yet it takes longer
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Table 1. Comparison of vanilla CNN, CapNet [10,11] and EncapNet. All models have
a depth of six layers and are compared via (i) the number of model parameters (Mb),
(ii) memory consumption (MB, at a given batch size), (iii) runtime (second per batch
size) and (iv) performance (error rate %). 8 and 4 is the largest batch size that can fit in
memory2 for dynamic and EM routing. Metric (ii) and (iii) are measured on CIFAR-10.

method param # mem. size runtime CIFAR-10 MNIST

(a) CapNet, dynamic 151.24 3,961 (8) 0.444 14.28 0.37

(b) CapNet, EM 152.44 10,078 (4) 0.957 12.66 0.31

(c) vanilla CNN, same shape 24.44 1,652 (128) 0.026 14.43 0.38

(d) vanilla CNN, similar param 146.88 2,420 (128) 0.146 12.09 0.33

(e) EncapNet, master 25.76 1,433 (128) 0.039 13.87 0.31

(f) EncapNet, master/aide 60.68 1,755 (128) 0.061 11.93 0.25

runtime than traditional CNNs due to the routing iteration times R to update
c, especially for EM method that involves two update alternations.

Inspired by the routing-by-agreement scheme to aggregate feature patterns
in the network and bearing in mind that the current solution has a large com-
putation complexity, we resort to some alternative scheme stated below.

3 EncapNet: Neural Network Encapsulation

3.1 Approximate routing with master/aide interaction

Recall that higher capsules are generated according to the voting co-efficient cij
across all entities (capsules) in the lower layer:

sj =

n1∑

i=1

cij · v̂j|i = c1j v̂j|1 + · · ·+ cij v̂j|i + · · ·+ cn1j v̂j|n1
, (4)

= cij v̂j|i
︸ ︷︷ ︸

i=j

+
∑

i 6=j

cij v̂j|i. (5)

Eqn. (4) can be grouped into two parts: one is a main mapping that directly
receives knowledge from its lower counterpart i, whose spatial location is the
same as j’s; another is a side mapping which sums up all the remaining lower
capsules, whose spatial location is different from j’s. Hence the original unsu-
pervised and short-lived routing process can be approximated in a supervised
manner (see Fig. 1(c)):

sj ≈ m1v̂
(1)
|l(Nj ,k1)

+m2v̂
(2)

|l(N j ,k2)
, (6)

where Nj is a location set along the channel dimension that directly maps lower
capsules (there might be more than one) to higher j; N j is the complimentary
set of Nj that contains the remaining locations along the channel; k(∗) is the
spatial kernel size; altogether l(·, ·) indicates the location set of all contributing
lower capsules to create a higher capsule. Formally, we define v̂

(1) and v̂
(2) in

4 A single Titan X GPU, which has a 12G memory.
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Eqn. (6) as the master and aide activation, respectively, with their co-efficients
denoted as m1 and m2.

The master branch looks for the same pattern in two consecutive layers
and thus only sees a window from its direct lower capsule. The aide branch,
on the other hand, serves as a side unit to replenish information from capsules
located in other channels. The convolution kernels in both branches use the
spatial locality: kernels only attend to a small neighborhood of size k1 × k1 and
k2 × k2 on the input capsule u to generate the intermediate activation v̂

(1) and
v̂
(2). The master and aide activations in these two branches are communicated

by their co-efficients in an interactive manner. Co-efficient m(∗) is the output

of group convolution; the input source is from both v̂
(1) and v̂

(2), leveraging
information encoded in capsules from both the master and aide branches.

After the interaction as shown in Fig. 1(c), we append the batch normal-
ization [12], rectified non-linearity unit [13] and squash operations at the end.
These connectivities are not shown in the figure for brevity. To this end, we have
encapsulated one layer of the neural network with each neuron being replaced
by a capsule, where interaction among them is achieved by the master/aide

scheme, and denote the whole pipeline as the capConv layer. An encapsulated
module is illustrated in Fig. 3(a), where several capConv layers are cascaded
with a skip connection. There are two types of capConv. Type I is to increase
the dimension of capsules across modules and merge spatially-distributed cap-
sules. The kernel size in the master branch is set to be 3 in this type. Type II is
to increase the depth of the module for a length of N ; the dimension of capsule
is unchanged; nor does the number of spatial capsules. The kernel size for the
master branch in this type is set to be 1. The capFC block is a per-capsule-
dimension operation of the fully-connected layer as in standard neural network.
Table 2 gives an example of the proposed network, called EncapNet.

