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Abstract. Monocular depth estimation benefits greatly from learning
based techniques. By studying the training data, we observe that the
per-pixel depth values in existing datasets typically exhibit a long-tailed
distribution. However, most previous approaches treat all the regions in
the training data equally regardless of the imbalanced depth distribution,
which restricts the model performance particularly on distant depth re-
gions. In this paper, we investigate the long tail property and delve deeper
into the distant depth regions (i.e. the tail part) to propose an attention-
driven loss for the network supervision. In addition, to better leverage
the semantic information for monocular depth estimation, we propose a
synergy network to automatically learn the information sharing strate-
gies between the two tasks. With the proposed attention-driven loss and
synergy network, the depth estimation and semantic labeling tasks can
be mutually improved. Experiments on the challenging indoor dataset
show that the proposed approach achieves state-of-the-art performance
on both monocular depth estimation and semantic labeling tasks.
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1 Introduction

Depth acquisition has been actively studied over the past decades with widespread
applications in 3D modeling, scene understanding, depth-aware image synthesis,
etc. However, traditional hardware or software based approaches are restricted
by either environment or multi-view observations assumption. To overcome these
limitations, there is a growing interest in predicting depth from a single image.

Monocular depth prediction is an ill-posed problem and inherently ambigu-
ous. However, humans can well perceive depth from a single image, given that
sufficient samples (e.g. the appearances of nearby/distant objects) have been
learned over lifetimes. With the success of deep learning techniques and available
training data, the performance of monocular depth estimation has been greatly
improved [5,53]. While existing methods measure depth estimation accuracy by
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vanilla loss functions (e.g. ℓ1 or ℓ2), they assume that all regions in the scene
contribute equally without considering the depth data statistics. We have em-
pirically found that the depth values in the indoor/outdoor scenes vary greatly
across different regions and exhibit a long tail distribution (see Fig. 1). This is
an inherent property of the nature that mainly caused by the perspective-effect
during the depth acquisition process. Given such imbalanced data, loss functions
that treat all regions equally will be dominated by the samples with small depth,
leading the models to be “short-sighted” and not effective to predict the depth
of distant regions.

Moreover, complement to the learned prior knowledge like perspective, se-
mantic understanding of the scene (e.g. sky is faraway, wall is vertical) essentially
benefits depth estimation. For example, knowing a cylinder-like object to be a
pencil or a pole can help estimate its depth. Furthermore, depth information
is also helpful to differentiate semantic labels, especially for different objects
with similar appearances [4, 11, 41]. Estimating depth and semantics can thus
be mutually beneficial. Unfortunately, there is a lack of strategy to efficiently
propagate and share information across the two tasks.

In this work, we propose to address the above two challenges by presenting
a deep network to predict depth as well as semantic labels from a single still
image. A novel attention-driven loss with depth-aware objective is proposed to
supervise the network training, which alleviates the data bias issue and guides
the model to look deeper into the scene. In addition, in our synergy network
architecture, we propose an information propagation strategy that performs in a
dynamic routing fashion to better incorporate semantics into depth estimation.
The strategy is achieved by a lateral sharing unit and a semi-dense skip-up con-
nection, which allow information to propagate through internal representations
across and within both tasks. Experimental results on the challenging indoor
dataset show that, with the proposed loss and knowledge sharing strategy, the
performance of monocular depth estimation is significantly improved and reach-
ing state-of-the-art. Our contributions are summarized as follows:

– We propose a novel attention-driven loss to better supervise the network
training on existing datasets with long tail distributions. It helps improve
depth prediction performance especially for distant regions.

– We present a synergy network architecture that better propagates semantic
information to depth prediction, via a proposed information propagation
strategy for both inter- and intra-task knowledge sharing.

– Extensive experiments demonstrate the effectiveness of our method with
state-of-the-art performance on both depth and semantics prediction tasks.

