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Abstract. The recent years have witnessed significant growth in con-
structing robust generative models to capture informative distributions
of natural data. However, it is difficult to fully exploit the distribution
of complex data, like images and videos, due to the high dimensionality
of ambient space. Sequentially, how to effectively guide the training of
generative models is a crucial issue. In this paper, we present a subspace-
based generative adversarial network (Sub-GAN) which simultaneously
disentangles multiple latent subspaces and generates diverse samples cor-
respondingly. Since the high-dimensional natural data usually lies on a
union of low-dimensional subspaces which contain semantically exten-
sive structure, Sub-GAN incorporates a novel clusterer that can interact
with the generator and discriminator via subspace information. Unlike
the traditional generative models, the proposed Sub-GAN can control
the diversity of the generated samples via the multiplicity of the learned
subspaces. Moreover, the Sub-GAN follows an unsupervised fashion to
explore not only the visual classes but the latent continuous attributes.
We demonstrate that our model can discover meaningful visual attributes
which is hard to be annotated via strong supervision, e.g ., the writing
style of digits, thus avoid the mode collapse problem. Extensive experi-
mental results show the competitive performance of the proposed method
for both generating diverse images with satisfied quality and discovering
discriminative latent subspaces.

1 Introduction

Significant progress has been made in deep generative modeling, of which the
ability to synthesize data requires a deep understanding of the data structure.
Recently, generative adversarial network (GAN) [1] has emerged as a promising
framework for generating complex data distribution in a data-driven manner.
GAN is composed of a generator and a discriminator, where the generator maps
samples from an arbitrary latent distribution to ambient data space and the
adversarial discriminator attempts to distinguish between real and generated
samples. Both modules are optimized via adversarial training.

While GAN has shown promising results in simulating complex data distri-
bution like images and videos, the realistic distribution is not fully exploited.
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The complexity of real data makes it difficult for generative models to learn use-
ful and detailed attributes without any guidance. Sequentially, the conditional
GAN [2] proposes to provide direct clustering guidance in a supervised manner
where the labels of data are given. However, the requirements of annotations
constrain the generative models to limited applications with strong prior of the
distinctive classes, e.g ., the 10 digits in the MNIST dataset. Furthermore, there
are far more intrinsic patterns which are hard to be labeled, such as the various
styles of the hand-written digits. Full exploitations on these latent structures
can obviously alleviate the mode collapse problem in the generation process.

Research has shown that high-dimensional data can always be modeled as
a union of low-dimensional subspaces [3]. Numerous subspace clustering meth-
ods have been developed to explore the high-dimensional data distribution [3,4].
The disentangling of the underlying low-dimensional subspaces serves as a guid-
ance on approximate the data distribution and can facilitate the generation on
complex data space.

In this work, we propose a joint framework, i.e., subspace-based generative
adversarial network (Sub-GAN), to simultaneously discover intrinsic subspaces
in an unsupervised manner and generate realistic samples from each of them.
Sub-GAN consists of three modules, a clusterer, a generator and a discriminator.
The clusterer aims to discover distinctive subspaces of high-dimensional data in
an unsupervised fashion. It is updated on each epoch based on the feedback
from the discriminator. The generator produces samples conditioned on a one-
hot vector indicating the belonged cluster and a base vector of subspace derived
from the clusterer. The discriminator not only needs to distinguish between real
and fake samples, but also requires to classify them to belonged subspaces. It also
provides distinctive representations of data samples for updating the clusterer.
We conduct extensive experiments to validate the effectiveness of the proposed
framework. Specifically, based on both visualized and quantitative results, we
demonstrate that the generated samples are not only visually appealing but
diverse with multiple latent attributes. We also show that our model achieves
favorable performance on image clustering tasks.

Our contributions are of two folds. First, we present a joint unsupervised
framework to simultaneously learn the subspaces of the ambient space and gen-
erating instances accordingly, where both tasks are mutually optimized. Second,
we address the mode collapse problem by specifying the number of distinct sub-
spaces, from which we generate meaningful and diverse images with informative
visual attributes. Extensive experiments demonstrate the effectiveness of the
proposed Sub-GAN model.

