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Abstract. Videos express highly structured spatio-temporal patterns of visual

data. A video can be thought of as being governed by two factors: (i) tempo-

rally invariant (e.g., person identity), or slowly varying (e.g., activity), attribute-

induced appearance, encoding the persistent content of each frame, and (ii) an

inter-frame motion or scene dynamics (e.g., encoding evolution of the person ex-

ecuting the action). Based on this intuition, we propose a generative framework

for video generation and future prediction. The proposed framework generates

a video (short clip) by decoding samples sequentially drawn from a latent space

distribution into full video frames. Variational Autoencoders (VAEs) are used as a

means of encoding/decoding frames into/from the latent space and RNN as a way

to model the dynamics in the latent space. We improve the video generation con-

sistency through temporally-conditional sampling and quality by structuring the

latent space with attribute controls; ensuring that attributes can be both inferred

and conditioned on during learning/generation. As a result, given attributes and/or

the first frame, our model is able to generate diverse but highly consistent sets of

video sequences, accounting for the inherent uncertainty in the prediction task.

Experimental results on three challenging datasets, along with detailed compari-

son to the state-of-the-art, verify effectiveness of the framework.

1 Introduction

Deep generative models, such as variational autoencoders (VAEs) [4] and generative

adversarial networks (GANs) [5], have recently received increased attention [6,7,8,9]

due to their probabilistic and unsupervised nature and their ability to synthesize large

numbers of interdependent variables from compact representations. Impressive results

have been achieved in a broad range of domains, including image generation [10], text

synthesis [11], and text-based image synthesis [12,13].

Despite the impressive progress towards better image generation, including con-

trolled attribute-based models [13,14], it still remains a challenge to generate videos.

Video generation models are inherently useful for building spatio-temporal priors, fore-

casting [7,9,15], and unsupervised feature learning [16]. Although a video can usually
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Fig. 1: Video Generation using Attribute Control. Our framework uses a semi-supervised la-

tent space containing a fixed number of control signals to steer the generation. Setting one (a-b)

or both (c) of the attributes ‘action’ and ‘identity’ to a desired or inferred category (colored cir-

cles) constrains the generative process, but takes advantage of the remaining degrees of freedom

to synthesize diverse video samples. In (d), conditioning on both attributes as well as the first

frame effectively removes all uncertainty (degrees of freedom) in the generation process. In (e)

attribute transition from ‘walking’ to ‘running’ and back to ‘walking’ is induced at the 6th and

11th frame, resulting in the illustrated corresponding transition within the generated video.

be represented as a sequence of temporally coherent images, the extension from image

generation to video generation is surprisingly difficult.

In videos, in addition to individual frames containing plausible object/scene ar-

rangements, the motions of those objects and scene elements, over time, need to be

coherent and plausible as well. This is complicated because some motions might be

very local (smile on a face), while others global (waves running onto a beach). Further,

there are inherent ambiguities in the potential resulting motion patterns. Meaning, given

the same input (e.g., first frame of a person standing) a multitude of plausible futures

may realistically unfold (e.g., he/she may continue to stand, may start walking, may

walk and then sit). Nevertheless, each one of those future predictions is self consistent.

For example, once we start predicting that a person is walking, he/she should continue

to walk for some nominal number of frames before a transition is plausible. Therefore

a generative video model should have the following properties: (1) it should be able to

model diversity of future predictions; (2) each future prediction, which corresponds to

a sample from the generative model, should be self-consistent.

We introduce a novel framework VideoVAE based on variational autoencoders

(VAEs). At each time-step, the VAE encodes the visual input into a high-dimensional

latent distribution. This distribution is passed to a long short-term memory (LSTM) to

encode the motion expressed in the latent space. At every time-step the resulting latent

distribution can be sampled and decoded back into a full image. In order to improve the

consistency within a generated sequence and also to control the generation process, we

expand the latent space in VAEs into a structured latent space with holistic attribute con-

trol. The holistic attribute control can be specified or inferred from data; it can be fixed

over time, or can exhibit sparse transitions (see Fig. 1). The hierarchical conditional
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posterior distributions proposed in the structured latent space thus make predictions

conditioned on multiple crucial information sources. In addition, conditional sampling

is proposed to utilize the previous samples to generate temporally-coherent sequences.

Experiments on three challenging data sets show that these techniques effectively ad-

dress criteria (1) and (2) above and can generate promising videos of plausible objects

with various motions.

2 Related Work

We build upon research in style-content models, deep generative models, semantic la-

tent representations, and video synthesis.

Style-Content Models. Our approach is implicitly related to the rich literature on style-

content separation (a problem introduced in [17]); in our case a distribution over the

content, in each frame, is being parameterized by attribute factors that affect the latent

state and style is modelled by the motion patterns that result from dynamics encoded

by an RNN. Bilinear [17], nonlinear [18,19] and factored models [20] have been used

in the past, but assumed deterministic linear dynamics in the latent space (e.g., GPDM

[19]) and relatively simple temporal signals (e.g., motion capture sequences [19,20] or

foreground segmentations [18]).

