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Abstract. We propose a sparse and low-rank reflection model for spec-
ular highlight detection and removal using a single input image. This
model is motivated by the observation that the specular highlight of a
natural image usually has large intensity but is rather sparsely distribut-
ed while the remaining diffuse reflection can be well approximated by a
linear combination of several distinct colors with a sparse and low-rank
weighting matrix. We further impose the non-negativity constraint on
the weighting matrix as well as the highlight component to ensure that
the model is purely additive. With this reflection model, we reformulate
the task of highlight removal as a constrained nuclear norm and l1-norm
minimization problem which can be solved effectively by the augmented
Lagrange multiplier method. Experimental results show that our method
performs well on both synthetic images and many real-world examples
and is competitive with previous methods, especially in some challeng-
ing scenarios featuring natural illumination, hue-saturation ambiguity
and strong noises.
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1 Introduction

A vast majority of objects in real-world scenes exhibit both diffuse and specu-
lar reflections. The existence of specular reflection is recognized as a hindrance
for a variety of computer vision tasks including image segmentation, pattern
recognition, and object detection, since it creates undesired discontinuities and
reduces image contrast. Therefore, separating specular highlights from diffuse
reflection is of crucial importance and forms the core of many high-level vision
tasks. Although highlights can be well suppressed by some special facilities such
as polarizing filters [1–4] or multi-spectral light stages [5], it is more appealing
to remove them using just a single color image without any hardware assistance.
However, highlight removal from a single image constitutes an ill-posed problem
with more unknowns than equations to solve.

Our goal in this paper is to separate reflection components of a single input
image based on the dichromatic reflection model [6]. We notice that highlight
regions in many real-world scenes are contiguous pieces with relatively small size
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while colors of diffuse reflection can be well approximated by a small number of
distinct colors. The former observation implies that highlight regions in an image
tend to be sparse. The latter observation, which resembles the observation in non-
local image dehazing [7], reveals that diffuse colors form tight clusters in RGB
space with a low-rank and sparse weighting matrix. This inspires us to separate
diffuse and specular reflections with sparse and low-rank matrix decomposition
[8–10].

Based on the insights gained from these observations, we propose a sparse
and low-rank reflection (SLRR) model. This model assumes that specular high-
lights have the same spectral distribution with the incident illumination (i.e.,
the neutral interface reflection assumption [11]) and are rather sparse in the
spatial domain of a given image. We also assume that each diffuse color can
be represented by a linear combination of several “basis colors” from a “color
dictionary” and the weighting matrix formed by the coefficients is low-rank and
sparse. The low-rankness indicates some global structures in the weighting ma-
trix [12, 13] while the sparsity stems from the fact that the diffuse colors are
clustered as blocks in the image. In this context, the highlight removal process
is formulated as a constrained nuclear norm and l1-norm minimization problem,
which can be efficiently solved by the augmented Lagrange multiplier (ALM)
method with alternating direction minimizing (ADM) strategy [14]. To ensure
that our model is purely additive and avoids counteracting each other by sub-
traction, we further explicitly impose the non-negativity constraint on it. This
will bring in some inequality constraints that are difficult for optimization. We
address this issue by introducing slack variables and converting inequalities into
equalities. These equalities are added into the augmented Lagrange function.

To demonstrate the effectiveness and robustness of our method, we conduct
an extensive evaluation using various synthetic and real-world images from sev-
eral public image datasets. Experimental results show that our method achieves
better performance on many tasks than state-of-the-art. Particularly, it can ef-
fectively handle some challenging scenarios including natural illumination and
hue-saturation ambiguity.

2 Related Work

Highlight removal has been paid much attention in recent years [15]. Existing
work on highlight removal is generally grouped into two high-level categories
based on the number of images used.

In the first category are approaches that remove highlight with multiple im-
ages. As highlight regions are direction-dependent, it is natural to use image
sequences from different points of view [16, 17] or from multiple light positions
[18, 19, 5] to restore the diffuse reflection. The polarization based methods [1–4]
require a set of images captured with different polarization orientations for ac-
curate highlight removal, considering that specular and diffuse reflections hold
different degrees of polarization. Other auxiliary data, such as that generated by
a multi-spectral light stage [16, 17] or a flash system [20, 21], also benefits this
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task. Despite their effectiveness, these methods are less appealing to everyday
users because such image datasets are not often available in practice.

