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Abstract. Traditional video understanding tasks include human action
recognition and actor/object semantic segmentation. However, the com-
bined task of providing semantic segmentation for different actor classes
simultaneously with their action class remains a challenging but necessary
task for many applications. In this work, we propose a new end-to-end
architecture for tackling this task in videos. Our model effectively lever-
ages multiple input modalities, contextual information, and multitask
learning in the video to directly output semantic segmentations in a
single unified framework. We train and benchmark our model on the
Actor-Action Dataset (A2D) for joint actor-action semantic segmentation,
and demonstrate state-of-the-art performance for both segmentation and
detection. We also perform experiments verifying our approach improves
performance for zero-shot recognition, indicating generalizability of our
jointly learned feature space.
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1 Introduction

Action understanding is one of the key tasks in the field of video analysis. Recent
progress has been primarily focused on obtaining a relatively coarse understand-
ing of human-centric actions in video [10, 12]. However, a more comprehensive
understanding of actions requires to identify fine-grained details from a video
sequence, such as what actors are involved in an action, how are they interacting,
and where are their precise spatial locations. Such pixel-level joint understanding
of actors and actions can open a series of new exciting applications, such as
activity-aware robots able to accurately localize potential users, understand
their needs, and interact with them to assist. Furthermore, expanding action
understanding to non-human actors is essential for autonomous vehicles.

More fundamentally, delving deeper into the synergies between action recog-
nition and object segmentation can be mutually beneficial, and improve overall
video understanding. As an example, an accurate and fine grained spatial identi-
fication of the main actors involved in an action may increase the robustness of
action recognition. Similarly, the correct recognition of the underlying action in
a video sequence can facilitate the identification of relevant finer details, such as
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Fig. 1: We tackle the problem of joint actor-action semantic segmentation in videos,
which requires simultaneous pixelwise recognition of different actor and action classes.
Prior work have proposed (a) pixelwise probabilistic graphical model (PGM) approaches
[28, 27] and (b) two-stage refinement approaches [11]. (c) In this work, we propose a
new direct end-to-end architecture that combines video action recognition and actor
segmentation in a single unified model.

precise actor locations. Building a working model that takes advantage of these
insights requires careful architecture design, incorporating two design components
in a synergistic manner. First, this would require integrating a finer localization of
the main actors executing the action within the action recognition pipeline. Sec-
ond, the model must also have a strong understanding of the activities occurring
within the video, a task that is more traditionally context-dependent. With the
above observation and philosophy, we tackle the problem of joint actor-action
semantic segmentation, which asks the perception algorithm to predict actor
and action class labels at the pixel level in the input video clip.

This task of actor-action semantic segmentation is inherently challenging.
First, we desire actor and action knowledge to be learned jointly to benefit
each other’s prediction. At the same time, the learned representations should be
decoupled well enough to prevent an explosion of joint classes in the actor-action
cross product space. Second, although the problem can be addressed by a multi-
stage refinement approach – where actor detection, semantic segmentation, and
action recognition are separate – a direct end-to-end design can reduce multi-stage
engineering. Third, in contrast with pixelwise segmentation on a static image,
contextual information from other frames may need to be considered to predict
accurate action labels.

A few prior works [28, 27, 29, 11] have examined the challenging joint task of
actor-action semantic segmentation, as illustrated in Figure 1. For example, Xu et

al. [27] proposed a graphical model that adaptively groups spatial and temporal
information from supervoxels in videos. Kalogeiton et al. [11] proposed a joint
actor-action detector on single frames and then perform segmentation. While all
of these methods made important progress towards the actor-action semantic
segmentation problem, they either do not decouple the actor and action label
spaces, rely on two-stage refinement, or do not effectively leverage contextual
information. In our work, we address all of these challenges simultaneously. Thus,
our contributions can be summarized as follows:
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– We propose a new end-to-end architecture for actor-action semantic segmenta-
tion in video that effectively leverages multiple input modalities, contextual
information from video, and joint multitask learning.

– We observe that our approach significantly outperforms prior state-of-the-art
methods on both actor-action segmentation and detection in videos.

– Finally, we demonstrate the generalization capabilities of our network for
stronger zero-shot detection of actor-action pairs over previous work.

2 Related Work

In this section, we discuss related work in instance segmentation from single
images, recent advances on convolutional networks for video analysis and actor-
action semantic segmentation.