Deep Generative Models. Deep generative models (DGMs) use unlabeled data to

learn parameters of a deep topology with compact features. As a prominent member,

variational autoencoders (VAEs) optimize the well-known encoder-decoder architec-

ture [4,21] using a variational objective, possibly conditioned on an auxiliary input [22].

Their principled design, as well as generative capabilities, have led to a fast adoption

and impressive extensions along several axes: A semi-supervised VAE was proposed

in [23]. Hierarchical versions aim at increasing the capacity of VAEs and include [11]

and [10]. The expressiveness of the approximate posterior can be increased through

normalizing flows [24] and its derivatives [25]. Recurrent frameworks using VAEs as

a base model [26] are inherently close to our work. However, previous works do not

model the non-trivial nature of videos: objects/scenes remain the same within a short

video clip. Also, prior methods usually only aim to model synthesized objects with

simple motions.

Semantic Latent Representations. Semantic latent spaces are interesting, useful, and

have a long history in vision and graphics [27]. Recently, [28] utilized the graphics code

(a set of pre-defined latent codes) for interpretable representation learning. However, the

predefined graphics code constrains the system to the parameterized renderable class of

objects. Alternatively, [6] uses mutual information to enforce correspondence between

parts of the latent space and attributes. In an unsupervised effort, [29] up-weights the

KL divergence term in the variational lower bound; when combined with a standard

factorized Gaussian prior, this encourages additional independence between the latent

variables. Similarly, [8] uses a hierarchy of latent variables to learn a set of indepen-

dent hierarchical features. Finally, in [13] a disentangled latent representation is used to

generate images conditioned on attributes.

Video Synthesis. Several very recent works have been proposed to tackle video syn-

thesis. For example, [9,15] predict uncertain future frames from a static image input.
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However, such (extremely) short-term predictions are unable to model motion. In a

somewhat different task, [30] uses GANs to model motions, and [31] uses VAE to pre-

dict trajectories of pedestrians. Related, [32] uses RNNs in the encoder and decoder,

as well as a feedforward network in the prior, to model video and other dynamic data,

particularly for counter-factual reasoning. In [33], the authors use a VAE to encode lin-

ear dynamics in the latent space for videos of basic physics phenomena; [34] uses an

additional set of discrete latent variables to model linear dynamics in the latent space.

Finally, [35] proposes a probabilistic video model that estimates the discrete joint dis-

tribution of the raw pixel values in a video. However, these models lack a natural latent

structure to capture semantic-level information.

Contributions. Our key contribution is a novel generative video model – VideoVAE.

VideoVAE is based on the variational autoencoder (VAE), which provides probabilistic

methods of encoding/decoding full frames into/from a compact latent state. The motion

of the resulting distribution in the latent space, accounting for the motion in the video,

is modeled using an LSTM. At every time-step the structured latent distribution can be

sampled and decoded back into a full frame. To improve the quality of the inference and

generation, we propose a factoring of the latent space into holistic attribute controls and

residual information; control variables can either be observed (specified) or inferred

from the first frame or snippet of the video (allowing semi-supervised training). Fur-

ther, since both dynamics and appearance can be multimodal, to avoid jumps among

the modes, we propose conditional sampling which facilitates self-consistent sequence

generation. Experiments on three challenging datasets show that our proposed model

can generate plausible videos that are quantifiably better than state-of-the-art.

3 Probabilistic Video Generation

We will now describe our proposed model (Fig. 2). At a high level, VideoVAE mod-

els spatio-temporal sequences by building upon VAE as a spatial model and LSTM as

a temporal model, i.e., each frame is encoded into a latent distribution (representing

appearance dependencies within a frame) that is fed into a recurrent neural network

(modeling motion dynamics across frames). We will first provide a brief summary of

the two base models (Sec. 3.1) and then discuss our contributions that result in coher-

ent and controllable video generation: a structured latent space with holistic attribute

control (Sec. 3.2) and a conditional variational posterior (Sec. 3.3).