Comparison to CapNet. Compared to the heavy computation of generat-
ing a huge number of mappings for each higher capsule in CapNet, our design
only requires two mappings in the master and aide branch. The computational
complexity is reduced by a large margin: the kernel size in the transform matrix
in the first step is n2

2 times fewer and the routing scheme in the second step

is S4

d2
times fewer (S being the spatial size of feature map). Take the previous

setting in Table 1 for instance, our design leads to 1024 and 256 times fewer
parameters than the original 8,388,608 and 4,194,304 parameters in these two
steps. To this end, we replace the unsupervised, iterative routing process [10,11]
with a supervised, one-pass master/aide scheme. Compared with (a-b) in Table
1, our proposed method (e-f) has fewer parameters, less runtime, and better per-
formance. It is also observed that the side information from the aide branch is a
necessity to replenish the master branch, with baseline error 13.87% decreasing
to 11.93% on CIFAR-10, c.f. (e) vs. (f) in Table 1.

3.2 Network regularization by feedback agreement

Motivated by the agreement routing where higher capsules should be activated
if there is a good ‘agreement’ with lower counterparts, we include a loss that
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Fig. 3. (a) Connections inside one module of EncapNet, where several capConv layers
(type I and II) are cascaded with skip connection and regularized by the Sinkhorn
divergence. This is one type of design and in Section 5 we report other variants. (b)
Pipeline and gradient flow in the Sinkhorn divergence.

requires the higher layer to be able to recover the lower layer. The influence of
such a constraint (loss) is used during training and removed during inference.

To put the intuition aforementioned in math notation, let vx = {vj}
n2
j=1

and uy = {ui}
n1
i=1 be a sample in space Z and U , respectively, where x, y are

sample indices. Consider a set of observations, e.g. capsules at lower layer, S1 =
(u1, . . . , uy, . . . , uB1

) ∈ UB1 , we design a loss which enforces samples v on space Z
as input (e.g., capsules at higher layer) can be mapped to u′ on space U through
a differentiable function gψ : Z → U , i.e., u′ = gψ(v). The data distribution,
denoted as Pψ, for the generated set of samples S2 = (u′1, . . . , u

′
x, . . . , u

′
B2
) ∈ UB2

should be as much close as the distribution Pr for S1. In summary, our goal is
to find ψ∗ that minimizes a certain loss or distance between two distributions
Pψ,Pr ∈ Prob(U)5: argminψ∗L(Pψ,Pr).

In this paper, we opt for an optimal transport (OT) metric to measure the
distance. The OT metric between two joint probability distributions supported
on two metric spaces (U ,U) is defined as the solution of the linear program [16]:

WQ(Pψ,Pr) = inf
γ∈Γ (Pψ,Pr)

E

[ ∫

U×U

Q(u′, u)dγ(u′, u)

]

, (7)

where γ is a coupling; Γ is the set of couplings that consists of joint distributions
over the product space with marginals (Pψ,Pr). Our formulation skips some
mathematic notations; details are provided in [15,16]. Intuitively, γ(u′, u) implies
how much “mass” must be transported from u′ to u in order to transform the
distribution Pψ into Pr; Q is the “ground cost” to move a unit mass from u′

to u. As is well known, Eqn. (7) becomes the p-Wasserstein distance (or loss,
divergence) between probability measures when U is equipped with a distance
DU and Q = DU (u

′, u)p, for some exponent p.
Note that the expectation E(·) in Eqn. (7) is used for mini-batches of size

(B1,B2). In our case, B1 and B2 are equal to the training batch size. Since

5 In some literature, i.e., [14,15], it is called the probability measure and commonly
denoted as µ or ν; a coupling is the joint distribution (measure). We use distribution
or measure interchangeably in the following context. Prob(U) is the set of probability
distributions over a metric space U .
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both input measures are discrete for the indices x and y (capsules in the net-
work), the coupling γ can be treated as a non-negative matrix P , namely γ =
∑

x,y Px,yδ(vx, uy) ∈ Prob(Z × U), where δ represents the Dirac unit mass dis-
tribution at point (v, u) ∈ (Z × U). Rephrasing the continuous case of Eqn. (7)
into a discrete version, we have the desired OT loss:

WQ(Pψ,Pr)
discrete
←−−−−− min

P∈R
B2×B1
+

〈Q,P 〉, (8)

where P satisfies PT
1B2

= 1B1
, P1B1

= 1B2
. 〈·, ·〉 indicates the Frobenius dot-

product for two matrices and 1m := (1/m, . . . , 1/m) ∈ R
m
+ . Now the problem

boils down to computing P given some ground cost Q. We adopt the Sinkhorn
algorithm [17] in an iterative manner, which is promised to have a differentiable
loss function [16]. Starting with b(0) = 1B2 , l← 0, Sinkhorn iterates read :

a(l+1) :=
1B1

KTb(l)
, b(l+1) :=

1B2

Ka(l)
, (9)

where the Gibbs kernel Kx,y is defined as exp(−Qx,y/ε); ε is a control factor.
For a given budget of L iterations, we have:

P := P (L) = diag(b(L)) ·K · diag(a(L)), (10)

which serves as a proxy for the OT coupling. Equipped with the computation
of P and having some form of cost Q in hand, we can minimize the optimal
transport divergence along with other loss in the network.

In practice, we introduce a bias fix to the original OT distance in Eqn. (8),
namely the Sinkhorn divergence [15]. Given two sets of samples vx, uy and ac-
cordingly distributions Pψ,Pr, the revision is defined as:

W
M
Q (Pψ,Pr) = 2WQ(Pψ,Pr)−WQ(Pψ,Pψ)−WQ(Pr,Pr), (11)

where M is the module index. By tuning ε in K from 0 to ∞, the Sinkhorn
divergence has the property of taking the best of both OT (non-flat geometry)
and MMD [18] (high-dimensional rigidity) loss, which we find in experiments
improves performance.

The overall workflow to calculate a Sinkhorn divergence6 is depicted in Fig.
3(b). Note that our ultimate goal of applying OT loss is to make feature learning
in the mainstream (blue blocks) better aligned across capsules in the network.
It is added during training and abominated for inference. Therefore the design
for Sinkhorn divergence has two principles: light-weighted and capsule-minded.
Sub-networks gψ and fφ should increase as minimal parameters to the model
as possible; the generator should be encapsulated to match the data structure.
Note that the Sinkhorn divergence is optimized to minimize loss w.r.t. both φ, ψ,
instead of the practice in [15,19,14] via an adversarial manner.

6 The term Sinkhorn used in this paper is two-folds: one is to indicate the computation
of P via a Sinkhorn iterates; another is to imply the revised OT divergence.
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Discussions. (i) There are alternatives besides the OT metric for L(Pψ,Pr),

e.g., the Kullback-Leibler (KL) divergence, which is defined as
∑

y log
dPψ
du′ uy or

Jenson-Shannon (JS) divergence. In [14], it is observed that these distances are
not sensible when learning distributions supported by low dimensional manifolds
on Z. Often the model manifold and the “true” distribution’s support often
have a non-negligible intersection, implying that KL and JS are non-existent or
infinite in some cases. In comparison, the optimal transport loss is continuous
and differentiable on ψ under mild assumptions nonetheless. (ii) Our design of
feedback agreement unit is not limited to the capsule framework. Its effectiveness
on vanilla CNNs is also verified by experimental results in Section 5.1.

Design choices in OT divergence.We use a deconvolutional version of the
capConv block as the mapping function gψ for reconstructing lower layer neurons
from higher layer neurons. Before feeding into the cost function Q, samples
from two distributions are passed into a feature extractor fφ. The extractor is
modeled by a vanilla neural network and can be regarded as a dimensionality
reduction of U onto a lower-dimension space. There are many options to design
the cost function Q, such as cosine distance or l2 norm. Moreover, it is found
in experiments that if the gradient flow in the Sinkhorn iterates process is
ignored as does in [19], the result gets slightly better. Remind that Qx,y =
D
(
fφ(u

′
x), fφ(uy)

)
is dependent on φ, ψ (so does P,K, a, b); hence the whole OT

unit can be trained in the standard optimizers (such as Adam [20]).
Overall loss function. The final loss of EncapNet is a weighted combination

from both the Sinkhorn divergence across modules and the marginal loss [10] for

capsule in the classification task: Lmargin(t,v) + λ
∑

MW
M
Q , where t,v is the

ground truth and class capsule outputs of the capFC layer, respectively; λ is a
hyper-parameter to negotiate between these two losses (set to be 10).