2.1 Instance Segmentation

The instance segmentation problem for images has been widely studied with
significant recent advances [21, 16, 17, 4, 5, 8]. Recent progress in this field in-
cludes DeepMask [16] and its following works [17, 4, 5] resort to only instance
segmentation without semantic labels, or predicting semantic labels as a second
stage. Another approach is predicting masks and semantic labels in parallel, as
in Mask R-CNN [8], which is more flexible and straightforward. Although these
approaches focus on static images, they provide a gateway to perform per-frame
semantic segmentation in videos.

Another line of work directly tackles the problem of video object segmenta-
tion [2, 24, 13]. These algorithms generally require access to ground truth mask
annotation in the first frame of test video. In practice, such detailed annotation
is not present in real-world applications at inference time. Furthermore, these
approaches attempt to build object-agnostic algorithms that do not have access
to the object class during training time, and are not capable of predicting object
labels during test time. In this paper, we are interested in performing actor-
action segmentation when no annotations are available at inference time, and in
generating pixel-wise label inference of foreground actors and background pixels.

2.2 3D ConvNets for Action Recognition

A significant amount of research [10, 23, 3, 26, 18, 22, 12] has considered the prob-
lem of action classification in video clips. In that setting, the input is a short video
sequence, and the goal is to provide a single action label for the full clip, typically
focused on human actions. Recent work [23, 3, 26, 18] has focused on leverag-
ing 3D convolutional networks as the core of the action recognition framework.
Recently, Carreira et al. [3] proposed the I3D architecture, which considers a
two-stream network configuration [22, 12] and performs late fusion of the outputs
of individual networks trained on RGB and optical flow input, trained separately.
Other recent works [26, 18] have proposed similar 3D architectures for recognition,
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focusing on improving performance while reducing computation cost. In this
work, while we aim to tackle a more fine-grained and spatially-oriented action
understanding problem, we draw inspiration from these frameworks in our model
design. We elaborate on some of the key architectural advances for our stronger
joint action-actor performance in Section 3.2.

2.3 Actor-Action Semantic Segmentation

The actor-action semantic segmentation problem is first raised by Xu et al. [28],
where they collected the dataset A2D to study the problem and introduced a
trilayer model as a first approach to solve this problem. Following [28], Xu et

al. [27] proposed a Grouping Process Model (GPM) which adaptively groups
segments during inference, and Yan et al. [29] proposed a weakly supervised
method with only video-level tags being used in training. These methods depend
on Conditional Random Fields (CRF) [21] for pixel-level segmentation, and
can be classified as probabilistic graphical model (PGM) approaches. With the
recent success of object detection and instance segmentation using deep neural
networks, Kalogeiton et al. [11] proposed an actor-action detection network on
single frames in video, then applied SharpMask [17] to generate actor-action
semantic segmentation. This approach is one of two-stage refinement, whereby
the main model provides detection boxes which are used in tandem with output
segmentation masks from another method to provide refined outputs.

Our work advances the state-of-the-art in actor-action semantic segmentation.
To the best of our knowledge, our method is the first end-to-end deep model
for this task. In particular, we propose a unified framework to jointly consider
temporal context, actor classification, action recognition, bounding box detection
and pixel level segmentation.

3 Proposed Model

Our goal task is to provide semantic segmentation across the joint actor-action
class space in input video data. To meet the challenges described in section 1,
we hold the following model design philosophy: (1) To be able to decouple actor
and action learning, actor and action classification heads should be separated
and have their own set of parameters. (2) The network should be end-to-end
with knowledge sharing between actor and action understanding, thus we have
actor and action sharing the backbone structure for frame feature extraction. (3)
The temporal context should be utilized for better action recognition, thus we
leverage the short-term and contextual motion cues by 3D convolution layers
and flow input.

We propose to tackle this with an end-to-end deep architecture, as illustrated
in Fig. 2. Our approach takes both RGB and flow video clips as input streams,
leveraging information from both appearance and motion in the video. Our
network simultaneously outputs mask segmentation, and classification for actors
in the branch of pixel-level actor localization, which will be elaborated in Section
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Fig. 2: Overview of our end-to-end architecture for joint actor-action segmentation.
The model takes as input a context window of both RGB and optical flow frames,
and outputs the semantic segmentation for all actor classes of interest jointly with
their actions. Note that in the above example both the bowling ball and the adult are
segmented in the same forward pass - we visualize the FG/BG mask for the adult only
for clarity. See Section 3 for more model details.

3.1. With the actor localization provided, 3D feature maps from RGB and flow
streams are jointly employed to perform action recognition. Details for action
recognition will be found in section 3.2. We share the appearance backbone
parameters and activations between actor and action branches so that they
benefit from each other’s knowledge, and the parameters are jointly optimized
through the end-to-end joint learning of our architecture (Section 3.3).

