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Abstract. Temporal action proposal generation is an important task,
akin to object proposals, temporal action proposals are intended to cap-
ture “clips” or temporal intervals in videos that are likely to contain an
action. Previous methods can be divided to two groups: sliding window
ranking and actionness score grouping. Sliding windows uniformly cover
all segments in videos, but the temporal boundaries are imprecise; group-
ing based method may have more precise boundaries but it may omit
some proposals when the quality of actionness score is low. Based on the
complementary characteristics of these two methods, we propose a novel
Complementary Temporal Action Proposal (CTAP) generator. Specifi-
cally, we apply a Proposal-level Actionness Trustworthiness Estimator
(PATE) on the sliding windows proposals to generate the probabilities
indicating whether the actions can be correctly detected by actionness
scores, the windows with high scores are collected. The collected slid-
ing windows and actionness proposals are then processed by a temporal
convolutional neural network for proposal ranking and boundary ad-
justment. CTAP outperforms state-of-the-art methods on average recall
(AR) by a large margin on THUMOS-14 and ActivityNet 1.3 datasets.
We further apply CTAP as a proposal generation method in an existing
action detector, and show consistent significant improvements.

Keywords: Temporal Action Proposal; Temporal Action Detection

1 Introduction

We focus on the task of generating accurate temporal action proposals in videos;
akin to object proposals for object detection [1], temporal action proposals are
intended to capture “clips” or temporal intervals in videos that are likely to
contain an action. There has been some previous work in this topic and it has
been shown that, as expected and in analogy with object proposals, quality of
temporal action proposals has a direct influence on the action detection per-
formance [2,3]. High quality action proposals should reach high Average Recall
(AR) with as few number of retrieved proposals as possible.

The existing action proposal generation methods can be considered to be-
long to two main types. The first type is sliding-window based, which takes clips

* indicates equal contribution. Code is in http://www.github.com/jiyanggao/CTAP.
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Fig. 1. The architectures of three baseline methods are shown: (1) SW+R&A: sliding
windows are processed by a model for proposal ranking and boundary adjustment,
e.g. TURNJ[2], SCNN [3]; (2) TAG: TAG [4] generate proposals based on unit-level
actionness; (3) TAG+R&A: actionness proposals are processed with proposal ranking
and boundary adjustment.

from sliding windows as input, and outputs scores for proposals. SCNN-prop [3]
is a representative of this type; it applies a binary classifier to rank the sliding
windows. TURN [2] adopts temporal regression in additional to binary classifi-
cation to adjust the boundary of sliding windows. The architecture of this type is
outlined as “SW-R&A” in Fig. 1. Sliding windows uniformly cover all segments
in the videos (thus cover every ground truth segment), however the drawback is
that the temporal boundaries are imprecise, in spite of the use of boundary ad-
justment, and thus high AR is reached at large number of retrieved of proposals,
as shown in circle A in Fig. 1.

The second type of action proposal generation methods can be summarized
as actionness score based. It applies binary classification on a finer level, i.e.,
unit or snippet (a few contiguous frames) level, to generate actionness scores for
each unit. A Temporal Action Grouping (TAG) [4] technique, derived from the
watershed algorithm [5], is designed to group continuous high-score regions as
proposals. Each proposal’s score is calculated as the average of its unit actionness
scores. The structure is shown as “TAG” in Fig. 1. This type of method generates
high precision boundaries, as long as the quality of actionness scores is high.
However, the actionness scores have two common failure cases: having high scores
at background segments, and having low scores at action segments. The former
case leads to generation of wrong proposals, while the latter case may omit some
correct proposals. These lead to the upper bound of AR performance limited at
a low value (circle B in Fig. 1).

