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Abstract. Existing deblurring methods mainly focus on developing ef-
fective image priors and assume that blurred images contain insignificant
amounts of noise. However, state-of-the-art deblurring methods do not
perform well on real-world images degraded with significant noise or
outliers. To address these issues, we show that it is critical to learn data
fitting terms beyond the commonly used ℓ1 or ℓ2 norm. We propose a
simple and effective discriminative framework to learn data terms that
can adaptively handle blurred images in the presence of severe noise and
outliers. Instead of learning the distribution of the data fitting errors, we
directly learn the associated shrinkage function for the data term using a
cascaded architecture, which is more flexible and efficient. Our analysis
shows that the shrinkage functions learned at the intermediate stages can
effectively suppress noise and preserve image structures. Extensive ex-
perimental results show that the proposed algorithm performs favorably
against state-of-the-art methods.

Keywords: Image deblurring, learning data terms, shrinkage function,
noise and outliers

1 Introduction

The recent years have witnessed significant advances in non-blind deconvolu-
tion [3, 7, 18, 26], mainly due to the development of effective image priors [7, 18,
9, 29]. When combined with a data term based on ℓ1 or ℓ2 norm, these methods
perform well where the image blur is the main or only source of degradation.
However, these methods tend to fail when the real-world images contain signifi-
cant amounts of noise or outliers.

When the image blur is spatially invariant, this process is modeled by

b = l ∗ k + n, (1)

where b, l, k, and n denote the blurred image, latent image, blur kernel, and
noise; and ∗ is the convolution operator. While the ℓ1 or ℓ2 norm is often used in
this model, it implicitly assumes that the noise can be modeled by the Laplacian
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or Gaussian distribution. Thus, methods based on the model with ℓ1 or ℓ2 norm
cannot well handle significant noise or outliers in real-world images.

To address these issues, some recent methods design models for specific dis-
tortions, e.g., Gaussian noise [6, 28], impulse noise [3], and saturated pixels [3,
22]. However, domain knowledge is required to design an appropriate model
specifically for a particular distortion.

Directly learning the noise model from the training data is an appealing
solution. Xu et al. [26] learn the deconvolution operation from the training data
and this method can handle significant noise and saturation. However, their
method requires the blur kernel to be separable. Furthermore, the network needs
to be fine-tuned for each kernel because this method needs to use the singular
value decomposition of the pseudo inverse kernel.

In this work, we propose a discriminative framework to learn the data ter-
m in a cascaded manner. To understand the role of the data term for image
deblurring, we use the standard hyper-Laplacian prior for the latent image [7,
8]. Our framework learns both the data term and regularization parameters di-
rectly from the image data. As learning the distribution of the noise results in
an iterative solution, we propose to learn the associated shrinkage functions for
the data term using a cascaded architecture. We find that the learned shrinkage
functions are more flexible at the intermediate stages, which can effectively de-
tect and handle outliers. Our algorithm usually reaches a good solution in fewer
than 20 stages. The learned data term and regularization parameters can be di-
rectly applied to other synthetic and real images. Extensive experimental results
show that the proposed method performs favorably against the state-of-the-art
methods on a variety of noise and outliers.

2 Related Work

Non-blind deconvolution has received considerable attention and numerous meth-
ods have been developed in recent years. Early methods include the Wiener fil-
ter [23] and the Richardson-Lucy algorithm [10, 13]. To effectively restore image
structures and suppress noise for this ill-posed problem, recent methods have
focused on the regularization terms, e.g., total variation [21], hyper-Laplacian
prior on image gradients [7, 9], Gaussian mixture model [29], and multi-layer
perceptron [18].

To learn good priors for image restoration, Roth et al. [14] use a field of
experts (FoE) model to fit the heavy-tailed distribution of gradients of natural
images. Schmidt et al. [17] extend the FoE framework based on the regression
tree field model [5]. The cascade of shrinkage fields model [16] has been pro-
posed to learn effective image filters and reaction (shrinkage) functions for im-
age restoration. Xiao et al. [24] extend the shrinkage fields model to blind image
deblurring. Chen et al. [2] extend conventional nonlinear reaction-diffusion mod-
els by discriminatively learning filters and parameterized influence functions. In
particular, they allow the filters and influence functions to be different at each
stage of the reaction-diffusion process.
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Based on the maximum a posteriori (MAP) framework, existing image priors
are usually combined with one specific type of data term for deblurring. The
commonly used data term is based on the ℓ2 norm which models image noise
with a Gaussian distribution [7]. However, the Gaussian assumption often fails
when the input image contains significant noise or outliers. Bar et al. [1] assume
a Laplacian noise model and derive a data term based on the ℓ1 norm to handle
impulsive noise. These methods can suffer from artifacts for other types of noise
or outliers, since these data terms are designed for specific noise models.