2 Related Work

Deep Generative Models Deep generative frameworks have recently drawn
significant attention due to the ability of modeling large-scale unlabeled data [5–
10]. The generative models can be applied to various low-level vision problems,
e.g ., image super-resolution [11,12] and semantic segmentation [13,14].
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Generative models aim to fit the space of real data samples, e.g ., a set of
natural images [15–17]. To capture the real distribution, most generative models
optimize an aggregated probabilistic problem conditioned on latent noises over
multiple variables. They assume that all data samples are drawn from a single
low-dimensional latent space. Early studies focused on learning embedded repre-
sentations in an unsupervised manner, e.g ., the restricted Boltzmann machines
(RBM [18,19]) and the stacked auto-encoders (AE [20]). For instance, Hinton et

al . [21] propose to efficiently train the deep belief nets (DBN) by using the
contrastive divergence algorithm. Both DBN and AE learn a low-dimensional
representation for each data sample on a single latent space, followed by gener-
ating new instances via a decoding network [22]. However, these methods suffer
from the difficulty to disentangle an intractable probabilistic optimization prob-
lem while maximizing the training data likelihood, especially for the data of
high-dimensionality [23]. More recently, Goodfellow et al . [1] propose GAN as
an alternative adversarial strategy for training the generative models. The min-
imax game between the generator and the discriminator induces a data-driven
approximation process from a low-dimensional latent distribution, e.g ., standard
Gaussian, to a high-dimensional real distribution. During training, the adversar-
ial module is used to optimize a loss function and sidesteps the requirement to
explicitly calculate or approximate the complicated ambient space. Nevertheless,
due to the high-dimensional and contradictory nature of the two counterparts,
traditional GANs suffer from the mode collapse problem as well as the instable
training [24,25], which are crucial for further improvement.

Built upon these generative models, various conditional image generation
methods (e.g ., CGAN [2]) are proposed to generate a specific deterministic out-
put from a given conditioning latent vector, which somehow controls the diversity
of the generation. In particular, the latent variable is designed to encode the ob-
ject class by concatenating the ground-truth labels so that the generator can
produce samples from specific visual category [26, 27]. The CGAN has the ad-
vantage of providing better representations for multi-modal data generation, but
such inference process relies on the extensively annotated training data, some
of which is hard to explicitly labeled, e.g ., the writing styles of the digits [28].
Recently, InfoGAN [29] optimizes the mutual information of latent codes, which
is constructed by a mixture of Gaussian instead of uniform noise. However, it
lacks explicit categorical assignments as well as distinctive embedding vectors
of samples. In this paper, we present a joint model to simultaneously learn the
informative latent category of the real samples and conduct the generation from
each subspace, the inference and generation process are totally unsupervised and
mutually optimized.

Subspace Learning Modeling high-dimensional data has been one of the most
critical issues in computer vision [30]. As the high-dimensional data is usually
distributed in a union of low-dimensional subspaces [4, 31], numerous deep sub-
space clustering methods [32–35] have been developed in the literature.

The goal of subspace learning methods is to find a given number of disentan-
gled low-dimensional subspaces [34]. Traditional algorithms focus on calculating
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Fig. 1. Main steps of the proposed Sub-GAN method. The three boxes represent the
clusterer C (purple), generator G (green) and discriminator D (blue), respectively. We
design C to disentangleK subspaces {Si}

K

i=1 for the given datasetX (when initializing)
or the deep features derived from D (during training). For G, the input l consists of
three components, i.e., e and y derived from C, and the noise vector z ∈ N (0, 1). The
D can not only discriminate the real or fake images by outputting a binary prediction,
but also calculate probabilities of each subspace to refine the C. The K bins from both
C and D are unified for comprehensive prediction.

the similarity/dissimilarity relationship among instances [36], followed by con-
structing graphs and conducting spectral clustering [37]. Recently, researchers
propose to extract more distinctive representations of each sample via a deep
embedding network [38]. Xie et al . [39] propose the deep embedding clustering
(DEC) algorithm for learning a non-linear mapping from data space to a latent
feature space with a denoising stacked autoencoder (DAE), followed by refining
the clustering assignments. The DEC framework first pre-trains the DAE and
then fine-tunes it stacked by iteratively optimizing a clustering objective func-
tion based on the Kullback-Leibler (KL) divergence with a self-training target
distribution. However, it requires the layer-wise pre-training and a non-joint em-
bedding and clustering [34]. In this paper, we propose a joint model for training
all modules simultaneously with an adversarial strategy, which is demonstrated
to be effective to extract distinctive subspaces.