3.1 Background: Base Models

Variational Autoencoder (VAE). A VAE [4] describes an instance of a generative pro-

cess with simple prior pθ(z) (e.g., Gaussian) and complex likelihood pθ(x|z) (e.g., a

neural network) in which z is a latent and x is an observed variable. Approximating the

intractable posterior pθ(z|x) with a variational neural network qφ(z|x), we can jointly

optimize over θ and φ by maximizing the variational lower bound L on the marginal
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Fig. 2: Overview. (a) A structured latent representation of a variational autoencoder (VAE; [4])

encodes a conditional approximate posterior that is propagated through time with the help of

a long short-term memory (LSTM; [36]). (b) Detailed view of the dashed box in Fig. 2a: In a

hierarchical process, holistic attributes are first merged with the variational approximate posterior

and then integrated with temporal information from the LSTM, effectively resulting in a doubly-

conditional dynamic approximate posterior. We denote the parameters of these distributions as

ψ
(t)
• := [µ

(t)
• , σ

(t)
• ], where µ

(t)
• and σ

(t)
• are the mean and covariance of a multivariate Gaussian,

respectively. Information flow only available during specific phases is highlighted as ↑ for training

and ↑ for testing. The prior distribution ψ
(t)
p , for instance, is only used to calculate the KL-loss at

training time but as a sampling distribution for z(t) at test time.

likelihood pθ(x
(t)) of a video frame x(t),

log pθ(x
(t)) = KL(qφ‖pθ) + L(θ, φ)

≥ L(θ, φ) = −Eqφ

[
log

qφ(z|x
(t))

pθ(z, x(t))

]
.

(1)

From an autoencoder point of view, we can think of the approximate posterior qφ as an

encoder and the likelihood pθ as a decoder. Generating a video frame corresponds to

decoding a sample from the prior.

Long Short-Term Memory (LSTM). While VAEs are a powerful framework for mod-

eling static video frames, they fail to model the motion dynamics between frames in

a video. Long short-term memory (LSTM) [36], a form of a recurrent neural network,

is able to capture such dynamic dependencies. An LSTM consists of two components:

(1) a transition function fh that determines the evolution of an internal hidden state;

(2) a mapping from the internal hidden state to an output. The transition function of a

standard LSTM is entirely deterministic,

h(t) = fh(v
(t), h(t−1)), (2)
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where v(t) and h(t) are the LSTM input and hidden state at time t, respectively.

3.2 Spatial Model

Frames in a video typically exhibit both transient and persistent characteristics. For ex-

ample, identity and action of a subject are likely to remain fixed (persistent) in a short

clip, while the limbs of the person are likely to move (transient) as he/she performs the

action. Modeling video using a simple VAE+RNN [26] combination effectively models

all frame appearance at the temporal granularity of a frame. This often leads to arti-

facts during generation, like undesired identity changes. To address this, we structure

the latent space by introducing holistic attribute controls. The key benefit of such con-

trol variables is that they are persistent, meaning that they either stay fixed or change

extremely infrequently with respect to the frame rate of the video. The following two

paragraphs describe holistic attribute controls in more detail and show their hierarchical

integration with residual and temporal information (Fig. 2b).

Holistic Attribute Control. Holistic attributes a = (ai)i are a set of predefined at-

tributes that do not change with time.5 Examples include the person identities in human

action sequences or the scene labels in generic video clips. These fixed attribute vari-

ables a cast holistic control on the entire generated video sequence and can, in general,

be of various types: categorical, discrete or continuous. Their state can be clamped to

a desired value, inferred from data, or even derived from some external data source. In

this work, the controls are inferred in a semi-supervised manner at training time and set

as fixed during generation.

Training. Since the VAE encoder φenc already maps the input images x(1:T ) to a set

of latent features φenc
(
x(1:T )

)
, we infer the attributes ai from those representations by

adding a small classification network φ
(i)
att for each attribute after the encoder.6 This is

illustrated by the lower orange arrow in Fig. 2b and can be expressed as

ai = φ
(i)
att

(
φenc

(
x(1:T )

))
. (3)

The image encoder φenc and attribute classifiers φφφatt = {φ
(i)
att}i are learned indepen-

dently, which allows easy pretraining of the attribute inference and quick adaption to

new attributes. Another advantage of this setting is that it makes it possible to utilize

a subset of labeled training data to learn φφφatt and generalize to the remaining (unla-

beled) training instances with the same attributes, leading to a semi-supervised training

scenario. In general, we observed that label information for about 20% of the train-

ing data is sufficient to infer the remaining attributes. Once the attributes are inferred

for each video in the training set, they are used as fixed controls during VideoVAE

training (Sec. 4).

5 They do not change with time unless explicitly asked to, e.g., to control the temporal content

of a synthesized clip, as demonstrated in Fig. 4.
6 Each network consists of two fully-connected layers with a central ReLU unit, connected

in time by an LSTM. This LSTM for attribute inference is independent of the main LSTM

modelling motion dynamics.
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Testing. The attributes are set as fixed to cast holistic control over the generation process.

They could be a single label (e.g., “walking”) or a sequence of labels (e.g., “walking” –

“running” – “skipping”) associated with specific frames to cast transient control.

Conditional Approximate Posterior. Traditional VAEs encode the data into an ap-

proximate posterior distribution and sample from a prior to synthesize novel data. This

works well in image generation, since each synthesized image can be sampled inde-

pendently. However, in video generation, successive samples should be temporally co-

herent. In other words, samples should be drawn conditioned on previous information

and also the order of the samples matters. The latent code z should combine this type

of frame-level consistency with the sequence-level consistency provided by the holistic

control variables discussed above.

