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Abstract. Due to the large cross-modality discrepancy between 2D s-
ketches and 3D shapes, retrieving 3D shapes by sketches is a significantly
challenging task. To address this problem, we propose a novel framework
to learn a discriminative deep cross-modality adaptation model in this
paper. Specifically, we first separately adopt two metric networks, follow-
ing two deep convolutional neural networks (CNNs), to learn modality-
specific discriminative features based on an importance-aware metric
learning method. Subsequently, we explicitly introduce a cross-modality
transformation network to compensate for the divergence between two
modalities, which can transfer features of 2D sketches to the feature s-
pace of 3D shapes. We develop an adversarial learning based method to
train the transformation model, by simultaneously enhancing the holistic
correlations between data distributions of two modalities, and mitigat-
ing the local semantic divergences through minimizing a cross-modality
mean discrepancy term. Experimental results on the SHREC 2013 and
SHREC 2014 datasets clearly show the superior retrieval performance of
our proposed model, compared to the state-of-the-art approaches.

Keywords: Sketch-based 3D shape retrieval · Cross-modality transfor-
mation · Adversarial learning · Importance-aware metric learning.

1 Introduction

In the last few years, there has been an explosive growth of 3D shape data, due
to increasing demands from real industrial applications, such as virtual reality,
LiDAR based autonomous vehicles. 3D shape related techniques have emerged
as extremely hot research topics recently. Retrieving a certain category of 3D
shapes from a given database is one of the fundamental problems for 3D shape
based applications. A lot of efforts have been devoted to 3D shape retrieval by 3D
models [29, 31], which are intuitively straightforward, but difficult to acquire. Al-
ternatively, freehand sketch is a more convenient way for human to interact with
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Fig. 1. Framework of our proposed method. Our model consists of the CNN network
f1

CNN and metric network f1

metric of 2D sketches, the CNN network f2

CNN and metric
network f2

metric of rendered images of 3D shapes, together with the cross-modality
transformation network ftrans. The CNN and metric networks for each single modal-
ity (i.e., 2D sketches or 3D shapes) is trained by importance-aware metric learning
through mining the hardest training samples. The cross transformation network ftrans

is trained by enforcing features of sketches to be semantics preserving after adapta-
tion. Simultaneously, an adversarial learning with cross-modality mean discrepancy
minimization is employed to enhance both the local and holistic correlations between
data distributions of transformed features of sketches and features of 3D shapes.

data collection and processing systems, especially with the sharply increased use
of touch-pad devices such as smart phones and tablet computers. As a conse-
quence, sketch-based 3D shape retrieval, i.e., searching 3D shapes queried by
sketches, has attracted more and more attentions [3, 15, 28, 30].

Despite of its succinctness and convenience to acquire, freehand sketches
remain two disadvantages in the application of 3D shape retrieval, making the
sketch-based 3D shape retrieval an extremely challenging task. Firstly, sketches
are usually drawn subjectively in uncontrolled environments, resulting in severe

intra-class variations as shown in Fig. 3. Secondly, sketches and 3D shapes have
heterogenous data structures, which leads to large cross-modality divergences.

A variety of models have been proposed to address the aforementioned two is-
sues, which can be roughly divided into two categories, i.e., representation based
methods and matching based methods. The first category aims to extract robust
features for both sketches and 3D shapes [3, 4, 12, 15, 28, 30, 35, 36]. However, due
to the heterogeneity of sketches and 3D shapes, it is quite difficult to achieve
modality-invariant discriminative representations. On the other hand, matching
based methods focus on developing effective models for calculating similarities
or distances between sketches and 3D shapes, among which deep metric learning
based models [2, 28, 30] have achieved the state-of-the-art performance. Never-
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theless, these methods fail to explore the varying importance of different training
samples. Besides, they can merely enhance local cross-modality correlations, by
selecting data pairs or triplets across modalities, while not taking into account
the holistic data distributions. As a consequence, the learned deep metrics might
be less discriminative, and lack of generalization for unseen test data.