Recently, Cho et al. [3] show that a few common types of outliers cause
severe ringing artifacts in the deblurred images. They explicitly assume a clipped
blur model to deal with outliers and develop a non-blind deconvolution method
based on the Expectation-Maximization (EM) framework. This method relies
on the preset values of the tradeoff parameters, which requires hand-crafted
tuning for different levels of noise and outliers. Taking into account the non-
linear property of saturated pixels, Whyte et al. [22] propose a modified version
of the Richardson-Lucy algorithm for image deblurring. Jin et al. [6] present a
Bayesian framework-based approach to non-blind deblurring with the unknown
Gaussian noise level.

To deal with image noise and saturation, Xu et al. [26] develop a deblur-
ring method based on the convolutional neural network (CNN). However, their
network needs to be fine-tuned for every kernel as it is based on the singular
value decomposition of the pseudo inverse kernel. CNNs have also been used to
learn image priors for image restoration [28, 27]. However, these methods [28, 27]
mainly focus on Gaussian noise and cannot apply to other types of outliers. In
addition, Schuler et al. [19] propose to learn the data term by a feature extrac-
tion module, which uses a fixed ℓ2 norm penalty function and focuses on blind
deconvolution. In contrast, our method can handle different types and levels of
noise and does not require fine-tuning for a particular blur kernel.

For low-level vision tasks, numerous methods have been developed to model
the data fitting errors [20]. However, the learned distributions are often high-
ly complex and require an iterative solution. In addition, the probabilistically
trained generative models usually require ad-hoc modifications to obtain good
performance [15]. Compared with learning the distribution (penalty function),
learning the associated solution (shrinkage function) is more flexible, because
non-monotonic shrinkage functions can be learned [16]. Furthermore, shrinkage
functions make learning efficient, since the model prediction and the gradient
update have closed forms. We are inspired by shrinkage fields [16] to discrimi-
natively learn shrinkage functions for the data term, which is more flexible than
generatively learning the penalty function. Thus our framework can handle var-
ious types of noise and outliers and is also computationally efficient.

3 Proposed Algorithm

This paper proposes to present a discriminative deconvolution framework that
performs robustly in the presence of significant amounts of noise or outliers. We



4 J. Dong, J. Pan, D. Sun, Z. Su, and M. Yang

estimate the latent image from the blurred image using the MAP criterion

l = argmax
l

p(l|k, b) = argmax
l

p(b|k, l)p(l), (2)

where the first (data) term models the distribution of the residue image log p(b|k, l)=
− 1

λR(b− l ∗ k), and R(·) measures the data fitting error. In addition, p(l) is the
latent image prior log p(l)=−P(l). The objective function in (2) can be equiva-
lently solved by minimizing the following energy function

min
l

E(l|k, b) = min
l

R(b− l ∗ k) + λP(l). (3)

As our focus is on the data term, we use a standard hyper-Laplacian prior
and set P(l) = ‖∇l‖p =

∑

i |(∇hl)x|
p + |(∇vl)x|

p, where ∇h and ∇v denote the
horizontal and vertical differential operators respectively and x is the pixel index.
In this paper, we fix p = 1 for the image prior in (3) and show that even with a
simple total variation prior, the proposed algorithm is able to deblur images with
significant amounts of noise and saturation. We show that this algorithm requires
low computational load and can be easily integrated with more expressive image
priors for better performance. Different from most existing methods that use ℓ1
or ℓ2 norm for R, we assume a flexible form for R that can be learned along
with the tradeoff parameter λ from images.