2 Related Work

Depth from Single Image. Early works on monocular depth estimation
mainly leverage hand-crafted features. Saxena et al. [44] predict the monocular
depth by a linear model on an over-segmented input image. Hoiem et al. [17] fur-
ther group the superpixels into geometric meaningful labels and construct a 3D
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model accordingly. Later on, with large-scale RGB-D data available, data-driven
approaches [21, 22, 27, 28, 30, 35, 43] become feasible. Eigen et al. [4, 5] construct
a multi-scale deep convolutional neural network (CNN) to produce dense depth
maps. Some methods [24, 29, 34, 51–53, 56] try to increase the accuracy by in-
cluding Conditional Random Fields (CRFs). Despite notable improvements, the
model complexity increases as well. Other works [1,57] predict depth by exploring
ordinal relationships. Data imbalance is reported in [28, 43] while not explicitly
addressed. Some other works [6,9,26,55] propose to supervise the network by a
reconstruction loss from the other stereo or temporal view. While requiring no
depth supervision, rectification and alignment are usually necessary, and they
rely on multi-view images during training. Although remarkable performance
has been achieved, the long tail property of depth data distribution has not yet
been well-explored.

Depth with Semantics. As depth and semantic labels share context infor-
mation, some methods [3,4,11,42,46] take depth map as a guidance to improve
the semantic segmentation performance. In [46], Silberman et al. propose the
NYU RGBD dataset and use the combination of RGB and depth to improve the
segmentation. Based on this dataset, some methods [3,11] take RGBD as input
to perform semantic segmentation. Eigen and Fergus [4] design a deep CNN that
takes RGB, depth, surface normal as input to predict the semantic labels. Owing
to the power of CNN models, other methods [41, 49, 50] are proposed to better
leverage depth for semantic labeling recently. While great performance has been
demonstrated, the ground truth depth is indispensable for the labeling task. On
the other hand, prior information encoded in the semantic labels can be lever-
aged to assist depth prediction. Instead of directly mapping from color image
to depth, Liu et al. [33] first perform a semantic segmentation on the scene and
then use the labels to guide depth prediction, in a sequential manner.

Joint Representation Sharing. Some recent works attempt to investigate the
representation sharing between different tasks [16,19,20,27,38,39,51]. Ladicky et

al. [27] propose a semantic depth classifier and analyze perspective geometry for
image manipulation, whereas they rely on hand-crafted features locally. In [12],
a traditional framework is presented for joint segmentation and 3D reconstruc-
tion. Wang et al. [51] use a CNN following by a hierarchical CRF to jointly
predict semantic labels and depth. However, they only modify the last layer for
prediction and rely on superpixels and CRF. A concurrent work [23] proposes a
weighting strategy for multi-task losses. Misra et al. [38] propose a cross-stitch
(CS) network for multi-task learning. While performs better than baselines, it
may suffer from propagation interruption if the combination weights degenerates
into 0. The two-parallel-CNN design also increases the number of parameters and
learning complexity. Another sharing approach [18] applying dense connections
between each layer in a CNN is proposed for recognition tasks. The fully-dense
connections share all the information but increase memory consumption as well.

In our work, we jointly train semantic labeling and depth estimation in an
end-to-end fashion, without complicated pre- or post-processing. We also propose
to capture better synergy representations between the two tasks. Furthermore,
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Fig. 1. Long tail distributed datasets on depth and semantic labels. Vertical axes in-
dicate the number of pixels. (a) shows the depth value (horizontal axis, in meter)
distribution of the NYUD v2 dataset [46], and (b) shows the distribution of the KITTI
dataset [7]. (c) gives the semantic label distribution (label index as horizontal axis)
of the NYUD v2, while (d-e) are the distributions of the mapped 40 [10] and 4 [46]
categories from the 800+ categories in (c). Imbalanced long-tailed distribution can be
observed in these datasets, even for semantic labels mapped to only four categories.

we investigate the long-tail data distribution in existing datasets and propose
an attention-driven loss to better supervise the network training.