To overcome the drawbacks of existing works, we propose a novel model,
namely Deep Cross-modality Adaptation (DCA), for sketch-based 3D shape re-
trieval. Fig. 1 shows the framework of our proposed model. We first construct
two separate deep convolutional neural networks (CNNs) and metric networks,
one for sketches and the other for 3D shapes, to learn discriminative modality-
specific features for each modality via importance-aware metric learning (IAML).
Through mining the hardest samples in each mini-batch for training, IAML could
explore the importance of training data, and therefore learn discriminative rep-
resentations more efficiently. Furthermore, in order to reduce the large cross-
modality divergence between learned features of sketches and 3D shapes, we ex-
plicitly introduce a cross-modality transformation network, to transfer features
of sketches into the feature space of 3D shapes. An adversarial learning method
with class-aware cross-modality mean discrepancy minimization (CMDM-AL)
is developed to train the transformation network, which acts as a generator.
Since CMDM-AL is able to enhance correlations between distributions of trans-
ferred data of sketches and data of 3D shapes, our model can compensate for the
cross-modality discrepancy in a holistic way. IAML is also applied to the trans-
formed data, in order to further preserve semantic structures of sketch data after
adaptation. The main contributions of this paper are three-fold:

1) We propose a novel deep cross-modality adaptation model via semantics
preserving adversarial learning. To our best knowledge, this work is the first one
that incorporates adversarial learning into sketch-based 3D shape retrieval.

2) We develop a new adversarial learning based method for training the deep
cross-modality adaptation network, which simultaneously reduces the holistic
cross-modality discrepancy of data distributions, and enhances semantic corre-
lations of local data batches across modalities.

3) We significantly boost the performance of existing state-of-the-art sketch-
based 3D shape retrieval methods on two large benchmark datasets.

2 Related Work

In the literature, most of existing works on sketch-based 3D shape retrieval main-
ly concentrate on building modality-invariant representations for sketches and
3D shapes, and developing discriminative matching models. Various hand-craft
features are employed, such as Zernike moments, coutour-based Fourier descrip-
tor, eccentricity feature and circularity feature [16], the chordal axis transform
based shape descriptor [32], HoG-SIFT features [33], the local improved Pyra-
mid of Histograms of Orientation Gradients (iPHOG) [14], the sparse coding
spatial pyramid matching feature (ScSPM), local depth scale-invariant feature
transform (LD-SIFT) [36]. Besides, many learning-based features are developed,
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including bag-of-features (BoF) with Gabor local line based features (GALIF)
[13], dense SIFT with BOF [4]. Meanwhile, tremendous matching approaches
have also been developed, such as manifold ranking [4], dynamic time warping
[32], sparse coding based matching [33] and adaptive view clustering [12, 14].

Recently, various deep models have been developed for both feature extrac-
tion and matching, which are closely related to our proposed method. In [28], two
Siamese CNNs were employed to learn discriminative features of sketches and
3D shapes by minimizing within-modality and cross-modality losses. In [36], the
pyramid cross-domain neural networks were utilized to compensate for cross-
domain divergences. In [2] and [31], Siamese metric networks were applied to
minimize both within-modality and cross-modality intra-class distances whilst
maximizing inter-class distances. In [31], the Wasserstein barycenters were ad-
ditionally employed to aggregate multi-view deep features of rendered images
from 3D models. However, these methods only reduced the local cross-modality
divergence. They failed to remove the shift of data distributions across modal-
ities. In contrast, our proposed model employs an adversarial learning based
method to mitigate the discrepancy between distributions of two modalities in a
holistic way, whilst addressing the local divergence issues by introducing a class-
aware mean discrepancy term. Moreover, we apply IAML to mine importance of
different training samples, which has also been ignored by current works.

Another branch of works related to our work is the cross-domain adaptation
[1, 5, 20, 27], especially the supervised discriminative adversarial learning for do-
main adaptation. In [5, 17, 18, 27], a variety of adversarial discriminative models
were developed for domain adaptation. The basic idea of these methods is to re-
move the domain shift between the source and target domains, by employing a
domain discriminator and an adversarial loss. However, these works concentrate
on scenarios where few labeled data are available in the target domain (despite
abundant labeled data in the source domain), and are unable to jointly explore
local discriminative semantic structures for both domains, making them unsuit-
able for our task. In [34], the authors also explicitly adopted a transformation
network to transfer data from source domain to the target domain, where the
cross-domain divergence is mitigated by an adversarial loss. However, they used
hand crafted features, while our model employs deep CNNs to learn discrimi-
native modality-specific features, and integrates them with the transformation
network as a whole. Moreover, we introduce a class-aware cross-modality mean
discrepancy term to the original adversarial loss. This term can enhance seman-
tic correlations of data distributions across modalities as well as remove domain
shift, which is largely neglected by existing works.