The second line of work focuses on removing highlight from a single image. As
this problem is inherently ill-posed, prior knowledge or assumptions on the char-
acteristics of natural images should be exploited to make the problem tractable.
Early work relies on color space analysis [22–24] which is only limited to dealing
with uniform surface colors and probably involves image segmentation.

In order to handle textured surfaces, Tan and Ikeuchi [25] pioneered the idea
of specular-free image which has been widely studied ever since. A specular-free
image is a pseudo-diffuse image that has the same geometrical profile as the
true diffuse component of the input image. It can be generated by setting the
diffuse maximum chromaticity of each pixel to an arbitrary value [25, 26] or by
subtracting the minimum value of the RGB channels for each pixel [27–30]. Kim
et al. [31] obtained an approximated specular-free image via applying the dark
channel prior. Suo et al [32] defined l2 chromaticity and used it to generate the
specular-free image. Yang et al. [26] proposed a fast bilateral filter adopting the
specular-free image as the range weighting function. Several methods [28, 30,
33] use the specular-free image for pixel clustering and then recover the diffuse
colors in each cluster. The main drawback of the specular-free image is it suffers
from hue-saturation ambiguity which exists in many natural images. Liu et al.

[33] suggested using an additional compensation step to raise the achromatic
component of the diffuse chromaticity.

Some single image based methods do not explicitly rely on a specular-free im-
age. For instance, Mallick et al. [34] proposed a PDE algorithm, which iteratively
erodes the specular component in the SUV color space. But this method per-
forms poorly on large specular regions. Ren et al. [35] introduced the color-lines
constraint into the dichromatic reflection model and proposed a fast highlight
removal method. Li et al. [36] made use of specialized domain knowledge to guide
the removal of specular highlights in facial images. Inpainting techniques which
synthetically fill in the missing regions using the neighboring patterns have also
been applied to recover diffuse colors [37, 38]. Our method bears some similarity
to that of Akashi and Okatani [39] which formulates the separation of reflec-
tions as a sparse non-negative matrix factorization (NMF) problem. However,
current algorithms for NMF are sensitive to initial values and only guarantee
finding a local minimum rather than a global minimum. Therefore this method
requires running several times to get the most reasonable result. Furthermore,
since NMF is highly sensitive to outliers in general cases, this method may fail
in the presence of strong specularity or noises. Oppositely, our method relies on
sparse and low-rank decomposition which is much more robust to outliers.

3 Sparse and Low-Rank Reflection Model

To exploit sparse and low-rank structures in an image, we derive a new reflection
model following the formulation of the dichromatic reflection model [6]. This
model states that the observed image intensity I of a pixel p is the sum of a
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diffuse component Id and a specular component Is:

I(p) = Id(p) + Is(p) = md(p)Λ(p) +ms(p)Γ(p) (1)

where Λ(p) and Γ(p) respectively denote the chromaticities of the diffuse and
specular components.md(p) and ms(p) represent their corresponding coefficients
which are achromatic and only depend on imaging geometry.

The specular chromaticity could be assumed to be uniform for a given image
and equals to the chromaticity of the incident illumination [11]. Like many other
specular removal methods, we estimate the illumination chromaticity Γ of a
real-world image via the color constancy algorithm in [40], and then normalize
the original image by I(p)/(3Γ) in a preprocessing step. After that, we have a
pure white illumination color, i.e., Γr = Γg = Γb = 1/3. Often, we observe
that highlight regions are small in size and are distributed rather sparsely. This
implies that ms(p) is non-zero only for a low density of pixels.

On the contrary, the diffuse component Id usually has a high density of
valid data. However, since the diffuse reflectance of natural objects is common-
ly piecewise constant, the number of distinct colors of Id is orders of mag-
nitude smaller than the number of pixels [7]. Therefore, given a proper col-
or dictionary Φd = [φ1,φ2, · · · ,φK ], Id can be faithfully reconstructed by

Id(p) =
∑K

k=1 φkwk(p) in which wk(p) ≥ 0 is the weighting coefficient of the
pixel p w.r.t. the basis color φk. The non-negativity constraint makes every pix-
el value stay in the convex hull of the dictionary, avoiding counteracting each
other by subtraction. Ideally, wk is non-zero for only one basis color, implying
that wk is sparse. Meanwhile, as the color dictionary Φd is often over-complete,
the best choice of wk should be drawn from a low-rank subspace.