3 Depth-Aware Synergy Network

3.1 Depth-Aware Objective

Most state-of-the-art monocular depth estimation methods make use of CNNs
to enable accurate depth prediction. In these frameworks, the depth prediction
is formulated as a regression problem, where ℓ1 or ℓ2 loss is usually used to
minimize the pixel-wise distance between the predicted and ground truth depth
maps based on the training data. When estimating monocular depth, we ob-
serve that a long tail distribution resides in both indoor (NYUD v2 [46]) and
outdoor (KITTI [7]) depth datasets. As shown in Fig. 1 (a)-(b), the number of
samples/pixels per depth value falls dramatically after a particular depth, with
only a small depth range dominating a large number of pixels. This data imbal-
ance problem shares similarity with that in object detection [32, 45] but differs
in nature. It is because the inherent natural property of perspective effect from
the imaging process leads to the uneven distribution of depth pixels, which can
not be eliminated by simply increasing training data. As a result, training deep
models on such datasets using the loss functions that treat all pixels equally as
in previous works can be problematic. The easy samples with small depth pixel
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values can easily overwhelm the training while hard samples with large depth
pixel values have very limited contribution, leading the models tend to predict
smaller depth values.

Based on the above observations, we propose to guide the network to pay
more attentions to the distant depth regions during training and adaptively ad-
just the backpropagation flow accordingly. The proposed depth-aware objective
is formulated as:

LDA =
1

N

N
∑

i=1

(αD + λD) · ℓ(di, d
GT
i ), (1)

where i is the pixel index, N is the number of pixels in the depth map. di and
dGT
i are the predicted depth value and ground truth value respectively. ℓ(·) is

a distance metric can be ℓ1, ℓ2, etc. αD is a depth-aware attention term that
guides the network to focus more on distant hard depth regions to reduce the
data distribution bias. Therefore, the gradients during backpropagation weight
more on minority distant regions with respect to vast nearby regions. In this
way, αD should be positively correlated to the depth and can be defined as a
linear function with respect to the ground truth depth.

To avoid gradient vanishing at the beginning of training and avoid cutting
off of learning for nearby regions, a regularization term λD is introduced along
with the attention term as:

λD = 1−
min(log(di), log(d

GT
i ))

max(log(di), log(dGT
i ))

, (2)

which describes the learning state during training. If the network at current state
predicts pixel i close to the ground truth, the regularization term λD approaches
0. When the network does not accurately predicts the value, λD approaches 1.
As a result, even for very near (αD → 0) regions that are not accurately pre-
dicted, the gradients can still be backpropagated, which approaches the original
ℓ loss function. In this way, Eq. 2 ensures the stableness during training. Our
depth-aware objective guides the network to adaptively focus on different regions
and automatically adjusts the strength/attention for each training sample, thus
ensures the optimization direction of the model to be comparatively balanced.
In sum, while LDA preserves the focus on nearby pixel samples, it enables the
network to put more attentions on the distant ones during training.

3.2 Network Architecture

The proposed synergy network is a multi-task deep CNN that mainly consists
of four parts: the depth prediction sub-network, semantic labeling sub-network,
knowledge sharing unit/connection, and the attention-driven loss. An overview
architecture is shown in Fig. 2. The input RGB image is passed through a back-
bone encoder (e.g. VGG [47], ResNet [14]) to convert the color space into a
high-dimension feature space. Following the backbone are two sub-networks re-
constructing the depth and semantic labels from the shared high-dimension fea-
ture. Knowledge sharing between these two tasks is achieved by a Lateral Shar-
ing Unit (LSU), which is proposed to automatically learn the propagation flow
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Fig. 2. Overview of the proposed network architecture. A single RGB image is fed
into the shared backbone encoder network (purple), and then decoupled to the depth
prediction (grey) and semantic labeling (pink) sub-networks. Knowledge between the
two sub-networks is shared through lateral sharing units (details in Fig. 3 left) for both
inference and backpropagation, together with internal sharing by semi-dense up-skip
connections (Fig. 3 right). The training is supervised by an attention loss (Section 3.3).

during the training process and results in an optimum structure at test time.
Besides, knowledge sharing is also performed internally at each sub-network
through the proposed semi-dense up-skip connections (SUC). Finally, the whole
training process is supervised by an attention-driven loss which consists of the
proposed depth-aware and other attention-based loss terms.