3 Deep Cross-modality Adaptation

As illustrated in Fig. 1, our proposed framework mainly consists of five compo-
nents, including the CNN networks for 2D sketches (denoted by f1

CNN
) and for

3D shapes (denoted by f2

CNN
), fully connected metric networks for 2D sketch-

es (denoted by f1

metric
) and for 3D shapes (denoted by f2

metric
), together with
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the cross-modality transformation network ftrans, of which the parameters are
θ
1

CNN
, θ2

CNN
, θ1

metric
, θ2

metric
and θtrans, respectively.

Similar to most existing deep learning methods, we train our model by mini-
batches. In order to depict our own method more conveniently, we build image
batches from the whole training data in a slightly different way from random sam-
pling. Specifically, for 2D sketches, we first select C classes randomly, and then
collectK images for each class. The selected images finally comprise a mini-batch
I

1 =
{

I11,1, · · · , I
1

1,K , · · · , I1C,1, · · · , I
1

C,K

}

of size C×K, of which the correspond-

ing class labels are denoted by Y1 = {y1, · · · , y1, · · · , yC , · · · , yC}. Following the
same way, a batch of 3D shapes O = {O1,1, · · · , O1,K , · · · , OC,1, · · · , OC,K} is
constructed, together with labels Y2 = {y1, · · · , y1, · · · , yC , · · · , yC}. To char-
acterize a 3D shape, we utilize the widely used multi-view representation as
in [2, 24, 30], i.e., projecting a 3D shape to Nv grayscale images from Nv ren-
dered views that are evenly divided around the 3D shape. The pixel color of the
grayscale image is determined by interpolating the reflected intensity of poly-
gon vertices of a 3D shape, via the Phong reflection model [19]. Thereafter, we
can represent O as a batch of images I2 =

{

I21,1, · · · , I
2

1,K , · · · , I2C,1, · · · , I
2

C,K

}

,

where I2i,j =
{

I2i,j,v
}Nv

v=1
consists of Nv (Nv=12 is used in our paper) 2D rendered

images of the 3D shape Oi,j .
As demonstrated in Fig. 1, we train the CNN and metric networks for s-

ketches, i.e., f1

CNN
and f1

metric
, jointly by adopting an importance-aware met-

ric learning (IAML). This method could explore hardest training samples with-
in a mini-batch. The CNN and metric networks for 3D shapes, i.e., f2

CNN
and

f2

metric
, are also trained in the same way. The cross-modality transformation net-

work θtrans is learned by preserving semantic structures of transformed features,
and employing an adversarial learning based training strategy with class-aware
cross-modality mean discrepancy minimization.

In the rest of this paper, we will elaborate the training details about the
proposed method, including the importance-aware metric learning, the semantic
adversarial learning, and the optimization algorithm. Without loss of generality,
all loss functions are formulated based on image batches I1 and I

2 throughout
this paper, which can be easily extended to the whole training data.

3.1 Importance-Aware Feature Learning

Given a mini-batch I
m, after successively passing I

m through the CNN network
fm
CNN

and the metric network fm
metric

, we can obtain a set of feature vectors:

Zm =
{

zm1,1, · · · , z
m
1,K , · · · , zmC,1, · · · , z

m
C,K

}

,

where m ∈ {1,2}, and for i = 1, · · · , C, j = 1, · · · ,K

z1i,j = f1

metric

(

f1

CNN(I1i,j)
)

, z2i,j = f2

metric

(

f2

CNN(I2i,j)
)

.

Ideally, in order to learn discriminative features for each modality (i.e., the
2D sketches or the 3D shapes), the inter-class distances within the batch Zm
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need to be larger than the intra-class distances. To achieve this, we adopt the
following loss function for importance-aware metric learning [8]:

Lm
IAML({θ

m
CNN,θm

metric} ;Z
m)

=

C
∑

i

K
∑

j=1

max
(

0, η −
[

∥

∥zmi,j − zmi∗,n∗

∥

∥

2
−

∥

∥zmi,j − zmi,p∗

∥

∥

2

])