We finally come up with the following sparse and low-rank reflection model:

X = ΦdWd + ΓMs (2)

where X is a 3 × N matrix with each column representing a pixel color. N is
the total number of pixels in an image. Wd is a K × N matrix formed by the
weighting coefficients of all pixels. As the specular chromaticity Γ is assumed
to be a constant column vector for a given image, we represent the specular
component using a rank-one expression in which Ms is a row vector of size
1×N encoding the position and intensity of specular highlights.

The above analysis reveals that Ms tends to be sparse while Wd is both
sparse and low-rank. Furthermore, since pixel values are non-negative, we also
impose the non-negativity constraint on Ms and Wd. In this way, the reflec-
tion separation problem of an input image can be formulated as the following
optimization problem with both equality and inequality constraints:

min
Wd,Ms

rank(Wd) + λ‖Ms‖0 + τ‖Wd‖0

s.t. X = ΦdWd + ΓMs,Wd ≥ 0,Ms ≥ 0
(3)

in which λ and τ are parameters used to balance the effect of different com-
ponents. ‖ · ‖0 denotes the l0 norm of a matrix, which counts the number of
non-zero entries in the matrix.
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4 Model Optimization

Unfortunately, Eq. 3 is highly non-convex and no efficient solution is available.
To make the optimization tractable, we relax Eq. 3 via replacing rank(·) with
‖ · ‖∗ and ‖ · ‖0 with ‖ · ‖1 as in the sparse and low-rank matrix decomposition.
Here ‖ · ‖∗ is the nuclear norm of a matrix defined by the sum of its singular
values and ‖ · ‖1 is the l1 norm. We also introduce two auxiliary variables J and
H to make the objective function separable:

min
J,Ms,H,Wd

‖J‖∗ + λ‖Ms‖1 + τ‖H‖1

s.t. X = ΦdWd + ΓMs,J = Wd,H = Wd,Wd ≥ 0,Ms ≥ 0.
(4)

This optimization problem involves two non-negativity constraints. To cope with
these inequalities, a straightforward strategy, as suggested by Zhuang et al. [41],
is to clamp the negative entries in Wd and Ms to zero directly during each itera-
tion. Unfortunately, we find that such a simple strategy shows poor convergence
as shown in Fig. 8. Instead, we introduce two non-negative slack variables S1

and S2 to convert the non-negativity constraints into two equality constraints:
Wd − S1 = 0 and Ms − S2 = 0.

Various algorithms have been developed to solve the optimization problem,
among which the ALM method [14, 8] is most widely used. This method replaces
the original constrained optimization problem by a sequence of unconstrained
subproblems which can be efficiently solved by soft-thresholding or singular value
thresholding (SVT) [42].

The augmented Lagrange function of the above optimization problem with
two slack variables is

L(J,Ms,H,Wd,Yi,S1,S2, µ) =

‖J‖∗ + λ‖Ms‖1 + τ‖H‖1 +
5

∑

i=1

< Yi,Ei > +
µ

2
(‖Ei‖2F )

(5)

where Yi are Lagrange multipliers and µ > 0 is a penalty parameter. Ei are
five equality constraints, namely, E1 = X − ΦdWd − ΓMs, E2 = J − Wd,
E3 = H−Wd, E4 = Wd−S1, and E5 = Ms−S2. < ·, · > denotes the standard
inner product between two matrices while ‖·‖F represents the Frobenius norm of
a matrix. The ALM method with ADM strategy decomposes the minimization
of L into several subproblems in which the variables are updated alternately
with other variables fixed.

4.1 Update J

With some algebra, the optimization problem over J, keeping other variables
fixed, is rearranged as

J∗ = argmin
J

1

µ
‖J‖∗ +

1

2

∥

∥

∥

∥

J−
(

Wd −
Y2

µ

)
∥

∥

∥

∥

2

F

. (6)
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For conventional nuclear norm, the solution to this subproblem is given analyt-
ically by

J∗ = D1/µ (Wd −Y2/µ) . (7)

Here D1/µ is an SVT operator [42] defined as D1/µ(A) = U[sgn(Σ)max(|Σ| −
µ−1, 0)]V⊤, in which UΣV⊤ is a singular value decomposition ofA. For weight-
ed nuclear norm, we can also obtain a similar analytical solution if the weights
are in a non-ascending order [43]. In this paper, we prefer the weighted version
for better performance, and the weight w is set as

wi =
√
N/(|Σi,i|+ δ) (8)

where a small constant δ is used to avoid dividing by zero. With the weight w,
we have D1/µ(A) = U[sgn(Σ)max(|Σ| − µ−1diag(w), 0)]V⊤.