3.1 Data Term

To enforce the modeling capacity, the data term R is parameterized to charac-
terize the spatial information and the complex distribution of the residue image
b− l ∗ k,

R(b− l ∗ k) =

Nf
∑

i=0

Ri(fi ∗ (b− l ∗ k)), (4)

where fi is the i-th linear filter (particularly, f0 is set as the delta filter to
exploit the information of the residue image in the raw data space), Ri is the i-
th corresponding non-linear penalty function that models the i-th filter response,
and Nf is the number of non-trivial linear filters for the data term.

3.2 Inference

Formulation. We first describe the scheme to minimize the energy function (3)
and then explain how to learn the data term. We use the half-quadratic opti-
mization method and introduce auxiliary variables z, vi, and u, corresponding
to b −Kl, Fi(b −Kl), and ∇l = [∇hl,∇vl]. Here, K, Fi, l, and b denote the
matrix/vector forms of k, fi, l, and b. Thus, the energy function (3) becomes

min
z,v,u,l

τ

2
‖b−Kl−z‖22+R0(z)+

Nf
∑

i=1

(
β

2
‖Fi(b−Kl)−vi‖

2

2+Ri(vi))+λ(
γ

2
‖∇l−u‖22+‖u‖1),

(5)
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where τ , β, and γ are penalty parameters. For brevity, we denote Fhl = ∇hl

and Fvl = ∇vl. We use the coordinate descent method to minimize the relaxed
energy function (5),

z = argmin
z

τ

2
‖b−Kl− z‖22 +R0(z), (6)

vi = argmin
vi

β

2
‖Fi(b−Kl)− vi‖

2
2 +Ri(vi), (7)

u = argmin
u

γ

2
‖∇l− u‖22 + ‖u‖1, (8)

l = argmin
l

τ

2
‖b−Kl− z‖22 +

Nf
∑

i=1

β

2
‖Fi(b−Kl)− vi‖

2
2 +

λγ

2
‖∇l− u‖22. (9)

Given the current estimates of z, v, and l, finding the optimal u is reduced to a
shrinkage operation [21]. Given the current estimates of z, v, and u, the energy
function (9) is quadratic w.r.t. l and has a closed-form solution

l = ζ−1ξ, (10)

where ζ = K⊤K + β
τ

∑Nf

i=1 K
⊤F⊤

i FiK + λγ
τ (F⊤

hFh + F⊤
v Fv) and ξ = K⊤(b −

z) + β
τ

∑Nf

i=1 K
⊤F⊤

i (Fib− vi) +
λγ
τ (F⊤

h uh + F⊤
v uv).

Learning the data term. Instead of learning the penalty functions Ri in (6)
and (7), we directly learn the solutions to the optimization problems (6) and (7),
i.e., the shrinkage functions associated with the penalty functions Ri. We model
each shrinkage function for (6) and (7) as a linear combination of Gaussian RBF
components [16]

z = φ0(b−Kl,π0) =

M
∑

j=1

π0j exp(−
α

2
(b−Kl− µj)

2), (11)

vi = φi(Fi(b−Kl),πi) =

M
∑

j=1

πij exp(−
α

2
(Fi(b−Kl)− µj)

2), (12)

where πi = {πij |j = 1, . . . ,M} are the weights for each component. Similar to
[16], we assume that the mean µj and variance α are fixed, which allows fast
prediction and learning. The learned shrinkage functions are cheap to compute
and can be pre-computed and stored in look-up tables.

Learning the shrinkage function is more expressive than learning the penalty
function. Given a penalty function, a linear combination of Gaussian RBFs can
well approximate its shrinkage function. As shown in Figure 1, the approximated
functions by Gaussian RBFs match well the shrinkage functions of the optimiza-
tion problem with the ℓ1 and Lorentzian penalty functions. Furthermore, we can
learn non-monotonic shrinkage functions, which cannot be obtained by learning
the penalty functions [16]. More details will be discussed in Section 5.
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Fig. 1. The flexibility of the Gaussian RBFs to approximate the shrinkage function
of the optimization problem (6) with different penalty functions. (a) and (c) plot the
shapes of the ℓ1 and Lorentzian penalty functions, respectively. The purple lines in (b)
and (d) draw the corresponding shrinkage functions of (6) with the ℓ1 and Lorentzian
penalty functions, which are stated in the legend, respectively. The yellow dashdot
lines in (b) and (d) plot the approximated shrinkage functions (using Gaussian RBFs),
which match well the associated shrinkage functions