,
(1)

where

zmi∗,n∗ = argmin
i
′∈{1,··· ,C},y

i
′ 6=yi,n∈{1,··· ,K}

∥

∥

∥
zmi,j − zm

i
′
,n

∥

∥

∥

2
, (2)

zmi,p∗ = argmax
p∈{1,··· ,K},p 6=j

∥

∥zmi,j − zmi,p
∥

∥

2
, (3)

and η > 0 is a constant.
As can be seen from Eq. (2), for a certain anchor point zmi,j , z

m
i∗,n∗ ∈ Zm is the

sample that has the minimal Euclidean distance to zmi,j among those samples from
different classes. And from Eq. (3), we can see that zmi,p∗ is the sample that has the
maximal Euclidean distance to zmi,j , among samples belonging to the same class

as zmi,j . In other words,
∥

∥zmi,j − zmi∗,n∗

∥

∥

2
and

∥

∥zmi,j − zmi,p∗

∥

∥

2
indicate the largest

inter-class Euclidean distance and the minimal intra-class Euclidean distance
with respect to zmi,j within the batch Zm, respectively. Therefore, zmi,p∗ and zmi∗,n∗

are the batch-wise “hardest positive” and the “hardest negative” samples w.r.t.
zmi,j , and should be given higher importance during training. Existing deep metric
learning based models [2, 31] equally treat all training samples. In contrast, we
apply IAML to explore the hardest positive and negative training samples within
a mini-batch, whilst enforcing them to be consistent with semantics. As a result,
our method can learn discriminative features more efficiently.

By minimizing Lm
IAML in Eq. (1),

∥

∥zmi,j − zmi∗,n∗

∥

∥

2
−
∥

∥zmi,j − zmi,p∗

∥

∥

2
are forced

to be greater than η, i.e.,
∥

∥zmi,j − zmi∗,n∗

∥

∥

2
−

∥

∥zmi,j − zmi,p∗

∥

∥

2
> η. That is to say,

by minimizing Lm
IAML, the minimal inter-class distance is compelled to be larger

than the maximal intra-class distance in the feature space, whilst keeping a
certain margin η. Consequently, we can train the CNN network fm

CNN
and the

metric network fm
metric

to generate discriminative features for each modality.

3.2 Cross-modality Transformation based on Adversarial Learning

By applying the importance-aware metric learning via minimizing the losses
L1

IAML and L2

IAML, we can learn discriminative features for sketches and shapes,
i.e., {z1i,j} and {z2i,j}, respectively. However, due to the large discrepancy be-

tween data distributions of different modalities, directly using {z1i,j} and {z2i,j}
for cross-modality retrieval will result in extremely poor performance.

To address this problem, we propose a cross-modality transformation network
ftrans, in order to adapt the learnt features of 2D sketches to the feature space
of 3D shapes with cross-modality discrepancies removal.
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Fig. 2. Illustration on training the cross-modality transformation network. Importance-
aware Metric Learning is applied to the transformed features of sketches to preserve
semantic structures. An adversarial learning based method is developed to reduce the
divergence between distributions of two modalities (i.e., sketches and 3D shapes). A
class-aware mean discrepancy term is simultaneously minimized to further strengthened
correlations between local batch-wise features across modalities. Here, shapes with solid
(dashed) bounding boxes indicate faked data of 3D shapes (transformed sketch data).
Shapes without bounding boxes indicate real data of 3D shapes.)

Suppose Zt = {zti,j} is the transformed features of sketches Z1 = {z1i,j} with

class labels Yt = {y1, · · · , y1, · · · , yC , · · · , yC}, where zti,j = ftrans(z
1

i,j |θtrans)

for ∀i ∈ {1, · · · , C}, and j ∈ {1, · · · ,K}. Ideally, the transformed features {zti,j}
are expected to have the following properties, in order to guarantee good per-
formance for the cross-modality retrieval task:

1) {zti,j} should be semantics preserving, i.e., maintaining small intra-class
distances and large inter-class distances.

2) {zti,j} should have correlated data distribution with {z2i,j}, i.e., the learnt
features of 3D shapes.

The first property aims to compel the transformed features to preserve se-
mantics, whilst the second attempts to remove the cross-modality discrepancy
through strengthening correlations between data distributions of two modalities.