3 Subspace-based GAN

Given a set of unlabeled high-dimensional data X = {xi}
N
i=1, the goal of gener-

ative models is to approximate the real distribution px(x) via a mapping G(·)
from a low-dimensional latent variable z ∼ pz(z), i.e., x = G(z). However, di-
rectly modeling the raw space may suffer from the problem of mode collapse,
i.e., the generated samples are of similar pattern which caters the objective
function [40]. It also leads to an instable training [41].

The data samples X could be drawn from multiple subspaces {Si}
K
i=1, which

depict informative attributes and are easier to be approximated than the high-
dimensional ambient space. Hence, we present a joint unsupervised framework
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Algorithm 1 : Training of Sub-GAN

Input: X = {xi}
N

i=1 ∈ R
dx , K, Ni, Nb.

1: Calculate the correlation matrix C by solving the self-representation problem (1);
2: Compute the Laplacian matrix M by (2);
3: Disentangle the subspaces by calculating {ei}

K

i=1 using (3);
4: Calculate an initialized cluster assignment ŷini using K-means;
5: while I < Ni do

6: Calculate comprehensive latent codes L = {li}
K

i=1 for each subspace using (8);
7: Update the generator G(L) by optimizing (6);
8: Update the discriminator D by optimizing (9);
9: Calculate new distinctive representations for each sample x;
10: if I%( N

Nb
) = 0 then

11: Calculate and update C and e;
12: Update C according to (12);

13: end if

14: end while

Output: Cluster assignment ŷ; Generator G.

termed as Sub-GAN, to seek auxiliary distributions which effectively cover mul-
tiple modes of the multi-modal data X. In the rest of this section, we first
describe the deep clustering module C, which disentangles the {Si}

K
i=1 of the

ambient space X. Afterwards, we explain the formulation of deep generative
modules, including a generator G and discriminator D which alternate between
updating model parameters for both generation and clustering. Fig. 1 shows the
pipeline of Sub-GAN and Algorithm 1 illustrates the training process, where Ni

and Nb denote the number of iterations and batch size, respectively.

3.1 Clusterer for Subspace Disentangling

We consider the task of clustering a set of N samples X = {xi}
N
i=1 ∈ R

dx into
K clusters {Si}

K
i=1, where dx denotes the dimension of X and K is fixed based

on the diversity and intrinsic structure of the X. Note we allow the user control
on K to generate either diverse or compact samples. To satisfy the requirement
on subspace disentangling, we design a clusterer C which is jointly learned in
the adversarial framework. We first initialize the soft assignments P̂ via sub-
space clustering [30]. Then, we minimize the KL divergence between predicted
assignment P and an auxiliary target distribution T . During training of Sub-
GAN, we iteratively map the raw data samples into a distinctive embedding
space U ∈ R

du where we have du ≪ dx. Meanwhile, the adversarial process can
provide gradients for refining the soft assignment.

For initializing the assignment with raw data samples, we follow a two-step
subspace clustering approach. Specifically, we disentangle the multiple affine
subspaces {Si}

K
i=1 using self-representation and graph clustering techniques. We

first tackle the following ℓ1-norm optimization problem [4] to calculate the self-
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representation of the data samples:

min
C

‖X −XC‖22 + λ‖C‖1, s.t. diag(C) = 0, (1)

where ‖·‖1 denotes the ℓ1-norm and the constraint diag(C) = 0 eliminates the
trivial solution of representing sample x as a linear combination of itself. Here,
C denotes the coefficient matrix where each entry cij reflects the similarity
between samples xi and xj . Afterwards, the C is used to define a directed
graph G = (V,E) where the each vertex in V represents a data sample and

the edge (vi, vj) ∈ E is weighted by cij . We construct a balanced graph Ĝ with
the adjacency matrix W where we have W = |C|+ |C⊤|. Then, the Laplacian
matrix M of the graph is calculated by

M = D −W , (2)

where D ∈ R
N×N is computed as Dii =

∑
j Wij . Given the Laplacian matrix

M , we calculate the first K eigenvectors as

[e1, e2, · · · , eK ] = eig(M), (3)

where eig(·) is the decomposition function to extract the eigenvectors of a ma-
trix. Note the multiplicity of the zero eigenvalues of M reflects the number of
connected components in G [4], thus the eigenvectors are distinguishable in the
latent spectral space. We finally use the K-means to calculate the initialized
clustering assignment P̂ [42].