3.3 Cascaded Training

By directly learning the shrinkage functions for (6) and (7), we can compute the
gradients of the recovered latent image w.r.t. the model parameters in closed
forms. This allows efficient parameter learning. The half-quadratic optimization
involves several iterations of (8), (10), (11), and (12) and we refer to one iteration
as one stage. As noted by [16, 2], the model parameters should be adaptively
tuned at each different stage. In the first few stages, the data term should be
learned to detect useful information from the blurred image and avoid the effect
of significant outliers. In the later stages, the data term should mainly focus on
recovering clearer images with finer details. To learn the stage-dependent model
parameters Ωt = {λt, βt,πti, fti}

6 for stage t from a set of S training samples

{l
{s}
gt ,b{s}, k{s}}Ss=1, we use the negative peak signal-to-noise ratio (PSNR) as

the loss function

J(Ωt) =

S
∑

s=1

L(l
{s}
t , l

{s}
gt ) =

S
∑

s=1

−10 log
10





I2max

MSE
(

l
{s}
t , l

{s}
gt

)



 , (13)

where Imax denotes the maximum pixel value of the ground truth image, and

MSE(l
{s}
t , l

{s}
gt ) is the mean squared error between l

{s}
t and l

{s}
gt . We use the

gradient-based L-BFGS method to minimize (13). To simplify notations, we
omit the superscripts below. At stage t, the gradient of the loss function w.r.t.
the parameters Ωt = {λt, βt,πti, fti} is

∂L(lt, lgt)

∂Ωt
=

∂L(lt, lgt)

∂lt
·
∂lt

∂Ωt
=

∂L(lt, lgt)

∂lt
ζ−1
t

[

∂ξt

∂Ωt
−

∂ζt

∂Ωt
lt

]

. (14)

The derivatives for specific model parameters are provided in the supplementary
material. We optimize the loss function in a cascaded way and discriminatively

6 The parameters τ and γ are included into the weights πi of (11) and (12) and fused
with β and λ in (10).
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Algorithm 1 Discriminative learning algorithm

Input: Blurred images {b{s}} and ground truth blur kernels {k{s}}.
Initialization: l0 = b, λ0 = 0.3, β0 = 0.001.
for t = 1 to T do

Update zt using (11).
Update vti using (12).
Update ut using (8).
Update lt using (10).
Update {λt, βt,πti, fti} using the gradients (14).

end for

Output: Learned model parameters {λt, βt,πti, fti}
T
t=1.

learn the model parameters stage by stage. The main steps of the discriminative
learning procedure are summarized in Algorithm 1.

4 Experimental Results

Experimental setup. To generate the training data for our experiments, we
generate 20 blur kernels according to [17]. We use 200 images from the BSDS
dataset [11] to construct the datasets for the experiments with significant noise
(e.g., Gaussian noise, impulse noise, etc.) and crop a 280× 280 patch from each
of the images. These blurred images are then corrupted with various noise levels
(i.e., the proportion of pixels affected by noise in an image). The test dataset is
generated similarly, but with 20 blur kernels from [16] and 200 images from [11],
which has no overlap with the training data. In addition, we create a dataset
containing 100 ground-truth low-light images with saturated pixels, one half for
the training and one half for the test. These images are resized to the size of
600 × 800 pixels. For each noise type, we train one discriminative model using
blurred images corrupted by the noise of different levels (1%-5%), such that
this range can cover the possible noise levels in practice. We use real captured
examples to illustrate the robustness of the proposed method to real unknown
noise and estimated kernels. We set T , Nf , and filter size to be 20, 8, and
3× 3, respectively. More results are included in the supplemental material. The
MATLAB code is publicly available on the authors’ websites.