Based on the above analysis, ranking-sliding-window and grouping-actionness-
score methods have two complementary properties: (1) The boundaries from
actionness-based proposals are more precise as they are predicted on a finer
level, and window-level ranking could be more discriminative as it takes more
global contextual information; (2) actionness-based methods may omit some
correct proposals when quality of actionness scores is low, sliding windows can



CTAP: Complementary Temporal Action Proposal Generation 3

uniformly cover all segments in the videos. Adopting the first complementary
characteristic helps to resolve the first failure case of actionness proposals (i.e.,
generating wrong proposals). As shown in Fig. 1, a window-level classifier is ap-
plied after TAG to adjust boundaries and rank the proposals, which corresponds
to model “TAG+R&A”. Such combination has higher AR at low number of re-
trieved proposals compared to the sliding-window-based method (circle C in
Fig. 1). However, it still fails to solve the second failure case, when actionness
scores are low at true action segments, TAG is unable to generate these pro-
posal candidates. This results in the limited performance upper bound as shown
in circle B, Fig. 1. To address this, we further explore the complementary char-
acteristics, and propose to adaptively select sliding windows to fill the omitted
ones in actionness proposals.

We propose a novel Complementary Temporal Action Proposal (CTAP) gen-
erator consisting of three modules. The first module is an initial proposal gen-
erator, which outputs actionness proposals and sliding-window proposals. The
second module is a proposal complementary filter collects missing correct ones
from sliding windows (addressing the second failure case of actionness score).
Specifically, the complementary filter applies a binary classifier on the initial
proposals to generate the probabilities indicating whether the proposals can be
detected by actionness and TAG correctly, this classifier is called proposal-level
actionness trustworthiness estimator. The third module ranks the proposals and
adjusts the temporal boundaries. Specifically, we design a temporal convolutional
neural network, rather than simple temporal mean pooling used in TURN [2],
to preserve the temporal ordering information.

We evaluated the proposed method on THUMOS-14 and ActivityNet v1.3;
experiments show that our method outperforms state-of-the-art methods by a
large margin for action proposal generation. We further apply the generated
temporal proposals on the action detection task with a standard detector, and
show significant performance improvements consistently.

In summary, our contribution are three-fold: (1) We proposed a novel Com-
plementary Temporal Action Proposal (CTAP) generator which uses the comple-
mentary characteristics of actionness proposals and sliding windows to generate
high quality proposals. (2) We designed a new boundary adjustment and pro-
posal ranking network with temporal convolution which can effectively save the
ordering information on the proposal boundaries. (3) We evaluated our method
on two large scale datasets (THUMOS-14 and ActivityNet v1.3) and our model
outperforms state-of-the-art methods by a large margin.

2 Related Work

In this section, we introduce the related work, which includes temporal action
proposal, temporal action detection and online action detection.

Temporal Action Proposal. Temporal action proposal generation has
been shown to be an effective step in action detection, and could be useful for
many high level video understanding tasks [3,6,7]. Two types of methods have
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been proposed, the first type of methods formulates it as a binary classification
problem on sliding windows. Among them, Sparse-prop [3] uses STIPs [9] and
dictionary learning for proposal generation. SCNN-prop [3] is based on train-
ing C3D [10] network for binary classification task. TURN [2] cuts the videos
to units, and reuse unit-level features for proposals, which improves computa-
tional efficiency. TURN [2] also proposes to apply temporal regression to adjust
the action boundaries which improves the AR performance. The performance of
this type of methods is limited by the imprecise temporal boundaries of sliding
windows. The second type of method is based on snippet level actionness score
and apply Temporal Action Grouping (TAG) [4] method on the score sequence
to group continuous high-score region as proposal. However, TAG may omit the
correct proposals when the quality of actionness scores is low. Besides, DAPs [11]
and SST [12] are online proposal generators, which could run over the video in
a single pass, without the use of overlapping temporal sliding windows.