Given P̂ , we refine the model predictions iteratively in the following training
process. In each iteration I, we feed the G and D with both data sample xi and
the current predicted subspace assignment p̂Ii . On top of the deep network of the
discriminator which is illustrated in Section 3.3, we generate the deep embedding
feature f I

i of each sample xi which is distinguishable on discriminating the K
subspaces. Given f , we calculate the soft assignment Pb for each local training set
Xb, where Xb is composed of images in each batch. We then define a clustering
objective function LC for each iteration I by using the Kullback-Leibler (KL)
divergence to minimize the distance between the prediction P I and a target
variable QI :

LI
C = KL(QI ||P I) =

1

Nb

N∑

i=1

K∑

k=1

qik log
qik
pik

, (4)

where Nb denotes the batch size, N is the number of training samples and K is
the number of subspaces. Here, we induce a sparse prediction matrix P where
each pi is a one-hot vector, i.e., pik = 1 for xi ∈ Sk and {pij}j 6=k = 0. In the
clusterer C, we update the target distribution Q by normalizing based on the
frequency for each cluster:

qik =
p2ik/fk∑

m(p2im/fm)
, (5)

where fk =
∑

i pik denotes the predicted frequency of each cluster. Fig. 1 shows
that in each iteration, the predicted K bins in C is refined by the dense K bins
derived from D.
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3.2 Generator for Subspace Approximation

Deep generative models aim to approximate the real data space X from a latent
space L. Consequently, they optimize a non-linear mapping function fθ : l → x,
where l denotes the latent vector which encodes the intrinsic attributes of the
ambient space, θ denotes the set of parameters.

Traditional generative frameworks approximate a single ambient space by
optimizing an aggregated posterior pθ(x|z), where z denotes the source of in-
compressible noise in the latent space. In this section, we design a generator
G(l) to realize the non-linear mapping of fθ : l → x. We demonstrate that
the proposed G(l) captures informative intrinsic structures, i.e., generates di-
verse samples from multiple subspaces. More concretely, we express G(l) as a
deterministic feed forward network G : ΩL → ΩS , where Ω· denotes the corre-
sponding distribution, L = {li}

K
i=1 denotes the latent space and S = {Si}

K
i=1

denotes the K subspaces of the data X. We formulate the optimization process
as:

pG(x ∈ Si) = Eli∼pL
[pG(x|li)], (6)

where pG(x|li) = L(x−G(li)) and li denotes the latent code induced from Si.
We finally train the G(l) via an adversarial manner such that

pG(x) ≈ pSi
(x), ∀Si ∈ S. (7)

Given the disentangled subspaces {Si}
K
i=1, we design l to depict the indepen-

dent attributes of each Si with a comprehensive combination, i.e.,

l = z ⊕ e⊕ ŷ. (8)

Here, ⊕ denotes the concatenation operation and ŷ ∈ R
K denotes the one-hot

vector in current assignment. The eigenvector e in (3) reflects intrinsic base of a
subspace derived from C, where C is updated in each iteration. We set the prior
on the noise variable pz(z) = N [0, 1] where N denotes normal distribution. The
green box in Fig. 1 provides a visualization of this concatenation operation.

3.3 Discriminator for Adversarial Training

GAN [1] is an adversarial framework which trains a deep generative model via
a minimax game. Traditional GAN is composed of a generator G and a dis-
criminator D of which the ability of generation or discrimination are mutually
improved during training. The G always non-linearly maps a latent noise vari-
able z ∼ pz(z) to the data space x ∼ px(x). Meanwhile, the discriminator D
calculates a probability of belief p = D(x) ∈ [0, 1] for real samples and assigns a
probability of 1−p when for generated samples G(z). During training, a minimax
objective is used to alternatively train both networks:

min
G

max
D

L(G,D) = Ex∼px(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (9)

HereD is optimized to be a binary classifier which provides the optimal probabil-
ity estimation between real and fake samples, i.e., x and G(z). Simultaneously,
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G is encouraged to resemble the data distribution, i.e., G(z) ∼ px(x), followed
by challenging the discriminator D with G(z). Both G and D are updated al-
ternatively via back-propagation.