Gaussian noise.We first evaluate the proposed method and the state-of-the-art
non-blind deblurring methods using blurred images corrupted by Gaussian noise.
Table 1 summarizes the PSNR and SSIM results. Since most existing deblurring
approaches have been developed for small Gaussian noise, all methods have the
reasonable performance at low noise levels (1% and 2%). Under such conditions,
performance mainly depends on the prior for the latent image. It is reasonable
that EPLL [29] performs best because it uses an expressive, high-order prior for
the latent image. CSF [16] also focuses on learning effective image priors. We
train the model for CSF using the same data as ours, which contains blurred
images with different noise levels. CSF [16] achieves balanced results for all
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Table 1. PSNR/SSIM results on blurred images corrupted by Gaussian noise at dif-
ferent levels

Noise level TVL2 [7] EPLL [29] MLP [18] CSF [16] TVL1 [25] Whyte [22] Cho [3] FCN [27] Ours

1% 27.00/0.7844 27.64/0.7975 26.49/0.6000 25.55/0.7017 26.52/0.7561 25.48/0.6829 27.24/0.7833 26.46/0.7416 26.47/0.7457
2% 25.49/0.6944 25.90/0.7068 24.92/0.6002 25.36/0.6991 25.55/0.7008 22.95/0.5213 25.74/0.6780 25.18/0.6837 25.59/0.7021
3% 24.54/0.6337 24.86/0.6456 23.90/0.5951 24.99/0.6637 24.73/0.6493 20.78/0.4096 24.92/0.6562 24.47/0.6510 24.86/0.6551
4% 23.86/0.5901 24.12/0.6011 23.21/0.5889 24.33/0.6317 24.04/0.6038 19.10/0.3330 23.95/0.5932 23.69/0.5811 24.26/0.6186
5% 23.35/0.5576 23.56/0.5667 22.71/0.5787 23.45/0.5855 23.42/0.5633 17.77/0.2800 23.35/0.5537 23.61/0.5665 23.73/0.5901

Table 2. PSNR/SSIM results on blurred images corrupted by impulse noise at different
levels

Noise level TVL2 [7] EPLL [29] CSF [16] TVL1 [25] Whyte [22] Cho [3] Ours

1% 22.34/0.5400 13.59/0.2514 23.48/0.5634 27.10/0.7873 18.57/0.4262 27.73/0.8033 29.75/0.9143
2% 20.64/0.4556 15.48/0.5397 23.04/0.5397 26.99/0.7849 16.39/0.2992 27.65/0.8034 29.39/0.9075
3% 19.23/0.3867 17.79/0.5179 22.62/0.5179 26.89/0.7823 14.88/0.2358 27.57/0.8039 29.09/0.9005
4% 17.94/0.3251 19.66/0.4906 22.11/0.4906 26.74/0.7797 13.59/0.1907 27.41/0.8020 28.76/0.8920
5% 16.84/0.2809 20.87/0.4658 21.62/0.4658 26.61/0.7772 12.49/0.1622 27.24/0.8012 28.47/0.8828

levels and distinctive performance at noise levels 3% and 4%. As the noise level
becomes higher, the data term begins to play an important role. Whyte [22]
performs poorly because it has been designed for saturated pixels. In addition,
TVL2 [7], TVL1 [25], and Cho [3] need specifically hand-crafted tuning for the
model parameters, which will significantly affect the deblurred results. Some
deep learning-based methods [18, 27] also aim to learn effective image priors for
the non-blind deblurring problem. For MLP [18], we use the model provided by
the authors, which is trained for motion blur and Gaussian noise as stated in [18].
As demonstrated by Zhang et al. [27], their algorithm (FCN) is able to handle
Gaussian noise. However, this method does not generate better results compared
to the proposed algorithm when the noise level is high. In contrast, with a simple
total variation prior and no manual designing, the proposed method performs
comparably with other methods at various noise levels, suggesting the benefit of
discriminatively learning the data term.

Impulse noise. Next we test on blurred images corrupted by impulse noise, as
shown in Table 2 and Figure 2. As expected, methods developed for Gaussian
noise do not perform well, including TVL2 [7], EPLL [29], and Whyte [22]. With
the ℓ2 norm-based data term, cascaded training the image prior by CSF [16]
smooths the image details significantly. TVL1 [25] performs better by combining
the standard TV prior with a robust data term based on ℓ1 norm. Among existing
methods, Cho [3] performs the best because it uses a hand-crafted model to
handle impulse noise. Still, the proposed method has a concrete improvement
over Cho [3], both numerically and visually, suggesting the benefits of correctly
modeling the data term.