Lateral Sharing Unit. We empirically explore different information sharing
structures, which reveals that different multi-task networks result in diverse per-
formance and the knowledge sharing strategy is hard to tune manually. In our
synergy network, we propose a bi-directional Lateral Sharing Unit (LSU) to au-
tomatically learn the sharing strategy in a dynamic routing fashion. Information
sharing is achieved for both forward pass and backpropagation. Between every
two up-conv layers in the network, we add such LSU to share residual knowl-
edge/representations from the other task, in addition to the intra-task propaga-
tion. Different from hand-tuned structures, our LSU is able to acquire additional
fractional sharing from inter and intra-task layers. Specifically, the structure of
LSU is illustrated in Fig. 3 left, which provides fully-sharing routes between the
two tasks. Suppose the feature maps generated by current up-conv layers are D1
and S1. Then the feature representation for sharing can be formed as,

{

LSUD2 = D1 + (ϕD ·D1 + ϕS · S1)
LSUS2 = S1 + (γD ·D1 + γS · S1)

, (3)

where ϕD, γD are the weighted parameters for feature D1, and ϕS , γS for feature
S1. The sharing representations LSUD2 and LSUS2 are propagated to the subse-
quent up-conv layers. Note all the parameters in LSU are learnt during training,
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Fig. 3. Left: Structure of the proposed lateral sharing unit at every two consecutive
up-conv layers D1 and D2, with identity mappings (black links). Right: Structure of
the proposed semi-dense up-skip connections; dotted lines indicate up-skip connections,
with operator ℏ (bilinear up-sampling with convolution) shown on the right.

Input w/o LSU w/ LSU, w/o identity w/ LSU, w/ identity Ground truth

Fig. 4. Illustration on the effectiveness of LSU. All depth maps are with the same scale.

resulting in dynamic sharing route between every two up-conv layers. Although
all LSUs share same internal structure, their parameters are not tied, allowing
for a more flexible sharing. We propose to add identity mappings in addition
to the combined sharing. With identity mappings, the intra-task information
propagation is ensured, avoiding the risk of “propagation interruption” or fea-
ture pollution. Such residual-like structure (identity connection [15] associated
with the residual sharing) also benefits efficient backpropagation of gradients.
In addition, our LSU is applied between consecutive up-conv layers, instead of
the encoding backbone. In this way, much fewer combination parameters and
network parameters need to learn. An example illustrates the effectiveness of
our LSU is shown in Fig. 4. We can see that when incorporating LSU, semantics
is propagated to the depth thus improve its accuracy (the top-right cabinet).
Whereas if without the identity mapping, artifacts may also be introduced by
the semantic propagation (bottom-right cabinet). With identity mapping, less
artifacts and higher accuracy can be achieved (the fourth column).

Semi-dense Up-skip Connections. In order to perform better intra-task
knowledge sharing and preserve long-term memory, we introduce the Semi-dense

Up-skip Connections (SUCs) between up-conv layers, as shown in Fig. 2 and
detailed in Fig. 3 right. Denote fin and fout as the input and output features of
the decoder, the output features of each up-conv layer as fi. In addition to the
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short-term memory from preceding single up-conv layer, we add skip connections
to propagate long-term memory. Therefore, our SUC is formulated as,

fout = ℏ(fin) +

n
∑

i=1

ℏ(fi), (4)

where n is the number of up-conv layers (n = 4 in our work), and ℏ denotes
an up-resize operation in order to match the size of feature in the last up-conv
layer. We also tried the concatenation of features which performs slightly worse
than the summation. Our SUC is performed in a semi-dense manner between
adjacent up-conv layers, instead of fully-dense in the encoder. In this way, the
memory consumption is reduced to a large extent without performance sacrifice
according to our experiment. In addition, with long- short-term connections the
features from different up-conv steps are able to fuse in a coarse-to-fine multi-
scale fashion, which incorporates both global and local information.