For refining the subspace assignment, we incorporate the adversarial loss with
the clustering loss, i.e., LC in (4) which discriminates whether the samples are
generated from a single S. The hybrid Sub-GAN training objective is defined as
a minimax optimization:

min
G,C

max
D

L(D,G,C), (10)

where we have

L(D,G,C) = Ex∼pS(x)[logD(x)] + El∼pL(l)[log(1−D(G(l)))] + KL(QS ||PS).
(11)

Here, S = {Sk}
K
k=1 denotes the predicted subspaces in each iteration.

In the training process, we followed the alternating gradient based optimiza-
tion technique as is used in [1]. Specifically, each module in Sub-GAN is a para-
metric function with parameters θD, θG and θC , respectively. We jointly optimize
the Sub-GAN framework using an alternating stochastic gradient step. For each
iteration I, we update the θD for the discriminator by calculating the single or
multiple steps of the positive gradient direction, i.e., ∇θDL

I−1(D,G,C). Then,
we simultaneously update the parameter θG and θC for theG and C, respectively.
We take a single step in the negative gradient direction −∇θG,θCL

I−1(D,G,C).
In particular, for the clusterer C, we have

θIC = {CI ,P I ,QI}. (12)

To update the coefficient matrix C, we calculate the ℓ1-norm optimization in (1)
in each epoch on top of favorable data features derived fromDI−1. Consequently,
for the generator G, we update the eigenvector eIi for representing each subspace
Si through CI−1. For all modules, the first two terms of L(D,G,C) are calcu-
lated based on the mini-batches of n samples {xi ∼ pS}

n
i=1 and the latent codes

{li ∼ pL}
n
i=1 drawn from the underlying subspaces.

4 Experimental Results

4.1 Datasets and Methods

We conduct experiments on the MNIST and CIFAR-10 datasets. The MNIST
is a standard handwritten digits dataset which is composed of 70, 000 images
of 28 × 28 grayscale. We use this dataset to demonstrate the comprehensive
characteristics of the proposed Sub-GAN. The CIFAR-10 dataset consists of
60, 000 32× 32 color images in 10 classes, which cover common objects such as
airplanes or automobiles. Both datasets are of informative intrinsic attributes
apart from the existing label, e.g ., the writing style of each digits in MNIST,
the various scene of the automobiles in CIFAR-10.
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Fig. 2. Generated images on the MNIST dataset by the CGAN [2], InfoGAN [29],
IGAN [43], IWGAN [44], DCGAN [45] and the proposed Sub-GAN. The first two
methods explore the class information during the generation, however, the generated
digits do not look visually appealing. While the the samples from the others look better,
the diversity is hard to control. In contrast, the proposed Sub-GAN can simultaneously
discover the subspaces {Si}

K

i=1 and generate diverse samples from each Si.

For evaluating the generation quality, we compare the proposed Sub-GAN
with various state-of-the-art generative models, i.e., CGAN [2], Improved GAN
(IGAN, [43]), Improved WGAN (IWGAN, [44]), DCGAN [45] and InfoGAN [29].
Furthermore, we perform experiments to evaluate the unsupervised clustering
performance of the Sub-GAN. We make the comparison with K-means, SSC [4],
LSR [46], SMR [47], NSN [48], SSC-OMP [35], ORGEN [31], iPursuit [49],
DEC [39], CatGAN [50] and InfoGAN [29]. Here, the SSC, LSR, SMR, NSN,
SSC-OMP, ORGEN and iPursuit are subspace clustering algorithms. The DEC
concentrate on deep embedding clustering while the CatGAN and InfoGAN are
based on the generative models.

4.2 Evaluation Metrics

We employ various metrics to quantitatively evaluate the proposed Sub-GAN
in terms of both generation and clustering capacity. Specifically, we assess the
image quality by using the Inception Score [43] and Diversity Score [51]. We then
quantify the clustering assignments by calculating the Adjusted Accuracy [52].

Inception Score: The inception score [43] is widely adopted in evaluating gen-
erative tasks which uses a pre-trained neural network classifier to capture both
highly classifiable and diverse properties with respect to class labels. For eval-
uated samples, it calculates average KL divergences between conditional label
distributions (expected to have low entropy for easily classifiable samples) and
marginal distribution (expected to have high entropy if all classes are equally
presented). We follow the same routine in [53] for evaluation, i.e., using the
Inception network [54] trained on the ImageNet dataset [55].