Based on these observations, we propose the following structured latent space,

which comprises a set of hierarchical approximate posterior distributions (Fig. 2b):

(1) an initial approximate posterior distribution, N (µ
(t)
q , σ

(t)
q ), conceptually modeling

residual information not captured by holistic attributes;

(2) a conditional approximate posterior, N (µ
(t)
a , σ

(t)
a ), encoding the full appearance of

the frame, combining holistic attribute control with the residual posterior above;

(3) a dynamic approximate posterior, N (µ
(t)
dy , σ

(t)
dy ), which further incorporates motion

information and enforces a temporally coherent trajectory. Please refer to Sec. 3.3

for more details on the integration of temporal information.

The three distributions can be expressed in terms of the encoded input, the attributes,

and the LSTM state,

ψ(t)
q = [µ(t)

q , σ(t)
q ] = φτ (φenc(x

(t))),

ψ(t)
a = [µ(t)

a , σ(t)
a ] = φτ (ψ

(t)
q , a),

ψ
(t)
dy = [µ

(t)
dy , σ

(t)
dy ] = φτ (ψ

(t)
a , φτ (h

(t−1))).

(4)

Here, φτ refers to a neural network with an architecture similar to the attribute inference

network (two fully-connected layers with a central ReLU unit, but no LSTM). Separate

instances of φτ (black boxes in Fig. 2b) along the hierarchical chain of our structured

latent space share this architecture but have different weights.

3.3 Temporal Model

VideoVAE contains a VAE at each timestep and propagates information between time-

steps with an LSTM to capture the motion dynamics in videos. The following two para-

graphs discuss the integration of this temporal information with respect to the encoder

and decoder of the VAE at time t. An illustration of this interaction is depicted in Fig. 2a.

Decoder. The latent variational representations at time-step t are conditioned on the

state variable h(t−1) of the LSTM. This additional dependency takes advantage of the

fact that videos are highly temporally consistent and prevents the content and motion

between two consecutive frames from changing too quickly. As the prior distribution
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ψ
(t)
p represents the model’s prediction and belief at timestep t given all previous infor-

mation, it should not be a fixed Gaussian (as is the case in static VAEs) but follow the

distribution

[µ(t)
p , σ(t)

p ] = φτ (φτ (h
(t−1)), a), (5)

where µ
(t)
p and σ

(t)
p denote the parameters of the prior distribution at timestep t. With

this setting, under the assumption that the LSTM hidden state h(t−1) contains all neces-

sary information from x(<t), the prior distribution at timestep t becomes p(z(t)|x(<t)).
This distribution changes with time and effectively represents the prediction of the cur-

rent time-step given previous information.

Similarly, the output distribution is updated according to

z(t) ∼ N (µ
(t)
dy , σ

(t)
dy ),

[µ(t)
x , σ(t)

x ] = φdec(z
(t)),

x̃(t)|z(t) ∼ N (µ(t)
x , σ(t)

x ),

(6)

where µ
(t)
x , σ

(t)
x denote the parameters of the output distribution and x̃(t) the recon-

struction of the input x(t) at time t.
Encoder. At each timestep, the frame input x(t) is mapped by the encoder function φenc
to the hierarchical latent space (Fig. 2b), from which the decoder samples

z(t)|x(t) ∼ N (µ
(t)
dy , σ

(t)
dy ), (7)

where the dynamic approximate posterior is given by Eq. (4).

Conditional Sampling. In the temporal framework described thus far, only the distribu-

tion N (µ
(t)
q , σ

(t)
q ) is passed to the LSTM. In other words, the samples at each time-step

are not passed along time, and are thus independent, resulting in temporally inconsis-

tent sequences (e.g., in terms of the attributes expressed in a decoded RGB frame).

Following intuition from LSTM-based language decoders [37], we introduce condi-

tional sampling to address this problem. In addition to the initial approximate posterior

distribution N (µ
(t)
q , σ

(t)
q ), sample z(t) is also passed to the LSTM (Fig. 2a). The hidden

state of the LSTM is therefore updated according to

h(t) = fh(ψ
(t)
q , z(t), h(t−1)). (8)

In this way, based on the past information, a reasonable initial guess of where the sample

z(t+1) should be in N (µ
(t+1)
dy , σ

(t+1)
dy ) is provided. Notably, due to the VAE structure of

our model, this change requires no changes to the architecture itself, as compared to, for

example, language translation models. The effectiveness of this conditional sampling

scheme to improve the consistency of the generated sequences will be shown in Sec. 5.