3.3 Attention-Driven Loss

Depth-Aware Loss. As defined in Section 3.1, during training, we use depth-
aware loss term (Eq. 1) to supervise the depth prediction task. Specially, we
set the attention term αD = dGTn where dGTn is the normalized ground truth
depth (attention guidance in Fig. 2) over whole range. The distance metric ℓ is
set as reverse smooth L1-norm [8,28] due to its robustness.

Joint Gradient Loss. In order to better preserve details on local structure
and surface regions, we propose to set constraints on gradients and introduce
the gradient loss layers with kernels set as the Sobel detector in both horizontal
(∇h) and vertical (∇v) directions,

Lg(d, d
GT ) =

1

N

N
∑

i=1

∣

∣∇hdi −∇hd
GT
i

∣

∣+
∣

∣∇vdi −∇vd
GT
i

∣

∣. (5)

In addition, the semantic information is also taken into consideration as a
joint gradient loss term, by substituting the semantic segmentation result s for
dGT as: Lg(d, s). Then the joint gradient loss term is formulated as LJG =
Lg(d, d

GT ) + Lg(d, s).

Semantic Focal Loss. As shown in Fig. 1 (c-e), the category distribution also
belongs to a long-tailed one, even mapping to much fewer number (e.g. 40 or
4) of categories. Such imbalanced distribution not only influences the semantic
labeling task but also impacts the depth prediction through LSUs and back-
propagation. Inspired by the Focal Loss [32] proposed for object detection, we
propose to guide the network to pay more attention to the hard tailed categories
and set the loss term as,

LsemF (l, l
GT ) = −

1

N

N
∑

i=1

K
∑

k=1

lGT
i,k αk(1− li,k)

γ
log(li,k), (6)
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Input Depth attention Backbone attention Semantic attention

Fig. 5. Network attention visualization. Given an input RGB image, the spatial atten-
tion of the network is shown as an overlay to the input.

where li is the label prediction at pixel i and k is the category index. αk and γ

are the balancing weight and focusing parameter to modulate the loss attention.
The above loss terms/layers consist the proposed attention-driven loss as in

Fig. 2, which is defined as,

Lattention = LDA + LJG + LsemF . (7)

3.4 Attention Visualization

In order to better illustrate the proposed attention-driven loss, we visualize the
learned attention of the network, i.e. which region the network focuses more
on. Following [54], here we use the spatial attention map to show the network
attention. The attention maps of the network on monocular depth estimation in
shown in Fig. 5 (second column) as heat-map, where red indicates high values.
Note that the attention map here is different from the attention guidance in
Fig. 2, although they share the similar high-level meaning. Here the attention
map is represented by the aggregation of the feature activations from the first up-
conv layer. In addition to the depth estimation, the attention maps of the shared
backbone and semantic labeling are also presented for a thorough understanding
of the network attention distribution in Fig. 5.

From the visualization we can see the network mainly focuses on distant
regions when performing monocular depth estimation. On the other hand, the
shared backbone focuses on a larger region around the distant area, indicating a
more general attention on the whole scene while still driven by the distance. For
the attention of semantic labeling, besides the dominant categories, some “tailed”
categories also receive high attention, e.g. television, books, bag, etc. The above
attention visualization results provide a better understanding of the network
focus and validate the mechanism of the proposed attention-driven approach.

4 Experiments

In this section, we evaluate the proposed approach on monocular depth estima-
tion, and compare to state-of-the-art methods. Performance on semantic labeling
is also presented to show the benefits of knowledge sharing.



10 J. Jiao, Y. Cao, Y. Song, R. Lau

4.1 Experimental Setup

Dataset and Evaluation Metrics. We use the NYU Depth v2 (NYUD2)
dataset [46] for our evaluation, which consists of 464 different indoor scenes with
894 different object categories (distributions shown in Fig. 1). We follow the
standard train/test split with 795 aligned (RGB, depth) pairs for training, and
654 pairs for testing, as adopted in [35, 53, 56]. Besides, each of the standard
splits images is manually annotated with semantic labels. In our experiment,
we map the semantic labels into 4 and 40 categories, according to [46] and [10],
respectively. We perform data augmentation on the training samples by random
in-plane rotation ([−5◦,+5◦]), translation, horizontal flips, color (multiply with
RGB value ∈ [0.8, 1.2]3) and contrast (multiply with value ∈ [0.5, 2.0]) shift.