Diversity Score The diversity score [51] is based on the cosine distances among
features (the maximum score is 5). In this paper, we use it to quantitatively
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w/ point vs w/o point 
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Fig. 3. Samples generated from joint unsupervised training on the MNIST dataset
using the proposed Sub-GAN. Here, we set K = 16 (top row) to disentangle diverse
subspaces {Si}

16

i=1. Note we construct this figure according to the sequence derived
from the clusterer C. The bottom illustrates three pairs of different writing styles of
digits 2, 0 and 7. The Sub-GAN can discover not only the 10 subspaces with the digits
0 − 9, but the different writing style, e.g ., the fat and thin ‘0’ in the 4-th and 8-th,
respectively. The brown box reflects the failure case which confuses between 4 and 9.

evaluate the diversity of generated samples thus validate the alleviation on mode
collapse problem in GAN training.
Adjusted Accuracy for Clustering The Adjusted Accuracy [52] is a common
metric for evaluating the clustering performance whenK 6= Kg whereKg denotes
the ground-truth number of clusters. For each cluster Sk, we found the validation
example xi that maximizes q(yk|xi), and assigned the label of xi to all the points
in the cluster Sk. We then compute the test accuracy based on the assigned class
labels. Note it is identical to standard clustering accuracy when K = Kg.

4.3 Network Architecture

The generator G is mainly composed of two deconvolution layers (deconv) and
two fully connected layers (FC). Specifically, the input latent vector is l ∈ R

110.
Afterwards, the network architecture of G is: (1) FC.1024 w/ ReLU and batch-
norm; (2) FC.6272 w/ ReLU and batch-norm; (3) reshape to 7 × 7 × 128;
(4) deconv.4 × 4, stride= 2, feature maps= 64, w/ ReLU and batch-norm; (5)
deconv.4× 4, stride= 2, feature maps= 1.

The discriminator D is mainly composed of two convolution layers (conv)
and two fully connected layers. In particular, the input image size is 28 × 28
with 1 gray channel. The network architecture of D is: (1) conv.4× 4, stride= 2,
feature maps= 64, w/ lReLU; (2) conv.4× 4, stride= 2, feature maps= 128, w/
lReLU and batch-norm; (3) FC.1024 w/ lReLU and batch-norm; (4) FC.1 for
classifying whether the image is real.

The clusterer C shares a similar structure with D. However, the last layer of
C, i.e., FC.K, is designed to calculate a K-bins probabilities of the K subspaces.

4.4 Implementation Details

To setup the experiments of the proposed joint framework, we first initialize
the soft assignments of the subspaces {Ŝi}

K
i=1 by employing an unsupervised
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Fig. 4. Optimization losses of three modules, i.e., C (blue), D (green) and G (red),
over training iterations on the MNIST dataset. The LC demonstrates a downward trend
before around 10, 000-th iteration. Sequentially, the training of G and D is unstable,
e.g ., D can easily discriminate the fake images from the real one so that the LD is
low. After C reaches a stable subspace assignment, the framework begins a normal
adversarial training of G, D and C.

subspace clustering termed SMR [47] on the raw data space. Then, for stabilizing
the training of Sub-GAN, we designG andD based on state-of-the-art techniques
in DCGAN [45] and InfoGAN [29]. Specifically, we construct both networks
with multiple convolution and deconvolution layers, followed by ReLU and leaky
RelU (lReLU) activations in G and D, respectively. We also incorporate batch
normalizations in both networks. We train the proposed joint model for 100, 000
iterations, with the batch size 100. We provide more training details in the
supplementary material.

4.5 Generated Images by Sub-GAN

In this section, we analyze the generation performance of the proposed Sub-GAN
on both MNIST and CIFAR-10 datasets.