4 Learning and Synthesis

4.1 Learning

We follow a two-stage training strategy. As discussed in Sec. 3.2, we first use approx-

imately 20% of the training data to train the holistic attribute classifiers φφφatt using a
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cross entropy loss. Once φφφatt is trained, it is used to infer the holistic attributes for the

rest of the training set. This part of the training process is thus semi-supervised. The

inferred attributes are then considered as fixed during training of the VideoVAE model,

the objective function of which becomes a timestep-wise variational lower bound,

L = Eq(z(≤t)|x(≤t))[

T∑

t=1

(log p(x(t)|z(≤t), x(<t))

−KL(q(z(t)|x(≤t), z(<t)))||p(z(t)|x(<t), z(<t))].

(9)

We optimize Eq. (9) using a pixel-wise L1-loss with standard SGD techniques [38].

The first part is the log-likelihood of the generated data distribution and the second

part is the KL divergence between the prior distribution and the approximate posterior

distribution at time-step t. A full derivation of the objective function is included in the

supplementary material.

4.2 Synthesis

In order to generate a video, i.e., at test time, we adapt the architecture described in

Sec. 3 as illustrated in Fig. 2: First, the holistic attributes are not inferred from the input

data, as is the case during training, because there is no input data at test time. Instead,

we choose and fix a set of desired holistic attributes to steer the generative process.

Second, the sample is not drawn from the dynamic approximate posterior distribution,

but from the prior distribution at each time-step, following standard VAE practice. The

samples are then decoded into an output frame and fed back into the network.

We further propose two different methods to initialize the generative process:

– Holistic attribute controls only: in this setting, only partial or full holistic attribute

controls are provided (Fig. 1(a)–(c)). The initial LSTM state h(0) is randomly ini-

tialized and the first generated frame is sampled and decoded from the distribution

[µ
(1)
p , σ

(1)
p ] = φτ (φτ (h

(0)), a).

– Holistic attribute controls & first frame: in this setting, in addition to the holistic

attribute controls, the first frame is also provided (Fig. 1(d)). The first generated

frame, in this case, is the reconstruction of the input, and the rest of the generation

follows Eq. 5. Typically, conditioning on the first frame improves the generation

quality as it provides the framework more precise information.

5 Experiments

We conduct qualitative and quantitative experiments on multiple datasets to evaluate the

proposed framework. After a brief description of the datasets (Sec. 5.1), we describe our

evaluation metrics (Sec. 5.2) and validate our contributions in an ablation study and a

comprehensive comparison to various baseline models (Sec. 5.3).
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5.1 Datasets

We evaluate our model on three datasets: Chair CAD [1], Weizmann Human Action [2],

and YFCC [3] – MIT Flickr [16]. These datasets contains various kinds of motion pat-

terns, such as simple rotation, structured human action, or complicated scene-related

motions.

Chair CAD [1]. The dataset contains 1393 chair-CAD models. We follow [39] and use

a subset of 809 chair models in our experiments. Each chair model is rendered from

31 azimuth angles and 2 elevation angles at a fixed distance to the virtual camera. The

rendered images are cropped to have a small border and resized to a common size of

64 × 64 × 3 pixels by [39]. In our experiments, we divide the length-31 sequence into

2 length-16 sequences starting from the 16th frame. Altogether, there are four video

sequences per chair model. We randomly pick three of them for training, and the last is

used for testing generation (conditioned on the first frame).

Weizmann Human Action [2]. This dataset contains 90 videos of 9 people performing

10 actions. We cropped each frame to center on the person and resize the frames to

the size of 64 × 64 × 3. In order to perform generation conditioned on first frame, we

first split each video into training and test subset. The first 2/3 frames of the video

are treated as training sequences, and the last 1/3 frames of the video are treated as test

sequences. Then we sample 20 mini-clips of length-10 from each training video to form

a final training set.

YFCC [3] – MIT Flickr [16]. The dataset contains 35 million clips and we use a

pre-processed subset of this dataset provided by [16], of witch the videos have been

stabilized by SIFT+RANSAC and each video clip contains 32 frames. We use two scene

categories beach and golf provided in [16]. Note that these scene categories are filtered

by a pre-trained Place-CNN model, so the labels are not as accurate as the labels in

other datasets.

5.2 Evaluation Metrics

Quantitative evaluation of generative models is an inherently challenging task. A good

generative model should synthesize samples that are both realistic and diverse. Re-

cently, the Inception Score (I-score) [40] has been proposed as an evaluation measure

reflecting both these criteria. For static images x, it is defined as

I = exp (Ex [KL [ρ(y|x)‖ρ(y)]]) , (10)

where ρ(y|x) is the conditional label distribution of an inception model [41] pre-trained

on ImageNet [42]. The entropy of this first term in the KL-divergence measures the con-

fidence of the classifier and the entropy of the second term ρ(y) measures the diversity

of the marginal label distribution over all generated samples.