We quantitatively evaluate the performance of monocular depth prediction
using the metrics of: mean absolute relative error (rel), mean log10 error (log10),
root mean squared error (rms), rms(log), and the accuracy under threshold (δ<
1.25i, i = 1, 2, 3), following previous works [4, 9, 28, 51].

Implementation Details. We implement our proposed deep model on a single
Nvidia Tesla K80 GPU, using the PyTorch [40] framework. In our final model, the
ResNet-50 [14] pre-trained on ImageNet is taken as our shared backbone network,
by removing the last classification layers. The structure of decoder layers are set
following state-of-the-art designs [28, 53]. All the other parameters in the depth
decoder, semantic decoder, SUCs, and LSUs are randomly initialized by the
strategy in [13] and trained from scratch. We train our model with a batch size
of 12 using the Adam solver [25] with parameters (β1, β2, ǫ) = (0.9, 0.999, 10−8).
α, γ are set with reference to [32]. The images are first down-sampled to half
size with invalid borders cropped, and at the end up-sampled to the original size
using techniques similar to previous works [4,30,35]. We first freeze the semantic
branch with all the LSUs, and train the rest model for depth prediction with
a learning rate of 10−3. Then freeze the depth branch and train the rest with
learning rate of 10−5 on backbone and 10−3 on semantic branch. Finally, the
whole model is trained end-to-end with initial learning rate 10−4 for backbone
and 10−2 for others. The learning rate is decreased by 10 times every 20 epochs.

4.2 Experimental Results

Architecture Analysis. We first compare different settings of the network
architecture: depth-only branch, i.e. ResNet with up-convs; with the SUC; with
our proposed depth-aware loss (LDA); adding semantic branch with and without
LSUs. To better illustrate the effectiveness of the proposed knowledge sharing
strategy, we also include the CS structure [38] (substitutes LSU) for comparison.
Our final method with the attention-driven loss is compared to these baselines.
In this analysis the semantic labels are mapped to 4 categories. The comparison
results are shown in Table 1, where we can see the performance is continuously
improved by incorporating each term. Specifically, after introducing the pro-
posed depth-aware loss, performance among all the metrics are improved by a
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Table 1. Architecture analysis. Results are shown on NYUD2 dataset with 4-category
mapped as semantic labeling task.

Method
lower is better higher is better

rel log10 rms rms (log) δ < 1.25 δ < 1.252 δ < 1.253

depth 0.157 0.062 0.642 0.208 0.763 0.943 0.985
+SUC 0.147 0.057 0.572 0.192 0.797 0.951 0.987
+SUC+LDA 0.126 0.050 0.416 0.154 0.868 0.973 0.993
+SUC+LDA+sem. 0.112 0.045 0.367 0.140 0.896 0.978 0.994
+SUC+LDA+sem.+CS 0.110 0.044 0.363 0.138 0.898 0.979 0.995
+SUC+LDA+sem.+LSU 0.105 0.042 0.351 0.133 0.906 0.980 0.995
Proposed 0.100 0.040 0.333 0.127 0.915 0.983 0.996

Table 2. Analysis on robustness to data “tail”. Study performed on NYUD2 with
4-category mapped semantic labels.

Depth lower is better higher is better

range rel log10 rms rms (log) δ < 1.25 δ < 1.252 δ < 1.253

≤ 4m 0.105 0.042 0.300 0.130 0.908 0.981 0.995
≤ 6m 0.101 0.041 0.326 0.127 0.915 0.983 0.996
≤ 8m 0.100 0.040 0.326 0.127 0.915 0.983 0.996
All 0.100 0.040 0.333 0.127 0.915 0.983 0.996

large margin. We note the CS structure do benefits representation sharing while
our LSU performs slightly better. The synergy boosting from semantic labeling
task also benefits a lot to the depth estimation. To summarize, the attention-
driven loss contributes most to the performance, with secondary contributions
of knowledge sharing from semantic labeling.