3.1 Pixel-level Actor Localization

For the sub-task of actor localization, we build upon recent successful architectures
for 2D object detection and semantic segmentation, such as Faster R-CNN [19]
and Mask R-CNN [8]. In particular, we adopt a structure similar to that of Mask
R-CNN to achieve pixel-level actor localization.
Appearance Backbone. Given a RGB input clip, each frame would go through
the appearance backbone first to generate feature maps that will be used for
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next steps. On the one hand, the generated feature maps should be of high-
level abstraction such that they capture the essential concepts of actor, on the
other hand they also maintain the pixel-wise information to be leveraged for
segmentation prediction. Therefore, we choose to use Feature Pyramid Network
(FPN) [14] backbone feature extractor. Here the FPN is composed of a vanilla
ResNet-101 [9] and a top-down architecture with skip connections between
activations of the same resolution. The ResNet-101 is powerful at extracting high-
level features, while the skip connections avoid low-level information being lost.
Note that FPN is fully convolutional, which preserves the spatial correspondence
between the output feature maps and input frames. Rather than outputting
a single feature map for every single frame, the appearance backbone outputs
a pyramid of feature maps, which is composed of feature maps from different
resolution. In our network, we utilize feature maps from 4 different resolutions.
Denote the height and width of input frame as H and W , the resolutions are
(H,W ) devided by 4, 8, 16, 32, respectively. Considering that we are working on
a variety of ‘actors’ from baby and adult to bird and ball, the pyramid feature
maps help detecting actors of different scales.

Region Proposal Network. As in Mask R-CNN, the next step of actor localiza-
tion is done by Region Proposal Network (RPN) [19]. Given the pyramid feature
maps, the RPN generates Region of Interests (RoIs) in the form of bounding
boxes . Feature maps of different resolution will go through the same RPN to
generate a bunch of RoIs, and the final RoIs are the concatenation of all of them.
Note that different from [11], we only use the feature maps output by appearance
model to generate RoIs, while they also use features from motion model. We
found in experiment that RoIs from appearance models are of much higher quality
than those from motion model, thus we stick with RoIs from appearance model
only.

Multitask Heads. With the RoIs generated by RPN, and the pyramid feature
maps of each video frame, an RoIAlign operation [8] is executed to crop and resize
feature map according to RoI bounding boxes. Different from the RoI pooling
operation in [19], RoIAlign fixes the misalignment and unnecessary quantization
in spatial dimensions, and has shown better performance in [8]. An important fact
is that RoIAlign finds the matching resolution of feature map from the pyramid
according to the size of RoI, which enables the network to capture small actors
such as ball and bird. To distinguish with the RoIAlign operation in action part,
we name them RoIAlign-AR and RoIAlign-AN respectively.

The cropped and resized feature patch output by RoIAlign-AR will be fed into
multiple heads to fulfill different sub-tasks. This is in line with the similar setup
in Mask R-CNN. In total, there are three parallel sub-tasks in the pixel-level
actor localization: (1) bounding box regression, (2) actor classification, and (3)
foreground/background segmentation. The bounding box regressor and actor
classifier is composed of fully connected layers operated on flattened feature patch,
while the segmentation head is fully convolutional (conv and deconv layers).
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3.2 Two-stream Action Recognition with Temporal Aggregation

Backbones. For action recognition, different from actor branch, two backbones
are used. On the one hand, the same backbone from appearance model is shared
such that appearance features of the actors also contribute in action understanding.
Besides information from appearance, as shown in [22], motion patterns are also
valuable in action recognition. Therefore we build a mirrored motion backbone
with a separate set of parameters, which takes in flow clips, and extracts motion
patterns from them. These two backbones formulate the two-stream attributes
of our model. Following [22, 3, 7], the input of the flow branch is a tensor of three
channels with the x and y coordinates and the magnitude of flow.
Temporal Aggregation. As we discussed in section 1, one challenge in the
actor-action semantic segmentation in video is how to leverage the temporal
context information for better action recognition. Here we resort to 3D CNN as the
ingredient to achieve temporal aggregation. We apply separate 3D convolutional
layers on the top of the pyramid feature maps output by each backbone to
aggregate the temporal context. The pyramid feature maps from two backbones
are then concatenated at the corresponding resolution, which will be further
employed for action recognition. Specifically, 3× 1× 1 conv layers [18] are applied
to feature maps of every spatial scale, so the information of neighboring frames
are aggregated into 3D pyramid feature maps. We note that we adopt an efficient
“top-heavy” design [26], focusing 3D temporal convolutions on the upper portion
of the network. We demonstrate in section 4.3 that such aggregation of temporal
context is helpful for improved performance.