Other types of noise and saturation. We further evaluate these methods
on blurred images corrupted by mixed noise (of Gaussian and impulse noise),
Poisson noise, and saturated pixels, as shown in Tables 3 and 4. The proposed
method consistently outperforms the state-of-the-art methods.
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(a) Blurred (b) TVL2(19.30) (c) EPLL(12.58) (d) MLP(15.98) (e) CSF(19.26)

(f) TVL1(21.64) (g) Whyte(17.46) (h) Cho(22.35) (i) Ours(24.28) (j) GroundTruth

Fig. 2. Deblurred results on images corrupted by impulse noise. The numbers in paren-
thesis are PSNR values. Methods designed for Gaussian noise lead to strong artifacts
(b-e, g). TVL1 (f) obtains some robustness to noise by using a ℓ1 norm. Cho et al. [3]
use a hand-crafted model to deal with impulse noise but the proposed method can
better recover the details

Table 3. PSNR/SSIM results on blurred images corrupted by mixed noise at different
levels

Noise level TVL2 [7] EPLL [29] MLP [18] CSF [16] TVL1 [25] Whyte [22] Cho [3] Ours

1% 22.32/0.5364 13.42/0.2377 16.98/0.3628 23.43/0.5580 26.43/0.7537 18.42/0.3990 27.15/0.7886 26.23/0.7358
2% 20.55/0.4489 15.17/0.2622 18.58/0.4470 23.05/0.5422 25.40/0.6919 16.12/0.2693 24.87/0.6813 25.50/0.6928
3% 18.95/0.3716 17.37/0.3158 18.85/0.4270 22.58/0.5242 24.50/0.6409 14.45/0.2054 23.23/0.4884 24.77/0.6462
4% 17.47/0.3036 19.16/0.3678 18.84/0.4002 22.04/0.4968 23.73/0.5903 12.96/0.1627 22.89/0.3383 24.14/0.6030
5% 16.16/0.2518 20.37/0.4157 18.80/0.3826 21.42/0.4680 23.03/0.5459 11.65/0.1338 22.38/0.2488 23.50/0.5611

Table 4. PSNR/SSIM results on blurred images corrupted by Poisson noise and sat-
urated pixels

Method TVL2 [7] EPLL [29] CSF [16] TVL1 [25] Whyte [22] Cho [3] Ours

Poisson 23.95/0.5981 14.31/0.2083 23.90/0.5946 23.96/0.6043 19.22/0.3461 17.51/0.3526 24.31/0.6214
Saturation 23.07/0.7321 27.77/0.8804 26.72/0.8921 26.40/0.8610 22.85/0.7984 28.17/0.8918 29.55/0.9351

Evaluation on real-world images. The proposed method has been trained
using images corrupted by known noise and outliers. One may wonder whether
it works on real-world images, because their noise statistics are unknown and
different from the training data. In this experiment, we apply the model trained
for Gaussian noise to real-world images from the literature, since Gaussian noise
is the predominant noise type in practice, as shown in Figure 3. The blur ker-
nels are estimated by the kernel estimation methods [4] and [12]. The deblurred
images by TVL1 and Cho et al. have ringing artifacts around the headlights be-
cause of saturated pixels. The method by Whyte et al. [22] can handle saturated
pixels but significantly boosts the image noise. The recovered image by the pro-
posed method is clearer and almost artifact-free, demonstrating the effectiveness
and robustness of the proposed method to real unknown noise and inaccurate
kernels.



10 J. Dong, J. Pan, D. Sun, Z. Su, and M. Yang

(a) Blurred (c) TVL1 [25] (d) Whyte [22] (e) Cho [3] (f) Ours

Fig. 3. Real captured examples with unknown noise

5 Analysis and Discussions

As discussed above, most non-blind deconvolution methods are sensitive to sig-
nificant noise and outlier pixels because of improper assumptions on the data
term. Previous work [16] has shown the benefit of discriminatively learning the
image prior for deblurring when the noise level is small. Our work has shown that
discriminatively learning the data term can effectively deal with significant noise
and outliers. In this section, we analyze the behavior of the proposed method to
understand why it is effective.

Model properties and effectiveness. To understand what our algorithm
learns from the training data, we plot in Figure 4 the learned shrinkage functions
for the residue image (i.e., φ0(·), the approximated solution to the subproblem
(6)), trade-off parameters, and the deblurred images at different stages of the
proposed method on a test image with significant impulse noise. To facilitate
the analysis, we assume that Nf = 0 in (4) in this section. We will discuss the
effect of learning filters in the following sections.