As shown in Fig. 2, we introduce a semantics preserving term by repeatedly
utilizing the importance-aware metric learning to accomplish 1). And in order
to achieve 2), we employ a cross-modality correlation enhancement term based
on adversarial learning with class-aware cross-modality mean discrepancy min-
imization. We will provide details about the aforementioned two terms in the
rest of this section.
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Semantics Preserving Term In order to preserve semantic structures, i.e.,
keeping small (large) intra-class (inter-class) distances, we apply the loss of
Importance-aware Metric Learning previously introduced to transformed data:

LSeP (θtrans) =
C
∑

i=1

K
∑

j=1

max
(

0, η −
[

∥

∥zti,j − zti∗,n∗

∥

∥

2
−
∥

∥zti,j − zti,p∗

∥

∥

2

])

, (4)

where
zti∗,n∗ = argmin

i
′∈{1,··· ,C},y

i
′ 6=yi,n∈{1,··· ,K}

∥

∥

∥
zti,j − zt

i
′
,n

∥

∥

∥

2
, (5)

zti,p∗ = argmax
p∈{1,··· ,K},p 6=j

∥

∥zti,j − zti,p
∥

∥

2
, (6)

and η > 0 is a constant.
Cross-modality Correlation Enhancement Term Generative adversarial
networks (GANs) have recently emerged as an effective method to generate syn-
thetic data [6]. The basic idea is to train two competing networks, a generator
G and a discriminator D, based on game theory. The generator G is trained to
sample from the data distribution px(x) from the vector of noise v. The discrim-
inator D is trained to distinguish synthetic data generated by G and real data
sampled from px(x). The problem of training GANs is formulated as follows:

min
G

max
D

LGAN := Ex∼px(x) [log(D(x))] + Ev∼pv(v) [log(1−D(G(v)))] , (7)

where pv(v) is a prior distribution over v. It has been pointed out in [6] that
the global equilibrium of the two-player game in Eq. (7) achieves if and only if
px(x) = pg(x), where pg(x) is the distribution of generated data.

In our model, we treat the transformation network ftrans as the generator G.
Suppose p1(z1), p2(z2) and pt(zt) are distributions of learnt features of sketches,
3D shapes and transformed data (denoted by z1, z2 and zt), respectively. By
solving the following problem

min
ftrans

max
D

Ez2∼p2(z2)

[

log(D(z2))
]

+ Ez1∼p1(z1)

[

log(1−D(ftrans(z
1)))

]

, (8)

we can expect that pt(zt) = pt(ftrans(z
1)) = p2(z2), i.e., the transformed data

zt has the same data distribution as z2 of 3D shapes, if problem (8) reaches the
global equilibrium. Consequently, the cross-modality discrepancy can be reduced.

Conventionally, problem (8) is solved by alternatively optimizing ftrans and
D through minimizing the following two loss functions:

LG = Ez1∼p1(z1)

[

log(1−D(zt)))
]

, (9)

LD = −Ez2∼p2(z2)

[

log(D(z2))
]

− Ez1∼p1(z1)

[

log(1−D(zt))
]

. (10)

So far, we have trained a transformation network ftrans such that pt(zt) ≈
p2(z2) by minimizing LG and LD. Albeit the divergence between the distribu-
tions for transformed features of sketches and for features of 3D models can
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be diminished by adversarial learning, the cross-modality semantic structures
are not taken into account. To address this problem, we further introduce the
following term, namely the class-aware cross-modality mean discrepancy

LCMD =
∑

y

∥

∥Ezt∼pt(zt|y)

[

zt
]

− Ez2∼p2(z2|y)

[

z2
]
∥

∥

2
, (11)

to adversarial learning, where y is the class label. By minimizing LCMD, the
mean feature vector of class y from the sketch modality is compelled to be close
to the mean feature vector of the same class from the 3D shape modality.

In practice, provided a mini-batch Zq = {zqi,j}
C,K
i=1,j=1 (q ∈ {2, t}), the term

Ezq∼pq(zq|y) [z
q] can be approximated by the batch-wise mean feature vector,

i.e., Ezq∼pq(zq|y) [z
q] ≈ 1

K

∑K

j=1,ci=y z
q
i,j .

Through minimizing the loss LAL = LG + LCMD, we can obtain the ad-
versarial learning method with cross-modality mean discrepancy minimization
(CMDM-AL), which could enhance the semantic correlations across modalities.

By combing the semantics preserving loss LSeP and the cross-modality cor-
relation enhancing loss LAL, we finally get the loss function for training ftrans:

LT (θtrans) = LSeP + (LG + LCMD). (12)

3.3 Optimization

In Eq. (1), we defined the loss function L1

IAML for jointly training
{

f1

CNN
(θ1

CNN
) ,

f1

metric
(θ1

metric
)
}

, and the loss function L2

IAML for training
{

f2

CNN
(θ2

CNN
) ,

f2

metric
(θ2

metric
)
}

of 3D shapes. We also developed a loss function LT for train-
ing the cross-modality transformation network ftrans(θtrans) in Eq. (12).