After temporal 3D conv layers, the 3D pyramid feature maps from each
backbone are concatenated on the corresponding resolution level. As suggested
by [11] for 2D architecture, and corroborated by our own experiments, late fusion
in standard action recognition approaches [22, 3, 7] does not work well when
considering the joint task of actor/action recognition and semantic segmentation.
Therefore we choose to fuse appearance and motion in the mid-level.
Action Classification. With the RoIs provided by actor localization branch,
fused 3D pyramid feature maps go through another RoIAlign-AN layer. The
cropped and resized 3D feature map output by RoIAlign-AN incorporate infor-
mation not only from the local actor, but also temporal context via temporal
layers, and spatial context with proper receptive fields. The rich spatial and
temporal contexts provide sufficient information for pixelwise action recognition
over localized regions.

3.3 Joint Learning of Actors and Actions

Our end-to-end network enables joint learning for actor and action classification
and segmentation. Joint learning all subtasks force the backbone features to
contain necessary information for actor detection, actor classification, action
recognition and actor-action segmentation. We use a multitask loss for parameter
optimization:

L = λ1LRoI−cls + λ2Lbox−reg + λ3Lactor−cls + λ4Laction−cls + λ5Lmask (1)
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where LRoI−cls and Lbox−reg are as defined in [6], and λ’s are hyperparameters.
Actor and action classification losses are the negative log likelihood of the ground
truth class. Denote the set of actor classes as X, the set of action classes as Y ,
the ground truth actor class as x, action class as y, we have:

Lactor−cls = − log pX(x), Laction−cls = − log pY (y). (2)

The mask head generates |X| masks corresponding to every possible actor.
Assuming the ground truth actor class is k, then Lmask will only be computed
on the k-th mask. As in [8], Lmask is defined as the average binary cross-entropy
loss.

Note that the losses are computed respect to frames rather than the whole
video. Together with the temporal layers, our network design and learning setup
are able to train even when some of the context frames have missing annotations,
while still leveraging temporal context to obtain better spatial action recognition
for the joint task.

4 Experiments

Dataset Details. We train and evaluate our model on the Actor-Action (A2D)
dataset [28] for joint actor/action semantic segmentation To the best of our
knowledge, A2D is the largest dataset that covers multiple actor and action
classes and provides pixel-level semantic labels, and is the only joint action-
actor segmentation benchmark for video reported in prior work [28, 27, 11]. This
dataset comprises of 3782 YouTube videos, with sparse pixel-level joint semantic
segmentation annotations and instance bounding boxes over 3-5 frames for each
video. A2D covers 7 actor classes: adult, baby, ball, bird, car, cat, dog, and 9 action
classes: climb, crawl, eat, fly, jump, roll, run, walk, none (no action). We note
that some of the joint classes in the cross products are invalid, e.g. car-eating,
and we exclude them in training and inference, as per prior work.
Implementation Details. We implement our end-to-end architecture in Ten-
sorFlow [1]. For the spatial dimensions of our 3D network, we initialize the
model by leveraging pre-trained weights from Mask R-CNN [8] on MS-COCO
[15]. The ResNet-101 backbone in the optical flow input branch is separately
initialized with pre-trained weights on ImageNet [20], as per prior work [11, 25].
The weights for the temporal convolutions do not leverage pre-trained weights
and are randomly initialized. We use SGD optimizer with learning rate of 2e-4.
Additional details and code are provided in our supplementary.

4.1 Joint Actor-Action Semantic Segmentation

Table 1 shows a comparison of our joint method against prior state-of-the-art
methods. We note that these prior methods leverage external techniques to
generate initial semantic segmentation masks, such as GBH [27] and SharpMask
(SM) [17], before refining them. However, our approach is trained end-to-end to
directly output pixelwise segmentation for both actors and actions.
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Fig. 3: Qualitative results. We visualize the input key frame an d groundtruth (GT)
semantic segmentation masks. The TSMT model + SharpMask (SM) outputs are pro-
vided by the authors of [11]. We qualitatively observe improved actor-action semantic
segmentation performance of our end-to-end model in many casesover the prior work.
Interestingly, we note that in some cases our method provides even more accurate pre-
dictions than the original groundtruth annotations, such as in the top left example with
the adult and cats. See Sec. 4.1 for details and supplementary for video visualizations.
