The shrinkage function is initialized with a line-shaped function7, as shown
in the first column of Figure 4(b). Similar to most state-of-the-art methods,
the latent image is initialized to be the blurred image, i.e., l0 = b. To solve the
optimization problems (6) - (9), we first apply the blur kernel k to the initial
latent image. The convolution smoothes out impulse noise in the blurred image
and the output, k ∗ l0=k ∗ b, is a smoothed version of the blurred image. Then
the residual image b− k ∗ l0=b− k ∗ b is only large at pixels that correspond to
either salient structures or are corrupted by impulse noise in the input blurred
image, as shown in the first column in Figure 4(a). With the initial line-shaped
shrinkage function φ0 in (11), the auxiliary variable at stage 1 becomes z1 =
φ0(b− k ∗ b)≈b− k ∗ b (see Figure 4(c)). Consequently, the first term of the non-
blind deblurring problem (9) is close to ‖k ∗ b− k ∗ l‖22. The “effective” blurred
image, k ∗ b, is almost noise-free because the blurring operation suppresses the
impulse noise.

7 Note that we assume R0(·) = ‖ · ‖22 as the initialization in (6) and its closed-form
solution is a line-shaped function.
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(a) Visualization of the residue image, b − k ∗ l
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(b) Learned shrinkage functions for the residue image, φ0(·)

(c) Visualization of the auxiliary variable, z = φ0(b − k ∗ l)

(d) Visualization of b − z, “input blurred image” to the debluring problem (9)

(e) Deblurred results, l
Input Stage 1 Stage 5 Stage 10 Stage 15 Stage 20

Fig. 4. Illustration of the proposed algorithm. The columns from left to right indicate
different stages. Flexible shrinkage functions (b) are discriminatively learned for the
residue image (a) at different stages, which can detect outliers (c) and suppress its
effect on the “input” (d) of the deblurring problem (9). The proposed method can
generate clear results with fine details (e)

At the next few stages, the learned shrinkage functions resemble soft-thresholding
operators. At stage t, the auxiliary variable zt=φ0(b−k∗lt−1) is close to b−k∗lt−1

if the latter is large and 0 otherwise (Figure 4(b)). The first (data) term in the
deblurring problem (9) is close to ‖b− k ∗ l‖22 when zt = 0 and ‖k ∗ lt−1 − k ∗ l‖22
otherwise. That is, the proposed algorithm is learning to identify outlier pixels
via the auxiliary variable z. As a result, inlier pixels are used but outliers are
replaced with those of the smoothed image, k ∗ lt−1, which is almost noise-free.

At the final stages, the learned shrinkage functions become line-shaped func-
tions again, since the deblurred image lt−1 becomes much clearer and the residue
image b − k ∗ lt−1 mainly contains outliers (Figure 4(a)). This makes the first
term of deblurring subproblem (9) close to ‖k∗lt−1−k∗l‖22, where k∗lt−1 almost
becomes a denoised version of the input blurred image, as shown in Figure 4(d).
At these stages, the recovered images approach the ground truth lgt, as shown
in Figure 4(e).
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Fig. 5. Effects of the learned shrinkage functions for (6). (a) and (e) are the solution
functions of the subproblem (6) when R0(·) is ℓ2 and ℓ1 norm with different τ , respec-
tively. (b)-(d) and (f)-(h) are the deblurred results with the corresponding τ using the
ℓ2 and ℓ1 norm-based data term, respectively. (i) plots the learned shrinkage functions
for (6) at different stages. (j)-(l) are the results restored at stage 1, 10, and 20. The
method with the learned flexible shrinkage function generates clearer images with finer
details (The numbers in the parenthesis denote the corresponding PSNR values.)

Figure 5 shows the effectiveness of the learned shrinkage functions. To en-
sure fair comparisons, we set Nf = 0 and let R0(·) be ℓ2 norm, ℓ1 norm, and
the unknown penalty function associated with the learned shrinkage function.
The shrinkage functions of the ℓ2 norm-based data terms in Figure 5(a) cannot
distinguish the impulse noise and smooth both image structure and noise. The
method with ℓ1 norm has some improvement. However, it heavily relies on the
manual selection of the weight τ . Furthermore, some details of the latent images
are smoothed out (Figure 5(h)). In contrast, the proposed method can discrimi-
natively learn flexible shrinkage functions of (6) for different stages and generate
clearer images with finer details (Figure 5(i)-(l)).