4 Related Work

Capsule network. Wang et al. [21] formulated the routing process as an opti-
mization problem that minimizes the clustering-like loss and a KL regularization
term. They proposed a more general way to regularize the objective function,
which shares similar spirit as the agglomerative fuzzy k -means algorithm [22].
Shahroudnejad et al. [23] explained the capsule network inherently constructs
a relevance path, by way of dynamic routing in an unsupervised way, to elim-
inate the need for a backward process. When a group of capsules agree for a
parent one, they construct a part-whole relationship which can be considered
as a relevance path. A variant capsule network [24] is proposed where capsule’s
activation is obtained based on the eigenvalue of a decomposed voting matrix.
Such a spectral perspective witnesses a faster convergence and a better result
than the EM routing [11] on a learning-to-diagnose problem.

Attention vs. routing. In [25], Mnih et al. proposed a recurrent module
to extract information by adaptively selecting a sequence of regions and to only
attend the selected locations. DasNet [26] allows the network to iteratively focus
attention on convolution filters via feedback connections from higher layer to
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lower ones. The network generates an observation vector, which is used by a
deterministic policy to choose an action, and accordingly changes the weights
of feature maps for better classifying objects. Vaswani et al. [27] formulated a
multi-head attention for machine translation task where attention coefficients
are calculated and parameterized by a compatibility function. Attention models
aforementioned tries to learn the attended weights from lower neurons to higher
ones. The lower activations are weighted by the learned parameters in attention
module to generate higher activations. However, the agreement routing scheme
[10,11] is a top-down solution: higher capsules should be activated if and only
if the most similar lower counterparts have a large response. The routing co-
efficients is obtained by recursively looking back at lower capsules and updated
based on the resemblance. Our approximate routing can be deemed as a bottom-
up approach which shares similar spirit as attention models.

5 Experiments

The experiments are conducted on CIFAR-10/100 [28], SVHN [29] and a large-
scale dataset called “h-ImageNet”. We construct the fourth one as a subset of the
ILSVRC 2012 classification database [30]. It consists of 200 hard classes whose
top-1 accuracy, based on the prediction output of the ResNet-18 [5] model is
lower than other classes. The ResNet-18 baseline model on h-ImageNet has a
41.83% top-1 accuracy. The dataset has a collection of 255725, 17101 images for
training and validation, compared with CIFAR’s 50000 for training and 10000
for test. We manually crop the object with some padding for each image (if the
bounding box is not provided) since the original image has too much background
and might be too large (over 1500 pixels); after the pre-processing, each image
size is around 50 to 500, compared with CIFAR’s 32 input. “h-ImageNet” is
proposed for fast verifying ML algorithms on a large-scale dataset which shares
similar distribution as ImageNet.

Implementation details. The general settings are the same across datasets
if not specified afterwards. Initial learning rate is set to 0.0001 and reduced by
90% with a schedule [200, 300, 400] in epoch unit. Maximum epoch is 600. Adam
[20] is used with momentum 0.9 and weight decay 5× 10−4. Batch size is 128.

5.1 Ablative analysis

In this subsection we analyze the connectivity design in the encapsulated module
and the many choices in the OT divergence unit. The depth of EncapNet and
ResNet are the same 18 layers (N = 3, n = 2) for fair comparison. Their struc-
tures are depicted in Table 2. Remind that the comparison of capConv block
with CapNet is reported in Table 1 and analyzed in Section 3.1.

Design in capConv block. Table 3 (1-4) reports the different incoming
sources of the co-efficients m in the master and aide branches. Without using
aide, case (1) serves as baseline where higher capsules are only generated from
the master activation. Note that the 9.83% result is already superior than all
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Table 2. Network architecture of EncapNet and ResNet. The compared ResNet variant
has the same input and output shape as EncapNet. ‘x → y’ indicates channel dimension
from input to output. capConv(k, s, p) means the master capsule has a convolution of
kernel size k, stride s and padding p. Similarly for the standard convolution conv() and
residual block res(). The depth of the EncapNet and ResNet is 2 +

∑
i
(Ni + 1) and

2 +
∑

i
2ni, respectively. Connection of OT divergence is omitted for brevity.

module output size cap dim. EncapNet v1 ResNet

M0 32 × 32 - 3 → 32, conv(3, 1, 1) 3 → 32, conv(3, 1, 1)

M1
I

32 × 32
1 → 2 32 → 32, capConv(3, 1, 1) 32 → 64, res(3, 1, 1)