4.2 Update Ms

Ms in our context is aN -dimensional row vector. Suppose Γ is known in advance,
we can formulate the update of Ms as

M∗

s = argmin
Ms

λ

µg
‖Ms‖1+

1

2

∥

∥

∥

∥

Ms −
1

g

(

Γ⊤

(

X−ΦdWd +
Y1

µ

)

− Y5

µ
+ S2

)
∥

∥

∥

∥

2

2
(9)

in which g = Γ⊤Γ. By employing the soft-thresholding operator Sτ (x) = sgn(x)max(|x|−
τ, 0), this subproblem also has an analytical solution:

M∗

s = S λ
µg

((

Γ⊤ (X−ΦdWd +Y1/µ)−Y5/µ+ S2

)

/g
)

. (10)

4.3 Update H

Similarly, we can rearrange the subproblem optimizing H as

H∗ = argmin
H

τ

µ
‖H‖1 +

1

2

∥

∥

∥

∥

H−
(

Wd −
Y3

µ

)∥

∥

∥

∥

2

F

(11)

and solve it efficiently with the soft-thresholding operator:

H∗ = Sτ/µ(Wd −Y3/µ). (12)

Note that this operator is performed element-wise for a matrix.

4.4 Update Wd

With other variables fixed, the subproblem w.r.t. Wd is quadratic. Therefore,
this is a standard least squares regression problem with a closed-form solution:

W∗

d = (Φ⊤

d Φd+3I)−1(Φ⊤

d X−Φ⊤

d ΓMs+J+H+S1+(Φ⊤

d Y1+Y2+Y3−Y4)/µ).
(13)
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Fig. 1. Sorted color histograms of three typical natural images.

4.5 Update Slack Variables

The subproblems w.r.t. two slack variables (S1 and S2) are also standard least
squares regression problems. Their solutions are given by

S∗

1 = max(Wd +Y4/µ, 0) and S∗

2 = max(Ms +Y5/µ, 0) (14)

respectively. The max function is added to ensure that both S1 and S2 are
non-negative.

4.6 Construct Color Dictionary

In sparse and low-rank representations, constructing a proper dictionary is im-
portant. A simple option would take the entire input date as the dictionary [12].
However, such a large dictionary is computationally expensive and consumes
too much storage space. Inspired by the non-local prior [7] of natural images, we
adopt the following histogram binning method to construct a color dictionary
Φd.

This method requires constructing a 2-dimensional binning of longitude θ and
latitude φ on a unit sphere. We use the same strategy as in [7] to uniformly tessel-
late a unit sphere. For an input image, we view each pixel I(p) as a 3-dimensional
vector and transform it into spherical coordinates: I(p) = [r(p), θ(p), φ(p)]. Then,
each pixel is assigned into a proper bin based on θ(p) and φ(p). After that, we
sort all the bins in a descending order according to their densities (see Fig. 1)
and select the top K bins. The bin centers are regarded as atoms of the dictio-
nary Φd ∈ R

3×K . Fig. 1 shows sorted color histograms of three typical natural
images used in this paper. Obviously, there are only a limited number of distinct
colors in an image.

4.7 Highlight Removal Algorithm

The complete steps of our highlight removal method are outlined in Algorithm
1. The input of this algorithm is a single image that is reshaped into a 3 × N
matrix in which each column stores a pixel value. The output includes a color
dictionary Φd, a weighting matrix Wd, and a specular coefficient matrix Ms.
With these outputs, we can easily obtain the diffuse component and the specular
component according to Eq. 2. Note that an adaptive updating strategy for the
penalty parameter µ is used as shown in line 10, which makes the convergence
faster.
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Algorithm 1 Highlight Removal with the SLRR Model

Input: Image data X ∈ R
3×N .