Robustness to “Tail”. In order to validate the robustness of the proposed
approach to long-tailed data, we perform an ablation study on the tailed part
of the data. Specifically, we divide the depth range of the test data into four
parts by cutting corresponding tails by 2 meters for each (i.e., ≤ 4m, 6m, 8m,
10m). Then we evaluate our method on these depth ranges as shown in Table 2.
From the table we can see that even our attention-driven loss supervises the
network to focus more on distant depth, it performs well on shorter-tailed data
and consistently among different ranges, which indicates the proposed attention
loss is able to adaptively vary according to the data distribution. In addition,
our method also achieves state of the art even on nearby depth.

Comparison with State-of-the-art. We also compare other state-of-the-art
methods with the proposed approach. Here we directly use the reported results in
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Table 3. Comparison with state-of-the-art methods on NYUD2 dataset. The last two
rows show the proposed approach with 4 and 40 semantic categories, respectively.

Method
lower is better higher is better

rel log10 rms rms (log) δ < 1.25 δ < 1.252 δ < 1.253

Karsch et al. [21] 0.349 0.131 1.214 - 0.447 0.745 0.897
Ladicky et al. [27] - - - - 0.542 0.829 0.941
Liu et al. [36] 0.335 0.127 1.06 - - - -
Zhuo et al. [56] 0.305 0.122 1.04 - 0.525 0.838 0.962
Li et al. [29] 0.232 0.094 0.821 - 0.621 0.886 0.968
Liu et al. [34] 0.230 0.095 0.824 - 0.614 0.883 0.975
Eigen et al. [5] 0.215 - 0.907 0.285 0.611 0.887 0.971
Roy & Todorovic [43] 0.187 0.078 0.744 - - - -
Eigen & Fergus [4] 0.158 - 0.641 0.214 0.769 0.950 0.988
Laina et al. [28] 0.127 0.055 0.573 0.195 0.811 0.953 0.988
Xu et al. [53] 0.121 0.052 0.586 - 0.811 0.954 0.987
Li et al. [30] 0.143 0.063 0.635 - 0.788 0.958 0.991

Wang et al. [51] 0.220 0.094 0.745 0.262 0.605 0.890 0.970
Mousavian et al. [39] 0.200 - 0.816 0.314 0.568 0.856 0.956
Jafari et al. [19] 0.157 0.068 0.673 0.216 0.762 0.948 0.988
Laina et al. [28]+sem. 0.122 0.052 0.525 0.184 0.813 0.958 0.989

Proposed-4c 0.100 0.040 0.333 0.127 0.915 0.983 0.996

Proposed-40c 0.098 0.040 0.329 0.125 0.917 0.983 0.996

their original papers. The comparison results on NYUD2 is shown in Table 3. For
our approach, we consider two sharing settings with the semantic labeling task:
sharing information from 4 mapped categories, and 40 mapped categories, as
shown in the last two rows. From the results in Table 3 we can see, our approach
performs favorably against other state-of-the-art methods. Note that [19,39,51]
also utilize the semantic labeling information in a joint prediction manner, which
perform not as well as ours. We also include a state-of-the-art method [28] ac-
companied a semantic labeling branch for better understanding of the seman-
tic booster. The improvement over [28] favorably validates the effectiveness of
adding semantic task, while information sharing is still underexplored. Another
observation is that using more categories benefits the depth prediction, since it
provides more semantic information of the objects in the scene.