II 2
[

32 → 32, capConv(1, 1, 0)
]

×N1

[

64 → 64, res(3, 1, 1)
]

× (n1 − 1)

M2
I

16 × 16
2 → 4 32 → 32, capConv(3, 2, 1) 64 → 128, res(3, 2, 1)

II 4
[

32 → 32, capConv(1, 1, 0)
]

×N2

[

128 → 128, res(3, 1, 1)
]

× (n2 − 1)

M3
I

8 × 8
4 → 8 32 → 32, capConv(3, 2, 1) 128 → 256, res(3, 2, 1)

II 8
[

32 → 32, capConv(1, 1, 0)
]

×N3

[

256 → 256, res(3, 1, 1)
]

× (n3 − 1)

M4
I

4 × 4
8 → 16 32 → 32, capConv(3, 2, 1) 256 → 512, res(3, 2, 1)

II 16
[

32 → 32, capConv(1, 1, 0)
]

×N4

[

512 → 512, res(3, 1, 1)
]

× (n4 − 1)

M5 10/100/200 16 capFC avgPool, FC

cases in Table 1, due to the increase of network depth. Result show that obtaining
mx from the activation v̂

(x) in its own branch is better than obtaining from
the other activations, c.f., cases (2) and (3). When the incoming source of co-
efficient is from both branches, denoted as “maser/aide v3” in (4), the pattern
information from lower capsules is fully interacted by both master and aide

branches; hence we achieve the best result of 7.41% when compared with cases
(2) and (3). Table 3 (5-7) reports the result of adding skip connection based
on case (4). It is observed that the skip connection used in both types of the
capConv block make the network converge faster and get better performance
(5.82%). Our final candidate model employs an additional OT unit with two
Sinkhorn losses imposed on each module. One is the connectivity as shown in
Fig. 3(a) where vx is half the size of vy; another connectivity is the same as
the skip connection path shown in the figure, where vx shares the same size
with vy; the “deconvolutional” generator in this connectivity has a stride of 1.
It performances better (4.55%) than using one OT divergence alone (4.58%).

Network regularization design. Fig. 4 illustrates the training loss curve
with and without OT (Sinkhorn) divergence. It is found that the performance
gain is more evident for EncapNet than ResNet (21% vs 4% increase on two
networks, respectively). Moreover, we testify the KL divergence option as a dis-
tance measurement to substitute the Sinkhorn divergence, shown as case (b) in
Table 3. The error rate decreases for both model, suggesting that the idea of
imposing regularization on the network training is effective; such an add-on is to
keep feature patterns better aligned across layers. The subtlety is that the gain
clearly differs when we replace Sinkhorn with KL in EncapNet while these two
options barely matter in ResNet.

7 ResNet-20 reported in [5] has a 8.75% error rate; some online third party implemen-
tation (link anonymised for submission) obtains 6.98%; we run the 18-layer model
in PyTorch with settings stated in the context.
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Table 3. Ablative analysis on (left) the design in the capConv layer and (right) net-
work regularization design. EncapNet and ResNet have the same 18 layers. “two OTs”
indicates each module has two OT divergences coming from different sources. Experi-
ments in series (d-*) are based on case (c) and conducted by removing or substituting
each component in the OT unit while keeping the rest factors fixed.

capConv Design error (%)

(1) master (baseline) 9.83

(2) maser/aide v1 8.05

(3) maser/aide v2 9.11

(4) maser/aide v3 7.41

(5) skip on Type I 6.81

(6) skip on Type II 6.75

(7) skip both 5.82

(8) two OTs 4.55

Network Regularization EncapNet ResNet

(a) capConv block (baseline) 5.82 8.037

(b) KL loss 5.31 7.72

(c) OT loss 4.58 7.67

(d1) remove bias fix 4.71 -

(d2) do BP in PL 4.77 -

(d3) no extractor fψ 5.79 -

(d4) use vanilla gφ 5.01 -

(d5) use l2 in Q 4.90 -

Furthermore, we conduct a series of experiments (d-*) to prove the rationale
of the Sinkhorn divergence design in Section 3.2. Without the bias fix, the result
is inferior since it does not leverage both OT and MMD divergences (case d1); if
we back-propagate the gradient in the PL path, the error rate slightly increases;
the role of feature extractor fψ is to down-sample both inputs to the same shape
on a lower dimension for the subsequent pipeline to process. If we remove this
functionality and directly compare the raw inputs (u, u′) using cosine distance,
the error increases by a large margin to 5.79%, compared with baseline 5.82%;
if we adopt l2 norm to measure the distance between raw inputs, loss will not
converge (not shown in Table 3). This verifies the urgent necessity of having a
feature extractor; if the generator recovering u′ from v employs a standard CNN,
the performance is inferior (5.01%) than the capsule version of the generator
since data flows in form of capsules in the network; finally if we adopt l2 norm
to calculate P after the feature extractor, the performance degrades as well.