1: Initialize: Wd = J = H = 0, Ms = 0, S1 = 0, S2 = 0, Yi = 0, µ = 0.1,
µmax = 1010, ρ = 1.1, ǫ = 10−6, K = 50;

2: Construct a color dictionary Φd;
3: while not converged do

4: Update J according to Eq. 7;
5: Update Ms according to Eq. 10;
6: Update H according to Eq. 12;
7: Update Wd according to Eq. 13;
8: Update slack variables S1 and S2 according to Eq. 14;
9: Update Lagrange multipliers: Yi ← Yi + µEi, i = 1 to 5;
10: Update µ: µ← min(µmax, ρµ);
11: Check convergence: maxi(‖Ei‖F /‖X‖F ) < ǫ;

Output: Φd ∈ R
3×K , Wd ∈ R

K×N , and Ms ∈ R
1×N .

5 Experimental Results and Discussions

To verify the effectiveness and robustness of the proposed method, we evaluate it
on both synthetic images and many real and practical scenarios. We also present
comparisons to some recent methods proposed by Tan and Ikeuchi [25], Shen et

al. [28], Yang et al. [26], Shen and Zheng [30], Akashi and Okatani [39], and Ren
et al. [35]. Unless otherwise stated, λ is set as 0.1/

√
N while τ is set as 1/

√
N .

This is a good starting point for many cases.

5.1 Study on Illumination Chromaticity

Recall that we use the color constancy algorithm proposed in [40] to estimate the
illumination chromaticity Γ. Fig. 2 and Table 1 show that our method is robust
to a certain amount of estimation error of Γ. To demonstrate this, we provide
two scenes rendered with four different lighting configurations. The acurrate
values of the illumination chromaticity are listed in the second column of Table
1 while the estimated values for the two scenes are listed in the third and sixth
columns, respectively. As expected, using accurate values of Γ in our method
(the third row of Fig. 2) leads to high-quality results that closely match the
ground truth results (the second row of Fig. 2). Although the estimation error
of Γ has negative influence on our method (the fourth row of Fig. 2), we still
achieve satisfactory results with a small decline in PSNR (see Table 1).

5.2 Comparisons on Synthetic and Laboratory Images

Fig. 3 conducts experiments on two synthetic images. The first scene includes a
single rendered sphere. Diffuse reflectances of the upper and lower hemisphere are
set as [0.8, 0.5, 0.5] and [0.8, 0.2, 0.2], respectively, such that they share the same
hue but different saturation. As shown in Fig. 3, when the diffuse reflectance is
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(a) Γ1 (b) Γ2 (c) Γ3 (d) Γ4 (e) Γ1 (f) Γ2 (g) Γ3 (h) Γ4

Fig. 2. Influence of the illumination chromaticity on highlight removal. The first row
shows two rendered scenes under four different illumination chromaticities and the sec-
ond row gives the corresponding diffuse component of each input image. The third and
fourth rows present our method’s results using the accurate and estimated illumination
chromaticities, respectively.

Accurate
Fig. 2 left Fig. 2 right

Estimated PSNR1 PSNR2 Estimated PSNR1 PSNR2

Γ1 [1/3, 1/3, 1/3] [0.36, 0.29, 0.35] 33.1 31.9 [0.34, 0.35, 0.31] 34.9 34.0
Γ2 [0.6, 0.2, 0.2] [0.64, 0.19, 0.17] 37.1 33.0 [0.63, 0.20, 0.17] 37.4 35.1
Γ3 [0.2, 0.6, 0.2] [0.21, 0.63, 0.16] 37.3 35.6 [0.20, 0.63, 0.17] 37.6 33.8
Γ4 [0.2, 0.2, 0.6] [0.22, 0.23, 0.55] 37.0 33.0 [0.22, 0.22, 0.56] 37.4 35.1

Table 1. Illumination chromaticities of four different lighting configurations in Fig. 2
and the corresponding PSNR values. Here PSNR1 and PSNR2 are calculated for our
method with the accurate and estimated values of Γ, respectively.

close to the incident illumination color, the separation will be error-prone for
many methods, especially those based on a specular-free image. These methods
will mistakenly regard the entire region of the upper hemisphere as contaminated
by specular reflection, making this region very dim after separation. Although the
NMF method [39] tries to preserve the saturation of such regions, the separation
is not sufficient in this experiment. In contrast, our method based on the SLRR
model regards strong highlights as sparse outliers and encodes remaining diffuse
colors using a color dictionary in which both colors: [0.8, 0.5, 0.5] and [0.8, 0.2, 0.2]
after normalization are present. Consequently, we successfully remove highlights
with less color distortions. Compared to other methods, our method achieves
the best separation result that is very close to the ground truth (G.T.). Further
discussions on the ball scene are given in the supplemental material. Another
challenge scene shown in the third and fourth rows of Fig. 3 also contains hue-
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(a) Origin(b) G.T. (c) Ours (d) [25] (e) [28] (f) [26] (g) [30] (h) [39] (i) [35]