Different K’s on MNIST We first conduct experiments on the MNIST
dataset. Fig. 2 shows the visualized comparison among samples derived from
five contrastive generative models and the proposed Sub-GAN. The CGAN and
InfoGAN generate samples from a union of subspaces. However, the samples
derived from CGAN have unsatisfied consistency to human judgments, e.g ., the
components of the digits are broken in several cases. In addition, CGAN relies
on the strong supervision of the annotations, which can only accessed on lim-
ited applications. The generated digits from IGAN, DCGAN or IWGAN have
satisfied quality, yet the algorithm can not discover informative subspaces of the
ambient space. As a result, the attribute of generated samples is hard to control.
WithK = 10, the proposed Sub-GAN framework generates diverse samples from
each subspace, which alleviate the mode collapse problem in training GANs.

In Fig. 3, we also demonstrate that the proposed Sub-GAN can discover
informative visual attributes which can hardly be annotated by strong supervi-
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Table 1. Comparison of the diversity scores on both MNIST and CIFAR datasets
with K = 10. The proposed Sub-GAN achieves best performance against contrastive
methods, which alleviates the mode collapse problem in training GANs. The column
of ‘Real’ indicates the diversity scores of real images from respective datasets.

Datasets Real CGAN [2] IGAN [43] IWGAN [44] DCGAN [45] InfoGAN [29] Sub-GAN

MNIST 2.96 0.92 1.81 1.78 1.63 2.11 2.36

CIFAR 3.21 1.02 2.20 2.03 1.95 2.48 2.72

sion. As a result, the algorithm handles the mode collapse problem in an un-
supervised way. In the experiment, we set K = 16 and generate images on the
MNIST dataset. We can see that the Sub-GAN discovers multiple writing styles
for the digits, and thus generates diverse new samples for different attributes.
For example, the red boxes reflects that the digit ‘0’ are divided into two types,
i.e., the fat ‘0’ and the thin one. It also finds several writing styles for other
digits such as ‘2‘ and ‘7’. We provide more results of different attributes in the
supplementary material.

Furthermore, for quantitatively evaluating the diversity of the generated dig-
its, we calculate the diversity scores among contrastive methods and report them
in Table 1. While Sub-GAN achieves the best performance on this metric, it
demonstrate that the proposed method alleviates the mode collapse problem
due to the incorporation of subspace analysis.

To exposure the training process, we visualize the optimization loss in Fig. 4.
The clusterer is iteratively optimized in about the first 104 iterations. During
this process, the training of both generator and discriminator is unstable, i.e.,
the loss of G is high and unstable while the loss of D is close to 0. It reflects that
the generated samples are not visually appealing and can be easily discriminate
by D. After reaching a stable subspace assignment, the joint unsupervised model
starts a normal adversarial training of all modules.

CIFAR-10 In this section, we conduct experiments on the CIFAR-10 dataset.
We set K = 10 in the training procedure and show the example results in Fig. 5.
We also collect the generated samples from existing frameworks and calculate
the inception score for each of them.

The Sub-GAN achieves favorable performance on the metric of inception
score, which demonstrates the consistency to human judgments and thus the
effectiveness of our method in terms of the generation ability. The proposed
model can also generate samples from each subspace, which handles the mode
collapse problem. The samples generated from the IGAN get a slight higher score
than Sub-GAN, however, the samples in red boxes reflect the mode collapse
problem of IGAN, i.e., many generated samples are very similar. The other
methods suffer from the same problem, while the quality of generated images is
lower than ours. We provide more comparisons of the generated samples derived
from the contrasted methods in the supplementary material.

We also quantitatively evaluate the diversity of generated samples on CIFAR
dataset in Table 1, where the proposed Sub-GAN shows favorable performance
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Models

Samples

CGAN [2] IGAN [43] IWGAN [44] DCGAN [45] Sub-GANInfoGAN [29]

Inception 
Score

4.28 0.08 8.090.07 7.860.07 6.16 0.07 7.26 0.05 7.95 0.04

Fig. 5. Inception scores for samples derived from various generative models on the
CIFAR-10 dataset. Higher score indicates more consistence with human judgment.
The experimental results demonstrate that the proposed Sub-GAN generates favorable
samples against other state-of-the-art methods in terms of both visual expression and
diversity. The IGAN achieves state-of-the-art inception score, however, the red boxes
in the figure shows that it suffers from the mode collapse problem, which is tackled by
Sub-GAN via subspace analysis.

against contrastive methods. The results of diversity scores show consistency to
the visualized results in Fig. 5. For example, the diversity score of IGAN is lower
than the proposed Sub-GAN (2.20 vs 2.72).