0.0001

0.001

0.01

0.1

1

epoch

EncapNet_w/o_OT

EncapNet_OT

600200 350 450 550

test error:	4.58%

test error:	5.82%

0.0001

0.001

0.01

0.1

1
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200 300 400 600

test error:	8.03%

test error:	7.67%

Fig. 4. Training losses
with embedded optimal
transport divergence for
EncapNet and ResNet
(* OT). One OT unit is
adopted as depicted in
Fig. 3(a) for each mod-
ule in the network.

5.2 Comparison to state-of-the-arts

As shown in Table 4, (a) on CIFAR-10/100 and SVHN, we achieve a better
performance of 3.10%, 24.01% and 1.52 % compared to previous entires. The
multi-crop test is a key factor to further enhance the result, which is widely
used by other methods as well. (b) on h-ImageNet, v1 is the 18-layer structure
and has a reasonable top-1 accuracy of 51.77%. We further increase the depth
of EncapNet (known as v2) by stacking more capConv blocks, making a depth
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of 101 to compare with the ResNet-101 model. To ease runtime complexity due
to the master/aide intertwined communication, we replace some blocks in the
shallow layers with master alone. v3 has a larger input size. Moreover, we have
the ultimate version of EncapNet with data augmentation (v3++) and obtain an
error rate of 40.05%, compared with the runner-up WRN [31] 42.51%. Training
on h-ImageNet roughly takes 2.9 days with 8 GPUs and batch size 256. (c)
we have some preliminary results on the ILSVRC-CLS (complete-ImageNet)
dataset, which are reported in terms of the top-5 error in Table 4.

Table 4. Classification errors (%) compared to state-of-the-arts. For state-of-the-arts,
we show the best results available in their papers. + means mild augmentation while
++ stands for strong augmentation. For h-ImageNet, we train models and report results
of other networks based on the same setting as EncapNet v3++.

method CIFAR-10 CIFAR-100 SVHN h-ImageNet

EncapNet 4.55 26.77 2.01 EncapNet v1 48.23

EncapNet+ 3.13 24.01(24.85 ±0.11) 1.64 EncapNet v2 43.15

EncapNet++ 3.10 (3.56 ±0.12) 24.18 1.52 (1.87 ±0.11) EncapNet v3 42.76

GoodInit [32] 5.84 27.66 - EncapNet v3+ 40.18

BayesNet [33] 6.37 27.40 - EncapNet v3++ 40.05

ResNet [5] 6.43 - - WRN [31] 42.51

ELU [34] 6.55 24.28 - ResNet-101 [5] 44.13

Batch NIN [35] 6.75 28.86 1.81 VGG [3] 55.76

Rec-CNN [36] 7.09 31.75 1.77 GoogleNet [4] 60.18

Piecewise [37] 7.51 30.83 -

DSN [38] 8.22 34.57 1.92 complete-ImageNet(top-5)

NIN [39] 8.80 35.68 2.35 EncapNet-18 7.51

dasNet [26] 9.22 33.78 - GoogleNet [4] 7.89

Maxout [40] 9.35 38.57 2.47 VGG [3] 8.43

AlexNet [2] 11.00 - - ResNet-101 [5] 6.21

6 Conclusions

In this paper, we analyze the role of routing-by-agreement to aggregate fea-
ture clusters in the capsule network. To lighten the computational load in the
original framework, we devise an approximate routing scheme with master-aide
interaction. The proposed alternative is light-weight, supervised and one-time
pass during training. The twisted interaction ensures that the approximation
can make best out of lower capsules to activate higher capsules. Motivated by
the routing process to make capsules better aligned across layers, we send back
higher capsules as feedback signal to better supervise the learning across cap-
sules. Such a network regularization is achieved by minimizing the distance of
two distributions using optimal transport divergence during training. This reg-
ularization is also found to be effective for vanilla CNNs.
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