However, in the video generation field, the lack of a standard model structure and

large datasets makes it hard to come up with a universal classifier. Therefore, we pre-

train individual classifiers on each dataset. We also believe that the first term ρ(y|x)
in Eq. (10) is more important for video generation tasks, since it measures the quality

of a generated sequence. Therefore, in addition to the I-score, we analyze both terms

separately as follows:
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Bound Static
−C +C

−S +S −S +S

Intra-E ↓ 1.98 40.33 17.64 7.79 14.81 5.50

Inter-E ↑ 1.39 0.42 0.73 1.35 1.02 1.37

I-Score ↑ 4.01 1.28 1.83 3.63 2.56 3.94

Table 1: Ablation Study on Chair CAD [39]. We evaluate our contributions individually and

in combination. +C and +S indicate conditional sampling and a structured latent space, respec-

tively. The proposed videoVAE model uses both elements (+C+S; last column). Arrows indicate

whether lower (↓) or higher (↑) scores are better.

Intra Entropy. Intra-entropy measures the conditional label entropy of a set {xi}i of

generated video sequences. Specifically, we use the pre-trained classifier to obtain a

conditional distribution over the attributes a and compute

Sintra =
∑

i

H [ρ(a|xi)] . (11)

A smaller value of Sintra means that the pre-trained classifier is more confident to clas-

sify the generated videos, which indicates that they are more similar to real videos.

Inter Entropy. Inter-Entropy measures the label entropy of a set {xi}i of generated

video sequences. The pre-trained classifier assigns a label aj ∈ a to each sequence,

which allows us to compute the entropy of the induced distribution p(a) over the labels,

Sinter = H [ρ (a)] . (12)

A larger value of Sinter indicates that the distribution over the label space is more uni-

form, which implies that the generative model can produce diverse samples.

5.3 Video Synthesis

Ablation Study. In order to demonstrate the contribution and effectiveness of each

component of our model, we conduct an ablation study on Chair CAD.

Variants. We distinguish five different variations of our model: The static model uses a

standard VAE to generate chair images. This model is trained with individual frames in

the Chair-CAD dataset. 15 consecutively generated images are then treated as one video

sequence. A standard VAE plus temporal model in the form of an LSTM is referred to

as (−C − S) in Table 1. An illustration of such a model can be obtained from Fig. 2a

by omitting conditional sampling and replacing the structured latent space with a single

approximate posterior. Previous VAE-based temporal generative models [26] are of this

type. The (+C −S) model adds conditional sampling at each time-step to the temporal

model. Specifically, the sample z(t) at time-step t is concatenated with the parameters

ψ
(t)
q of the latent distribution; the merged information is then treated as the input of the

LSTM. The (−C + S) model replaces the latent space in the temporal model with our

proposed structured latent space with holistic attribute control. With structured latent

space, this model should show superior consistency in a generated video compared
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Chair CAD [1,39]

Bound Deep Rot. [39] VideoVAE (ours)
✐✈ ✐✈

Intra-E ↓ 1.98 14.68 5.50

Inter-E ↑ 1.39 1.34 1.37

I-Score ↑ 4.01 3.39 3.94

Weizmann Human Action [2]

Bound MoCoGAN [7] VideoVAE (ours)
✐ ✐ ✐✈

Intra-E ↓ 0.63 23.58 9.53 9.44

Inter-E ↑ 4.49 2.91 4.37 4.37

I-Score ↑ 89.12 13.87 69.55 70.10

YFCC [3] — MIT Flickr [16]

Bound VGAN [16] VideoVAE (ours)
✐ ✐ ✐✈

Intra-E ↓ 30.34 46.96 44.03 38.20

Inter-E ↑ 0.693 0.692 0.691 0.692

I-Score ↑ 1.87 1.58 1.62 1.81

Table 2: Quantitative Results. We report Intra-E, Inter-E, and I-Score on three different

datasets. All scores are calculated on attribute classifiers pre-trained on each dataset; comparison

across datasets is therefore meaningless. The bounds are calculated by utilizing those classifiers

on the actual test videos, i.e., they reflect the statistics of real videos. Depending on the baseline

protocol, we compute VideoVAE results for de-novo synthesis ( ✐) and/or prediction given the

first frame ( ✐✈). Arrows indicate whether lower (↓) or higher (↑) scores are better.

with the previous models. Finally, we obtain our full pipeline when both conditional

sampling and a structured latent space are used; this is the model shown in Fig. 2. A

detailed setup of the individual layers is given in the supplementary material.