Fig. 3. Highlight removal results of two synthetic images. From (c) to (i), we compare
our method to those of Tan and Ikeuchi [25], Shen et al. [28], Yang et al. [26], Shen
and Zheng [30], Akashi and Okatani [39], and Ren et al. [35].

saturation ambiguity. Again, our method outperforms previous work and retains
most of the texture details.

Fig. 4 presents the results of different highlight removal methods on four
laboratory captured images with well-controlled lighting configurations. These
images accompanied with ground truth results are captured by Shen and Zheng
[30] and have already been normalized w.r.t. the illumination color. Therefore,
the accurate value of the illumination chromaticity is Γ = [1/3, 1/3, 1/3]. Fig.
4 compares our method to three competing methods that perform well on this
dataset. For a fair comparison, the accurate illumination chromaticity is used in
each method. We also provide the results generated by our method using the es-
timated illumination chromaticity. Visual comparisons reveal that the separated
diffuse components of our method using either accurate or estimated illumina-
tion chromaticity match the ground truth results quite well. The differences are
subtle although errors exist in illumination estimation.

To further validate the accuracy of our method, we provide quantitative anal-
ysis for Fig. 3 and Fig. 4 in Table 2. The error metrics used for evaluation are
PSNR and SSIM w.r.t. the ground truth. As seen, our method using accurate il-
lumination chromaticity achieves the highest scores for the two synthetic images,
and also achieves two highest scores both in PSNR and SSIM for the laboratory
images. Similarly, the errors of illumination estimation do not affect our results
apparently. The results demonstrate the superiority of the proposed method,
and are consistent with the visual impression in Fig. 3 and Fig. 4.

5.3 Robustness Exploration

To demonstrate that our method is robust to strong noises, we conduct an exper-
iment in Fig. 5. We generate a noisy image by adding zero-mean Gaussian noises
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(a) Origin (b) G.T. (c) Ours(A.)(d) Ours(E.) (e) [28] (f) [30] (g) [35]

Fig. 4. Highlight removal results of four laboratory images with ground truth (G.T.).
We compare our method using either accurate (A.) or estimated (E.) illumination
chromaticity to three competing methods. See Table 2 for quantitative comparisons.

PSNR SSIM
Scenes Ours(A.) Ours(E.) [25] [28] [26] [30] [39] [35] Ours(A.) Ours(E.) [25] [28] [26] [30] [39] [35]

Ball 39.6 38.9 18.8 28.4 19.1 20.0 27.1 17.3 0.998 0.997 0.780 0.974 0.813 0.856 0.885 0.644
Dragon 31.8 30.5 11.4 21.1 17.3 25.4 27.6 13.5 0.972 0.964 0.638 0.933 0.883 0.945 0.952 0.738
Cups 39.1 38.6 29.3 37.5 34.1 38.9 35.7 38.0 0.963 0.959 0.767 0.962 0.941 0.966 0.937 0.957

Animals 35.7 34.4 26.1 34.2 33.0 37.4 26.8 30.6 0.975 0.938 0.929 0.974 0.970 0.971 0.802 0.896
Masks 34.4 31.5 23.9 32.1 28.4 33.9 32.3 30.0 0.955 0.911 0.789 0.943 0.899 0.941 0.657 0.913
Fruit 36.4 36.5 29.2 38.0 32.4 39.2 30.8 37.5 0.930 0.921 0.912 0.961 0.939 0.960 0.765 0.952

Table 2. Quantitative evaluation in terms of PSNR and SSIM for the images in Fig.
3 (Ball and Dragon) and Fig. 4 (Cups, Animals, Masks and Fruit). The highest scores
are in red and the second highest scores are in blue.

with variance 0.1 to each channel of a real-world image. As shown in Fig. 5, some
methods, in particular those based on material clustering [28, 30], are vulnerable
to noises and produce separation results with degraded accuracy. The method
of Akashi and Okatani [39] also fails in the presence of strong noises because
the NMF is highly sensitive to outliers. In comparison, our method can generate
high quality results even in this tough case. For this image, we set τ = 5/

√
N .