In order to learn parameters of the proposed model, we optimize different
networks in an alternating iterative way. Specifically, we first pre-train the CNN
and metric networks of sketches and 3D shapes based on the loss Lm

IAML in
Eq. (1), and pre-train the cross-modality transformation network by minimizing
LT and LD. After initialization, we then alternatively update

{

θ
1

CNN
,θ1

metric

}

,
{

θ
1

CNN
,θ1

metric

}

, θtrans, and the adversarial discriminator D, by minimizing
L1

IAML, L
2

IAML, LT , and LD, respectively. Throughout the whole training pro-
cess, we use the Adam stochastic gradient method [9] as the optimizer.

4 Experimental Results and Analysis

In order to evaluate the performance of our method, we conduct experiments on
two widely used benchmark datasets for sketch-based 3D shape retrieval: i.e.,
SHREC 2013 and SHREC 2014.
SHREC 2013 [12, 13] is a large-scale dataset for sketch-based 3D shape re-
trieval. This dataset consists of 7,200 sketches and 1,258 shapes from 90 classes,
by collecting human-drawn sketches [3] and 3D shapes from the Princeton Shape
Benchmark (PSB) [21] that share common categories. For each class, there are
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(a)

(b)

Fig. 3. Samples from two benchmarks: (a) the SHREC 2013 dataset, (b) the SHREC
2014 dataset. Images in the first four columns are sketches, whilst images in the last
four columns are 3D shapes. Samples in the same row belong to the same class.

totally 80 sketches, where 50 images are used for training and 30 images for test.
The numbers of 3D shapes are different for distinct classes, about 14 on average.
SHREC 2014 [16, 15] is a sketch track benchmark larger than SHREC 2013. It
totally contains 13,680 sketches and 8,987 3D shapes, grouped into 171 classes.
The 3D shapes are collected from various datasets, including SHREC 2012 [11]
and the Toyohashi Shape Benchmark (TSB) [26]. Similar to SHREC 2013, there
are 80 images for sketches, and about 53 3D shapes on average for each class.
The sketches are further split into 8,550 training data and 5,130 test data, where
for each class, 50 images are used for training and the rest 30 images for test.

Fig. 3 shows some samples from the two datasets. As illustrated, retrieving
3D shapes by sketches is quite challenging, due to large intra-class variations
and cross-modality discrepancies between sketches and 3D shapes.

4.1 Implementation Details

In this subsection, we provide implementation details about the proposed method.
Network Structures. For CNN networks of both sketches and shapes, i.e.,
f1

CNN
and f2

CNN
, we utilize the ResNet-50 network [7]. Specifically, we use the

layers of ResNet-50 before the “pooling5” layer (inclusive). As for metric net-
works of sketches and 3D shapes, i.e., f1

metric
and f2

metric
, both of them consist

of four fully connected layers set as 2048-1024-512-256-128. We utilize the “re-
lu” activation functions and batch normalization for all layers in the metric
networks, except that the last layer uses the “tanh” activation function. As to
the cross-modality transformation model ftrans, we adopt a network with four
fully connected layers set as 128-64-32-64-128, where the first three layers uses
the “relu” activation functions, and the last layer uses the “tanh” activation
function. The discriminator D is a fully connected network set as 128-64-1.
Parameter Settings. We set the number of the maximal iterative step Itermax

as 30,000. The initial learning rate is set to 1× 10−4, and decays exponentially
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after 10,000 steps. To generate data batches I1 and I
2, the number of classes C

per batch and the number of images K per class are set as 16 and 4, respectively.

4.2 Evaluation Metrics

We adopt the most widely used metrics for sketch-based 3D shape retrieval as
follows: nearest neighbor (NN), first tier (FT), second tier (ST), E-measure
(E), discounted cumulated gain (DCG) and mean average precision (mAP)
[13, 2, 30]. We also report the precision-recall curve.

4.3 Evaluation of the Proposed Method

In this section, we will evaluate the effect of the proposed adversarial learning
with class-aware cross-modality mean discrepancy minimization (CMDM-AL),
together with the semantics preserving (SeP) term.