4.6 Image Clustering Performance

The clusterer is an auxiliary module which disentangles the subspaces to facili-
tate the generation. An effective interaction among G,D and C is important for
both generating samples and clustering. In this section, we analyze the clustering
performance of the proposed Sub-GAN on both MNIST and CIFAR datasets.

In this paper, the clusterer updates the clustering assignment of the whole
dataset in each epoch, while theD refine the assignment of one mini-batch in each
iteration. Some samples might be wrongly grouped based on the global similarity
to all others, hence we refine the assignment in D based on the similarity of
samples in local batches. We have conducted an ablation studies on the MNIST
dataset with K = 10 and reported the clustering accuracy (%) in Table 2, which
demonstrates the effectiveness of the refinement operation.

We report the adjusted accuracy of contrastive methods on both datasets
in Table 3. The K-means method does not perform well on this task, since it
lacks the ability on handling the high-dimensional large-scale data. In contrast,
the subspace clustering (SSC, LSR, SMR, NSN, SSC-OMP, ORGEN and iPur-
suit), the deep embedding based clustering method (DEC) and the generation
based methods (CatGAN and InfoGAN) show better performance due to the
distinctive representation or iteratively optimization. In contrast, the proposed
Sub-GAN achieves favorable performance against contrastive methods under all
configurations, since the deep representation is iteratively updated according to
the guidance of adversarial training process.

Note in the experiment with K = 10, the accuracy of initialized assignment
using SMR is 73.39% for MNIST and 56.24% for CIFAR, while the joint training
of three modules induces about 12% and 22% improvement, respectively. Conse-
quently, the information interaction facilitates not only the generation of diverse
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Table 2. Clustering accuracy (%) on the MNIST dataset under K = 10 with/without
the refinement operation in the discriminator.

Refinement in D 1st Epoch 20th Epoch 40th Epoch Last Epoch
W/o 75.23 82.96 83.11 83.87
W/ 77.12 83.45 84.24 85.32

Table 3. Unsupervised clustering performance (adjusted clustering accuracy) of the
contrasted methods on the MNIST and CIFAR datasets with different K’s. The clus-
terer in Sub-GAN shows favorable performance against various clustering algorithms.

Methods
MNIST CIFAR

K = 10 K = 16 K = 20 K = 10 K = 16 K = 20

K-means 53.49 60.36 62.55 42.62 46.81 51.02
SSC [4] 62.71 66.82 70.19 50.31 52.77 53.98
LSR [46] 66.85 70.21 73.83 53.97 55.80 59.24
SMR [47] 73.39 81.27 83.63 56.24 59.02 62.73
NSN [48] 68.75 71.04 73.67 52.29 56.55 59.03
SSC-OMP [35] 76.33 79.25 82.52 51.21 53.02 57.84
ORGEN [31] 71.04 74.07 78.65 52.29 55.61 58.08
iPursuit [49] 61.35 64.28 68.84 59.21 62.53 65.66
DEC [39] 84.30 83.28 83.02 61.03 65.29 67.31
CatGAN [50] 80.21 84.92 90.30 67.42 67.85 68.76
InfoGAN [29] 70.63 73.77 78.69 71.02 73.64 74.07
Sub-GAN 85.32 90.36 90.81 78.95 81.35 82.44

samples but also the clustering performance. In addition, for both datasets, the
Sub-GAN shows better performance with increasing K’s, since the model can
disentangle informative subspace structure with a large number of clusters.

5 Conclusions

In this work, we present an unsupervised Sub-GAN model for jointly learning the
latent subspaces of the ambient space and generating instances correspondingly.
We incorporate a novel clusterer into the GAN framework, where the clusterer
disentangles the subspaces and is updated based on the deep representations of
the samples derived from the discriminator. Meanwhile, the generator is fed with
both random vectors of a normal distribution and low-dimensional eigenvectors
derived from the clusterer. Here, the eigenvectors reflect latent structures of the
disentangled subspaces. The discriminator is sequentially designed to reward
high scores for samples which fit a specific subspace distribution, and provide
feedbacks to refine the cluster assignment. Both quantitative evaluation and the
visualization demonstrate that Sub-GAN can not only discover meaningful latent
subspaces of the datasets but also generate photo-realistic and diverse images.
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