More results testing the sensitivity of our method to image noises are provided
in the supplemental material.

Our method is also robust to the response function of the camera. In Fig. 6,
we simulate the error of camera calibration by transforming each pixel value I

to I1/γ . γ is set to 1.5 (the first row) and 2.2 (the second row), respectively. As
seen, our method still works well even if there are some errors in the calibration
of the cameras response function. It clearly outperforms some previous methods
(e.g., [25], [26] and [30]).
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(a) Noisy image (b) Ours (c) [28] (d) [30] (e) [39]

Fig. 5. Influence of strong noises. Zero-mean Gaussian noises with variance 0.1 are
added to each channel of a real-world image. Some methods (e.g., [28], [30], and [39])
are vulnerable to strong noises while our method is much more robust.

(a) Origin (b) Ours (c) [25] (d) [26] (e) [30]

Fig. 6. Influence of the response function of the camera. Each pixel value I of the
original images is transformed to I1/γ .

5.4 Test on Images in the Wild

Qualitative results on images in the wild are provided in Fig. 7 where we com-
pare our method with those of Yang et al. [26], Shen and Zheng [30], Akashi and
Okatani [39], and Ren et al. [35]. We do not provide quantitative comparisons
since ground truth results are unavailable for these images. Overall, our method
performs well on a diversity of natural images which may contain various ma-
terials, heavy textures, occlusion, overexposure and natural illumination. Note
that many methods produce obvious visual artifacts in those regions having a
close-to-white diffuse reflectance (e.g. the labels of cardboard boxes in the fourth
scene and the color palette in the fifth scene) such that the diffuse chromaticity
is almost identical to the illumination chromaticity. As shown, our method can
still handle this challenging situation without introducing annoying artifacts. In
comparison, our method well suppresses the specular highlights and preserves
the saturation and image details as much as possible. Results for additional
real-world images are provided in the supplemental material.

5.5 Study on Convergence

In this work, we use slack variables to explicitly convert non-negativity con-
straints into equality constraints. This leads to a fast convergence rate as evi-
dence in Fig. 8. Here we show two examples. Compared to Zhuang et al. [41]’s
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(a) Origin (b) Ours (c) [26] (d) [30] (e) [39] (f) [35]

Fig. 7. More results of highlight removal on images in the wild which may contain
natural illumination, heavy textures, hue-saturation ambiguity and overexposed pixels.

strategy which simply clamps the negative entries to zero, our method converges
faster in both cases. Empirically, 200 ∼ 300 iterations are sufficient for most
images. Increasing the iteration number has little effect on the final results once
the algorithm converges.

We also test the influence of the color dictionary size K on the convergence
rate in Fig. 9. Here, we provide the results of four real world images that have
ground truths. We see that a very small K leads to low accuracy for diffuse color
reconstruction. Both PSNR and SSIM obtain an obvious improvement as varying
K from 1 to 10. After this, the scores of PSNR and SSIM almost saturate when
K increases from 10 to 80. In practice, although high PSNR and SSIM scores
could be obtained when K is relatively small (e.g., K = 10), the visual quality of
reconstructed image is not satisfying. For a much larger K (e.g., from 60 to 80)
it hardly affects the numerical results (PSNR, SSIM) as well as visual quality,
but will significantly increase the computational cost. Taking these factors into
account, we generally set K as 50 without any specific tuning.
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Fig. 8. Convergence rate comparisons with Zhuang et al. [41]’s strategy on two images:
Animals (left) and Fruit (right).
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Fig. 9. Influence of K on the convergence rate. The line plots show the PSNR (left)
and SSIM (right) w.r.t. K after 300 iterations.

6 Conclusion

We have presented a new method for automatically separating an original image
into a diffuse component and a specular component with no user intervention.
This method is built upon a sparse and low-rank reflection (SLRR) model in
which we assume that highlight regions in an image are sparse while diffuse col-
ors can be well represented by a limited number of distinct colors. We then cast
the task of highlight removal into a constrained nuclear norm and l1-norm mini-
mization problem which can be solved effectively by the ALM method. Different
from some previous work, our method do not require a specular-free image which
is vulnerable to hue-saturation ambiguity. With the SLRR model and proper
parameter settings, we tend to avoid this problem and preserve scene details as
much as possible. Experimental results using various synthetic and real-world
images validate the accuracy and robustness of our method.
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