Temporal Action Detection. This task [3,13,14,15] focuses on predict-
ing the action categories, and also the start/end times of the action instances
in untrimmed videos. S-CNN [3] presents a two-stage action detection model,
which first generates proposals and then classifies the proposals. Lin et al. pro-
pose a Single Shot Action Detector (SSAD) [16], which skips the proposal gen-
eration step and directly detects action instances in untrimmed video. Gao et
al. [6] design a Cascaded Boundary Regression (CBR) network to refine the
action boundaries iteratively. SSN [4] presents a mechanism to model the tem-
poral structures of activities, and thus the capability of discriminating between
complete and incomplete proposals for precisely detecting actions. R-C3D [17]
designs a 3D fully convolutional network, which generates candidate tempo-
ral regions and classifies selected regions into specific activities in a two-stage
manner. Yuan et al. [18] propose to localize actions by searching for the struc-
tured maximal sum of frame-wise classification scores. Shou et al. [19] design a
Convolutional-De-Convolutional (CDC) operation that makes dense predictions
at a fine granularity in time to determine precise temporal boundaries. Dai et
al. [20] propose a temporal context network, which adopts a similar architecture
to Faster-RCNN [1], for temporal action detection. Beyond the fixed category
action detection, TALL [21] proposes to use natural language as the query to
detect the target actions in videos.

Online action detection [22,23,24] is different from temporal action detection
that the whole video is not available at detection time, thus it needs the system
to detect actions on the fly. Geest et al. [22] built a dataset for online action
detection, which consists of 16 hours (27 episodes) of TV series with temporal
annotation for 30 action categories. Gao et al. [23] propose a Reinforced Encoder
Decoder (RED) network for online action detection and action anticipation.

3 Complementary Temporal Action Proposal Generator

In this section, we present the details of the Complementary Temporal Action
Proposal (CTAP) generator. There are three stages in the pipeline of CTAP.
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Fig. 2. The architecture of Complementary Temporal Action Proposal (CTAP) gen-
erator. “BA” is short for boundary adjustment, “PR” is short for proposal ranking,
“ppl” is short for proposal and “bdy” is short for boundary.

The first stage is to generate initial proposals, which come from two sources, one
is actionness score and TAG [4], the other is sliding windows. The second stage
is complementary filtering. As we discussed before, TAG omits some correct
proposals when the quality of actionness score is low (i.e. low actionness score
on action segments), but sliding windows uniformly cover all segments in videos.
Thus, we design a complementary filter to collect high quality complementary
proposals from sliding windows to fill the omitted actionness proposals. The
third stage is boundary adjustment and proposal ranking, which is composed of
a temporal convolutional neural network.

3.1 Initial Proposal Generation

In this part, we first introduce video pre-processing, then present the action-
ness score generation, temporal grouping process and sliding window sampling
strategy.

Video pre-processing. Following previous work [2], a long untrimmed video
is first cut into video units or snippets, each unit contains n,, continuous frames.
A video unit u is processed by a visual encoder E, to extract the unit-level rep-
resentation x,, = E,(u) € R%. In our experiments, we use the two-stream CNN
model [25,26] as the visual encoder, details are given in Sec 4.2. Consequently,
a long video is converted to a sequence of unit-level features, which are used as
basic processing units later.

Actionness score. Based on unit-level features, we train a binary classifier
to generate actionness score for each unit. Specifically, we design a two-layer
temporal convolutional neural network, which takes a t, continuous unit features
as input, x € R**%sand outputs a probability for each unit indicating whether
it is background or action, p, € Rf«.

Pz = 0(teonv (X)), Leonv(x) = F(p(F(x; W1)); W) 1)

where F(.; W) denotes a temporal convolution operator, W is the weight of its
convolution kernel. In this network, Wy € RésXdmxkxk YW, ¢ Rdmx1xkxk (k is
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the kernel size) are training parameters. ¢(.) is an non-linear activation function,
o(.) is a sigmoid function.

After generating the probability p, for each continuous unit features x, the
loss is calculated as the cross-entropy for each input sample within the batch:

N
Lot = =3¢ 3 [y] 1oa(pe)) + (1~ y)) T log(1 — p,)] @

i=1

where y; € R is a binary sequence for each input z; indicating whether each
unit in z; contains action (label 1) or not (label 0). N is the batch size.

Actionness proposal generation strategy. We follow [4] and implement
a watershed algorithm [5] to segment 1-D sequence signals. Given each unit’s
actionness score, raw proposals are generated whose units all have scores larger
than a threshold 7. For some neighbor raw proposals, if the time during ration
(i.e., maximum end time minus minimum start time among these raw proposals)
is larger than a ratio n of the whole video length, we group them as a proposal
candidate. We iterate all possible combinations of 7 and 7 to generate proposal
candidates and apply non-maximum suppression (NMS) to eliminate redundant
proposals. The output actionness proposals are denoted as {b; }.