Results. As shown in Table 1, each part of our model plays an important role. The

static version cannot capture the motion patterns, making it impossible to generate con-

sistent sequences. The (−C − S) variant has an LSTM as a temporal model and can

generate relatively consistent video sequences. The performance measures show much

better results. However, the single approximate posterior distribution in the latent space

cannot separate between different modes. As a consequence, attributes such as actions

or identities may change along time. It also tends to generate similar sequences, since

the latent space is not uniformly distributed and one or a few modes may take up the

majority of the latent space. The structured latent space in the (−C + S) model intro-

duces additional information (holistic attribute control) to the model, and therefore the

consistency within a generated video (represented by Intra-E) is improved by a large

margin. In addition, the attribute control disentangles the latent space to some degree,

which empirically prevents the modes from collapsing. The conditional sampling in the

(+C − S) model improves the consistency between consequent frames. Finally, the

(+C + S) model achieves the best result by combining the benefits of both structured

latent space and conditional sampling. Visualizations of all models are included in the

supplementary material.

Baseline Comparison. We compare our method to three baseline methods. Since some

of the baseline models do not provide their detailed training setup, we only conduct

comparison with them on the dataset they reported in the paper. Specifically, we use

Deep Rotator [39] as the baseline model for Chair-CAD, MoCoGAN [7] for Weizmann

Human Action and VGAN [16] for YFCC-MIT Flickr.

Baseline Models. Deep Rotator uses a simple autoencoder and LSTM structure to gen-

erate rotating chairs. However, this framework is limited to simple motions and difficult

to generalize. MoCoGAN decomposes the noise vector in GAN models into motion

noise and identity noise to separate identity from motion. There are two major draw-

backs with this approach: (1) it shows severe mode collapsing, i.e., focuses on a few

major motions only; (2) the decomposition limits the approach to scenes with a clear

person-action foreground. VGAN uses a two-stream process to generate foreground and

background content separately, then combines them into the final video. Although this

framework generates prominent foreground objects, the motion and appearance of these
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Fig. 3: Qualitative Results on Chair CAD.

objects are usually distorted, unrealistic and exaggerated. VGAN also requires training

a model on each category independently.

In our comparison, we use the pre-trained models provided by Deep Rotator and

VGAN to generate videos. Since a pre-trained MoCoGAN model is not available, we

follow exactly the protocol in [7] to train the model. If the baseline model is determinis-

tic ([16,39]), we generate an equal number of videos for each class for fair comparison.

Since the imperfect quality of the generated sequences lowers the classification accu-

racy, Inter-E and bound are not the same.

Results. Our quantitative comparisons with the baseline models are given in Table 2.

The proposed VideoVAE model consistently and with a large margin (e.g., inception

score: 13.87 (MoCoGAN [7]) vs. 69.55 (ours)) outperforms the baseline models by

generating high quality but diverse video sequences. The upper/lower bounds on per-

formance (2nd column in Tables 2/1) are calculated by utilizing the pre-trained attribute

classifiers on each dataset’s real test set; they represent the statistics of real videos. In

addition, Fig. 3 shows the generated sequences on Chair-CAD in various control scenar-

ios: given partial attribute control (chair ID and tilt angle in this case), the model gen-

erates chairs rotating to different directions (since direction is unspecified), as shown

in Fig. 3a; providing all attribute controls removes the remaining degree of freedom

corresponding to direction, resulting in the (unimodal) samples shown in Fig. 3b. Fig. 4

shows the generated sequences on the human action dataset. In Fig. 4a, we fix the action

but leave the identity unspecified (partial control), resulting in videos containing differ-

ent people performing the same ‘jumping jack’ action. Also note that holistic controls

do not have to be static: Replacing the static controls with a set of time-varying controls

(e.g., ‘walking-running-walking’ instead of ‘walking’), we can steer the generative pro-

cess and synthesize video sequences with smooth transitions between actions, shown in

Fig. 4b. Finally, Fig. 5 shows synthetic sequences for two scene types in YFCC-MIT

Flickr, illustrating our models capability to handle unconstrained scenes as well. More

full-size visualizations and comparisons are provided in the supplementary material.
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Action = “jumping jack”Identity

generate

(a) Partial control.

Action =    walking |    running |    skipping |    jumping jack |    side stepIdentity =    |    |

generate

(b) Transient control.

Fig. 4: Qualitative Results on Weizmann Human Action.

(a) Conditioned on one holistic attribute control (action =

“jumping jack”), our model generates the corresponding ac-

tion using different identities. Note that the identity of a per-

son within a sequence is consistent. (b) Providing both holis-

tic controls but changing the action attribute during the gen-

eration process results in smooth transitions between actions.

See supplementary material for full-sized video sequences.

Beach Golf
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Fig. 5: Qualitative

Results on YFCC

– MIT Flickr. Our

model generates

realistic clips of both

scene types. Each col-

umn is one sequence.

Refer to the supple-

mentary material for

additional visualizations.

6 Conclusion

We propose a novel probabilistic generative framework for video generation and future

prediction. The proposed framework generates a video (short clip) by decoding sam-

ples sequentially drawn from the latent space distribution into full video frames. VAE is

used as a means of encoding/decoding frames into/from the latent space and LSTM as a

way to model the distribution dynamics in the latent space. We improve the video gen-

eration consistency through temporally-conditional sampling and quality by structuring

the latent space with attribute controls. An ablation study illustrates the importance of

our contributions and algorithmic choices. Extensive experiments on three challeng-

ing datasets show that our proposed model significantly outperforms state-of-the-art

approaches in video generation; it also enables controlled generation.