As a baseline, we apply the importance-aware metric learning to separately
train {f1

CNN
, f1

metric
}, and {f2

CNN
, f2

metric
}, where the cross-modality transfor-

mation network ftrans is trained by only using the semantics preserving loss
LSeP . This baseline method, denoted by DCA (SeP), merely learns discrimi-
native features without considering the cross-modality issues. Different from D-
CA (SeP), another baseline approach, denoted by DCA (CMDM-AL), trains
ftrans via minimizing the loss LAL for adversarial learning. By further adding the
semantics preserving term LSeP , i.e., training ftrans by LT = LAL+LSeP , we can
obtain the complete model of our proposed method denoted by DCA (CMDM-
AL+SeP). By comparing the performance of DCA (SeP), DCA (CMDM-AL)
and DCA (CMDM-AL+SeP), we can evaluate the effects of the proposed adver-
sarial learning method and semantics preserving term.

The results are summarized in Tables 1 and 2. As can be seen, the baseline
method DCA (SeP) yields a rather poor performance, due to its weakness in deal-
ing with cross-modality discrepancies. By introducing the adversarial learning
method, DCA (CMDM-AL) significantly boosts the performance of the base-
line, implying that the adversarial learning can largely enhance the correlation
between data distributions of different modalities. Moreover, we can see a consis-
tent improvements of DCA (CMDM-AL+SeP) on two benchmarks, compared
to DCA (CMDM-AL). This indicates that the semantics preserving term can
help learn more discriminative cross-modality transformation network.

Moreover, we also evaluate the performance of DCA by using different base
networks, rather than ResNet-50. We select AlexNet [10] and VGG-16 [22], of
which the corresponding methods are denoted by AlexNet-DCA and VGG-
16-DCA, respectively. As shown in Table 2, DCA using ResNet-50 yields much
better performance than AlexNet-DCA and VGG-16-DCA.

4.4 Comparison with the State-of-the-art Methods

Retrieval Performance on SHREC 2013. Here we report experimental re-
sults of the proposed method on SHREC 2013, by comparing with the state-of-
the-art methods, including the cross domain manifold ranking method (CDMR)
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Table 1. Performance on SHREC 2013, compared with the state-of-the-art methods.

Methods NN FT ST E DCG mAP

CDMR [4] 0.279 0.203 0.296 0.166 0.458 0.250
SBR-VC [12] 0.164 0.097 0.149 0.085 0.348 0.114
SP [23] 0.017 0.016 0.031 0.018 0.240 0.026
FDC [12] 0.110 0.069 0.107 0.061 0.307 0.086
Siamese [28] 0.405 0.403 0.548 0.287 0.607 0.469
CAT-DTW [32] 0.235 0.135 0.198 0.109 0.392 0.141
KECNN [25] 0.320 0.319 0.397 0.236 0.489 -
DCML [2] 0.650 0.634 0.719 0.348 0.766 0.674
LWBR [30] 0.712 0.725 0.785 0.369 0.814 0.752

DCA (SeP) 0.009 0.015 0.027 0.014 0.231 0.034
DCA (CMDM-AL) 0.762 0.776 0.812 0.370 0.842 0.795
DCA (CMDM-AL+SeP) 0.783 0.796 0.829 0.376 0.856 0.813
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Fig. 4. The precision-recall curves of various methods on SHREC 2013.

[4], sketch-based retrieval method with view clustering (SBR-VC) [12], spa-
tial proximity method (SP) [23], Fourier descriptors on 3D model silhouettes
(FDC) [12], edge-based Fourier spectra descriptor (EFSD) [12], Siamese net-
work (Siamese) [28], chordal axis transform with dynamic time warping (CAT-
DTW), deep correlated metric learning (DCML) [2], and the learned Wasser-
stein barycentric representation method (LWBR) [30].

Fig. 4 demonstrates the precision-recall curves of the proposed method and
compared approaches. As illustrated, the precision rate of our method is signif-
icantly higher than those of compared models, when the recall rate is smaller
than 0.8. Considering that the top retrieved results are preferable, our method
therefore performs significantly better than the state-of-the-art approaches.
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Table 2. Performance on SHREC 2014, compared with the state-of-the-art methods

Methods NN FT ST E DCG mAP

CDMR [4] 0.109 0.057 0.089 0.041 0.328 0.054
SBR-VC [12] 0.095 0.050 0.081 0.037 0.319 0.050
DB-VLAT [26] 0.160 0.115 0.170 0.079 0.376 0.131
CAT-DTW [32] 0.137 0.068 0.102 0.050 0.338 0.060
Siamese [28] 0.239 0.212 0.316 0.140 0.496 0.228
DCML [2] 0.272 0.275 0.345 0.171 0.498 0.286
LWBR [30] 0.403 0.378 0.455 0.236 0.581 0.401

AlexNet-DCA 0.498 0.464 0.513 0.294 0.627 0.502
VGG-16-DCA 0.682 0.698 0.723 0.375 0.783 0.711
DCA (SeP) 0.018 0.020 0.028 0.007 0.266 0.030
DCA (CMDM-AL) 0.745 0.766 0.808 0.392 0.845 0.782
DCA (CMDM-AL+SeP) 0.770 0.789 0.823 0.398 0.859 0.803
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Fig. 5. The precision-recall curves of various methods on SHREC 2014.