Sliding window sampling strategy. Unlike actionness proposals which
depend on actionness score distribution, sliding windows can uniformly cover all
segments in the videos. The goal is to maximum the match with groundtruth
segments (high recall), meanwhile maintaining the number of sliding windows as
low as possible. In our experiments, different combinations of window size and
overlap ratio are tested on validation set. The sliding windows are denoted as
{ax}. Detail setting is given in Sec 4.2.

3.2 Proposal Complementary Filtering

As discussed before, actionness proposals could be more precise but less stable,
but sliding windows are more stable but less precise. The goal of second stage is to
collect proposals, that could be omitted by TAG, from sliding windows. The core
of this stage is a binary classifier, whose input is a sequence of unit features (i.e.
a proposal), and output is the probability that indicates whether this proposal
can be correctly detected by the unit-level actionness scores and TAG. This
classifier is called Proposal-level Actionness Trustworthiness Estimator (PATE).

PATE training. The training samples are collected as follows: Given a
video, the groundtruth segments {g;} are matched with actionness proposals
{b;}. For a groundtruth segment g;, if there exists an actionness proposal b,
that has temporal Intersection over Union (tIoU) with g; larger than a threshold
0., then we label g; as a positive sample (y; = 1); if no such b; exists, then
gi is labelled as a negative sample (y; = 0). The unit level features inside g;
are mean pooled to a single proposal-level feature x4, € R? . PATE outputs
trustworthiness scores indicating the probabilities that whether the proposals
can be correctly detected by actionness scores and TAG:

s; = 0 (Wa(p(Wsxg, +b3)) + by) (3)
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where W3 € R4 *dm W, € R¥m*X1 by € R% b, € R are training parameters.
Other notations are similar to Eq. 1. The network is trained by a standard
cross-entropy loss over training samples from each batch (IV is the batch size).

N
Lyate = = S i log(50) + (1= 1) log(1 = 5,)] @

i=1

Complementary filtering. In test stage, we apply the trustworthiness es-
timator to every proposal from sliding windows {aj}. For an input proposal,
the trustworthiness score p; tells us that “how well the actionness scores are
trustworthy on the video content from this proposal”. For a sliding window a,
if p¢(ay) is lower than a threshold 6, (means TAG may fail on this segment),
this sliding window is collected. The collected proposals from sliding windows
and all actionness proposals are denoted as {¢,, }, and are sent to the next stage,
which ranks the proposals and adjusts the temporal boundaries. We call this
process as complementary filtering and the name derives from somewhat similar
processes used in estimation theory !.

3.3 Proposal Ranking and Boundary Adjustment

The third stage of CTAP is to rank the proposals and adjust the temporal
boundaries. TURN [2] does this also, however it uses mean-pooling to aggregate
temporal features, which losses the temporal ordering information. Instead, we
design a Temporal convolutional Adjustment and Ranking (TAR) network which
use temporal conv layers to aggregate the unit-level features.

TAR Architecture. Suppose that the start and end units (i.e. temporal
boundary) of an input proposal ¢, are us, u., we uniformly sample n.y unit-
level features inside the proposal, called proposal units x. € Rt >4 We sam-
ple net, unit features at the start and end boundaries respectively, which are
[ts — Neta /2, Us + Netr /2] and [ue — Netn /2, Ue + Ntz /2], called boundary units
(denoted as x, € Rt=*ds x, € R"t=*ds) Boundary units and proposal units
are illustrated in Fig. 2. These three feature sequences (one sequence for proposal
units and two sequences for boundary units) are input to three independent sub-
networks. The proposal ranking sub-network outputs probability of action, the
boundary adjustment sub-network outputs regression offsets. Each sub-network
contains two temporal convolutional layers. which can be represented as:

0s = teonw (Xs)a DPec = U(tconv (XC))7 0¢ = teonw (Xe) (5)

where oy, 0., p. denote the offsets prediction for start and end boundaries and the
action probability for each proposal respectively. Other notations are the same
in Eq. 1. Similar to TURN [2], we use non-parameterized regression offsets. The

! The original use of complementary filtering is to estimate a signal given two noisy
measurements, where one of the noise is mostly high-frequency (maybe precise but
not stable) and the other noise is mostly low-frequency (stable but not precise).
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final score for a proposal aj from sliding windows is multiplied by the PATE
score (pi(ag) - pe(ag)). The actionness proposals use p.(ay) as the final score.