Probabilistic Video Generation using Holistic Attribute Control 15

References

1. Aubry, M., Maturana, D., Efros, A., Russell, B., Sivic, J.: Seeing 3D Chairs: Exemplar

Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models. CVPR (2014)

2. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes.

ICCV (2005)

3. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li,

L.J.: YFCC100M: The New Data in Multimedia Research. ACM (2016)

4. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. ICLR (2014)

5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative Adversarial Nets. NIPS (2014)

6. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: Inter-

pretable Representation Learning by Information Maximizing Generative Adversarial Nets.

NIPS (2016)

7. Tulyakov, S., Liu, M., Yang, X., Kautz, J.: MoCoGAN: Decomposing Motion and Content

for Video Generation. CoRR (2017)

8. Zhao, S., Song, J., Ermon, S.: Learning Hierarchical Features from Deep Generative Models.

ICML (2017)

9. Xue, T., Wu, J., Bouman, K., Freeman, B.: Visual Dynamics: Probabilistic Future Frame

Synthesis via Cross Convolutional Networks. NIPS (2016)

10. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder Variational

Autoencoders. NIPS (2016)

11. Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.C., Bengio, Y.:

A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. AAAI

(2017)

12. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative Adversarial

Text to Image Synthesis. NIPS (2016)

13. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2image: Conditional Image Generation from

Visual Attributes. ECCV (2016)

14. Mathieu, M., Zhao, J., Sprechmann, P., Ramesh, A., LeCun, Y.: Disentangling Factors of

Variation in Deep Representations Using Adversarial Training. NIPS (2016)

15. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An Uncertain Future: Forecasting from Static

Images Using Variational Autoencoders. ECCV (2016)

16. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating Videos with Scene Dynamics. NIPS

(2016)

17. Tenenbaum, J., Freeman, W.: Separating Style and Content with Bilinear Models. Neural

Computation (2000)

18. Elgammal, A., Lee, C.S.: Separating Style and Content on a Nonlinear Manifold. CVPR

(2004)

19. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian Process Dynamical Models. NIPS (2005)

20. Wang, J.M., Fleet, D.J., Hertzmann, A.: Multifactor Gaussian Process Models for Style-

Content Separation. ICML (2007)

21. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic Backpropagation and Approximate

Inference in Deep Generative Models. ICML (2014)

22. Sohn, K., Lee, H., Yan, X.: Learning Structured Output Representation Using Deep Condi-

tional Generative Models. NIPS (2015)

23. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-Supervised Learning with

Deep Generative Models. NIPS (2014)

24. Rezende, D.J., Mohamed, S.: Variational Inference with Normalizing Flows. ICML (2015)



16 Jiawei He et al.

25. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improving

Variational Inference with Inverse Autoregressive Flow. NIPS (2016)

26. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A Recurrent Latent

Variable Model for Sequential Data. NIPS (2015)

27. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A Data-driven Reflectance Model. ACM

ToG (2002)

28. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep Convolutional Inverse Graph-

ics Network. NIPS (2015)

29. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Ler-

chner, A.: beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Frame-

work. ICLR (2017)

30. Zhou, Y., Berg, T.L.: Learning Temporal Transformations from Time-Lapse Videos. ECCV

(2016)

31. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.K.: DESIRE: Distant

Future Prediction in Dynamic Scenes with Interacting Agents. CoRR (2017)

32. Krishnan, R.G., Shalit, U., Sontag, D.: Deep Kalman Filters. WS on Black Box Learning

and Inference (2015)

33. Karl, M., Soelch, M., Bayer, J., van der Smagt, P.: Deep Variational Bayes Filters: Unsuper-

vised Learning of State Space Models from Raw Data. ICLR (2017)

34. Johnson, M., Duvenaud, D.K., Wiltschko, A., Adams, R.P., Datta, S.R.: Composing Graph-

ical Models with Neural Networks for Structured Representations and Fast Inference. NIPS

(2016)

35. Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A.,

Kavukcuoglu, K.: Video Pixel Networks. CoRR (2016)

36. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation (1997)

37. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: A Neural Image Caption

Generator. CVPR (2015)

38. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. ICLR (2014)

39. Yang, J., Reed, S.E., Yang, M.H., Lee, H.: Weakly-Supervised Disentangling with Recurrent

Transformations for 3D View Synthesis. NIPS (2015)

40. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., Chen, X.:

Improved Techniques for Training GANs. NIPS (2016)

41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Archi-

tecture for Computer Vision. CVPR (2016)

42. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition

Challenge. IJCV (2015)