Effects of data terms. To further understand the role played by the data
term when the blurred images contain outliers, Figure 6 shows the deblurred
results by different approaches, including ℓ2 norm-based methods with different
image priors (TVL2 [7], EPLL [29], and CSF [16]), methods with robust data
terms (Lorentzian function-based term and TVL1 [25]), Cho et al. [3], and the
proposed method. When the blurred images contain significant impulse noise,
methods using a data term based on the ℓ2 norm all fail, despite the image priors,
e.g., TVL2 [7], EPLL [29], and CSF [16]. Approaches with robust data term, e.g.,
Lorentzian data term, TVL1 [25], and Cho et al. [3], can handle outlier pixels
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(a) Blurred (b) TVL2 (c) EPLL (d) CSF (e) Lorentzian

(f) TVL1 (g) Cho (h) Ours (i) Ours-s (j) Groundtruth

Fig. 6. Effectiveness of the proposed method compared with approaches with various
spatial and data terms. The data term plays a more important role for images with
significant impulse noise. Our method generates the images with fine details

(a) Blurred (b) EPLL (c) EPLL+Ours (d) Ours (j) GroundTruth

Fig. 7. Effectiveness of the proposed framework to improve EPLL for images with
outliers

but may not recover fine details. In contrast, the proposed method generates
clearer images with finer details.

Effects of stage-wise discriminative learning. Since our method uses stage-
dependent parameters, one may wonder whether this feature is important. To
answer this question, we learn a stage-independent data term, referred to as
Ours-s in Figure 6(i). Although a stage-independent data term can recover the
fur of the bear better than some existing methods, it causes severe artifacts. By
comparison, the proposed algorithm using a stage-dependent data term recovers
fine details without the artifacts. In addition, we note that our method performs
better than EPLL when the level of Gaussian noise is high. This can also be at-
tributed to the stage-wise discriminative learning. As the deblurring processes,
the noise level becomes lower. The noise distribution changes to a certain extent.
More importantly, as the deblurred result becomes clearer and cleaner, the roles
of the data term and regularizer have also changed. Thus, it is necessary to dis-
criminatively learn the trade-off parameter for each stage. Figure 6(h)-(i) shows
that stage-dependent data terms are more effective than stage-independent ones.

Extension of the proposed algorithm. To understand the role of the data
term, we have used a standard total variation prior for the latent image. It is
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Fig. 8. Fast convergence property of the proposed algorithm

Table 5. Runtime (second)/PSNR comparisons for image deconvolution (of size 280×
280 with impulse noise and 600×800 with saturated pixels, respectively)

Method EPLL [29] CSF [16] TVL1 [25] Cho [3] Ours

280 × 280 58.97/12.58 1.98/19.26 2.78/21.64 4.28/22.35 3.71/24.28
600 × 800 329.70/24.00 13.79/27.89 15.07/29.64 26.30/30.13 23.23/31.63

straightforward to combine the proposed data term with different image priors.
As an example, we use EPLL [29] as the image prior and Figure 7 shows the
deblurred results. While EPLL is sensitive to significant noise and outliers, com-
bining its image prior with the proposed framework generates clearer results in
Figure 7(c). Furthermore, using the more expressive EPLL prior better recovers
fine details than the TV prior, such as the koala’s fur.

Convergence and runtime. We empirically examine the convergence of the
proposed method on the proposed dataset corrupted by impulse noise. The pro-
posed algorithm converges in fewer than 20 steps, as shown in Figure 8. In
addition, Table 5 summarizes the running time, which is based on an Intel Core
i7-6700 CPU@3.40GHz and 16 GB RAM. The proposed method runs faster than
Cho et al. [3]. Our method is not the fastest, but performs much better than all
the other methods.

6 Conclusion

We have presented a discriminative learning framework for non-blind deconvo-
lution with significant noise and outliers. In contrast to existing methods, we
allow the data term and the tradeoff parameter to be discriminatively learned
and stage-dependent. The proposed framework can also be applied to improve
existing deconvolution methods with various image priors. Experimental results
show that the proposed algorithm performs favorably against the state-of-the-art
methods for different types of noise and outliers.
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