We also report NN, FT, ST, E, DCG and mAP of various methods, including
CDMR, SBR-VC, SP, FDC, Siamese, DCML, LWBR and the proposed method.
As summarized in Table 1, our approach yields the best retrieval performance
w.r.t. all evaluation metrics. Among all compared approaches, Siamese, DCML
and LWBR are deep metric learning based models. They directly map data from
different modalities into a common embedding subspace, where both the single-
modality and cross-modality intra-class Euclidean distances are decreased, and
the inter-class distances are simultaneously enlarged. However, they equally treat
each training data, and fail to explore varying importance of distinct samples.
Besides, they only reduce the local cross-modality divergences between data pairs
or triplets, without considering the correlation between data distributions in a
holistic way. In contrast, our method learns features by mining the batch-wise
hardest positive and hardest negative samples. Through automatically selecting
the most important training samples, we can learn discriminative features more
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efficiently. Moreover, we explicitly introduce a cross-modality transformation
network, in order to transfer the feature from the sketch modality to the feature
space of 3D shapes. By leveraging the semantics preserving adversarial learning,
we simultaneously reduce holistic divergences between data distributions from
two modalities, and enhance the semantic correlations. As a consequence, our
method achieves better retrieval performance. For instance, the mAP of our
method reaches 0.813, which is 34.4%, 13.9% and 6.1% higher than Siamese,
DCML and LWBR, respectively.
Retrieval Performance on SHREC 2014. On this dataset, we compared
our proposed model to the following state-of-the-art methods: the BoF with
Gabor local line based feature (BF-fGALIF)[3], CDMR [4], SBR-VC [12],
depth-buffered vector of locally aggregated tensors (DB-VLAT) [26], SCMR-
OPHOG [16], BOF junction-based extended shape context (BOFJESC) [16],
Siamese [28], DCML [2], and LWBR [30] .

Fig. 5 provides precision-recall curves for BF-fGALIF, CDMR, SBR-VC,
SCMR-OPHOG, OPHOG, DCML, LWBR and the proposed model. As shown,
the precision rate of our proposed method is remarkably higher than compared
approaches, when the recall rate is less than 0.8.

Besides the precision-recall curves, we additionally report NN, FT, ST, E,
DCG and mAP of CDMR, SBR-VC, DB-VLAT, Siamese, DCML, LWBR in
Table 2. As can be seen, the performance of existing deep metric learning based
methods including Siamese, DCML and LWBR drops sharply on SHREC 2014.
For example, the mAP of LWBR on SHREC 2014 is 0.401, around 35% lower
than the mAP that it has achieved on SHREC 2013. The reason might lie in
that SHREC 2014 has much more class categories (90 classes on SHREC 2013
versus 171 classes on SHREC 2014) and larger scale 3D shapes (1,258 3D shapes
on SHREC 2013 versus 8,987 3D shapes on SHREC 2014) with more severe
intra-class and cross-modality variations, making SHREC 2014 more challenging
than SHREC 2013. As a comparison, the mAP of our proposed model merely
drops about 1%, and reaches 0.803 on SHREC 2014. This result is 40.2%, 51.7%
and 57.5% higher than that of LWBR, DCML and Siamese, indicating that our
method are much more scalable than existing deep models.

5 Conclusions

In this paper, we proposed a novel cross-modality adaptation model for sketch-
based 3D shape retrieval. We firstly learnt modality-specific discriminative fea-
tures, by employing the importance-aware metric learning through mining the
batch-wise hardest samples. To remove the cross-modality discrepancy, we pro-
posed a transformation network, aiming to transfer the features of sketches into
the feature space of 3D shapes. We developed an adversarial learning based
method for training the network, by enhancing correlations between holistic
data distributions and preserving local semantic structures across modalities.
Extensive experimental results on two benchmark datasets demonstrated the
superiority of the propose method, compared to the state-of-the-art approaches.
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