In addition to the quantitative comparison, some qualitative results are also
presented in Fig. 6. All the depth maps are shown in the same range with the
ground truth for better comparison. As we can see in the figure, the proposed
method predicts more accurate depth values compared to other methods. For
instance, the large-depth (red) regions in these examples, and the wall region in
the last example. Furthermore, semantic prior also benefits the depth prediction,
e.g. the floor mat in the last example should have similar depth to the floor in-
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Input Liu et al. [34] Eigen&Fergus[4] Laina et al. [28] Wang et al. [51] Proposed Ground Truth

Fig. 6. Qualitative results on the NYUD2 dataset. Our method predicts more accurate
depth compared to other state-of-the-art methods, especially on distant regions. Depth
maps are in the same range with ground truth. Warm color indicates large depth.

Table 4. Evaluation of semantic labeling on the NYUD2-40.

Method input pix. acc. mean acc. IoU

FCN [37] RGB-D 65.4 46.1 34.0
Eigen & Fergus [4] RGB-D 65.6 45.1 34.1
Mousavian et al. [39] RGB 68.6 52.3 39.2
RefineNet [31] RGB 73.6 58.9 46.5
3DGNN [41] RGB-D - 55.7 43.1

Baseline RGB 69.0 50.5 39.9
Without depth RGB 75.7 55.7 48.9
Proposed RGB 81.1 62.2 50.9

stead of floating. This again validates the effectiveness of the proposed approach,
which focuses more on hard distant depth and object semantic meaning.

Semantic Labeling. Although the semantic labeling task is incorporated to
perform knowledge sharing and boost the depth prediction task, the proposed
network infers a semantic segmentation map as well. Here we evaluate whether
the depth prediction task benefits semantic labeling, by three metrics in percent-
age (%): pixel accuracy, mean accuracy, Intersection over Union (IoU). We set
the model without depth branch and LsemF as a baseline, and the model with
LsemF (without depth) for comparison. Other semantic segmentation methods
are also included for comparison (with their reported performance). The results
on NYUD2 dataset with mapped 40 categories are shown in Table 4. As the
table shows, our inferred semantic result achieves state-of-the-art performance
as well. We note that without the depth information, our model still performs
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Input Ours GT Input Ours GT

Fig. 7. Results on SUN. Some regions (white boxes) are difficult even to capture GT.

favorably against [4] and [37] which take RGB-D as input. This validates the
effectiveness of the proposed SUC and LsemF to some extent. We also com-
pare with [19, 51] which mapped the raw data to 5 categories, different from
the standard 4-category. After fine-tuning our 4-category model on their data,
we achieve a result of (87.11, 66.77) on (pix.acc., IoU), with respect to (70.29,
44.20) from [51] and (73.04, 54.27) from [19].

Generalization Analysis. In addition to the NYUD2 dataset, we further ex-
plore the generalization ability of our model to other indoor and outdoor scenes.
Performance on another indoor dataset SUN-RGBD [48] is shown in Fig. 7,
where Ours are predicted by our original model without finetuning on SUN. The
results show that even SUN differs from NYU in data distribution, our model
could predict plausible results. For outdoor scenes, we fine-tune the indoor model
on 200 standard training images (with sparse depth and semantic labels) from
the KITTI dataset [7]. The performance is (RMSE, RMSElog, δ<1.25, δ<1.252,
δ<1.253) =(5.110, 0.215, 0.843, 0.950, 0.981), following the evaluation setups
in [9, 26]. We also evaluate on the Cityscapes dataset [2], following the setups
in [23]. The (Mean Error, RMSE) on the converted disparity is (2.11, 4.92), in
comparison to (2.92, 5.88) for [23]. The above evaluations reveal that despite the
difference in distribution and scene structures, our model is shown to have the
generalization ability to other datasets.

5 Conclusions

We have introduced an attention-driven learning approach for monocular depth
estimation, which also predicts corresponding accurate semantic labels. In order
to predict accurate depth information for the whole scene, we delve into the
deeper part of the scene and propose a novel attention-driven loss that supervises
the training in an attention-driven manner. We have also presented a sharing
strategy with LSU and SUC, to better propagate both inter- and intra-task
knowledge. Experimental results on NYUD2 dataset showed that the proposed
method performs favorably against state-of-the-arts, especially on hard distant
regions. We have also shown the generality of our model to other datasets/scenes.
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