TAR Training. To collect training samples, we use dense sliding windows
to match with groundtruth action segments. A sliding window is assigned to
a groundtruth segments if: (1) it has the highest tIoU overlaps with a certain
groundtruth segment among all other windows; or (2) it has tIoU larger than
0.5 with any one of the groundtruth segments. We use the standard Softmax
cross-entropy loss to train proposal ranking sub-network and the L1 distance
loss for boundary adjustment sub-network. Specifically, the regression loss can
be expressed as,

N,
1 - * * *
Lreg = N Z l; (Jos,i — Os,i| + 0e,i — Oe,z‘D (6)
i=1

pos

where o, ; is the predicted start offset, o, ; is the predicted end offset, of ; is the

groundtruth start offset, of ; is the groundtruth end offset. [j is the labél, 1 for
positive samples and 0 for background samples. Ny, is the number of positive
samples in a mini-batch, as the regression loss is calculated only for positive
samples. Similar to Eq. 4, a cross entropy objective is calculated to guide the

learning of prediction score p. for each proposal.

4 Experiments

We evaluate CTAP on THUMOS-14 [27] and ActivityNet v1.3 [28] datasets
respectively.

4.1 Datasets

THUMOS-14 contains 1010 and 1574 videos for validation and testing pur-
poses from 20 sport classes. Among them, there are 200 and 212 videos are
labeled with temporal information in validation and test set respectively. Fol-
lowing the settings of previous work [2,3], we train our model on the validation
set and conduct evaluation on the test set.

ActivityNet v1.3 consists of 19,994 videos collected from YouTube labeled
in 200 classes. The whole dataset is divided into three disjoint splits: training,
validation and test, with a ration of 50%, 25%, 25%, respectively. Since the
annotation of the test split is not publicly available for competition purpose, we
compare and report performances of different models on the validation set.

4.2 Experiment Setup

Unit-level feature extraction. We use the twostream model [20] as the vi-
sual encoder F, that is pre-trained on ActivityNet v1.3 training set. In each
unit, the central frame is sampled to calculate the appearance CNN feature, it
is the output of Flatten_673 layer in ResNet [29]. For the motion feature, we
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sample 6 consecutive frames at the center of a unit and calculate optical flows be-
tween them; these flows are then fed into the pretrained BN-Inception model [30)]
and the output of global pool layer is extracted. The motion features and
the appearance features are both 2048-dimensional, and are concatenated into
4096-dimensional vectors (dy = 4096), which are used as unit-level features. On
THUMOS-14, we test our model with two settings of unit features Flow-16 and
Twostream-6. Flow-16 only uses denseflow CNN features, and the unit size is set
to 16, which is the same as [2](n, = 16), Twostream-6 use two-stream features
and unit size is 6 (n, = 6). On ActivityNet v1.3, two-stream features are used
and unit size is 16 (Twostream-16, n, = 16).

Sliding window sampling strategy. We follow TURN [2] and adopt propos-
als’ length set of {16, 32, 64, 128, 256, 512} with tIOU of 0.75, which achieves
the optimal results. On ActivityNet v1.3, we adopt proposals’ length set of {64,
128, 256, 512, 768, 1024, 1536, 2048, 2560, 3072, 3584, 4096, 6144} with tIOU
= 0.75, which achieves the reported best performance in the submission.

Actionness score generation. We set the kernel size for each temporal convo-
lution as 3 (k = 3). The stride for temporal convolution is 1. We choose rectified
linear unit (ReLU) as the non-linear activation function ¢. The first temporal
convolution output dimension d,, = 1024. t, is set to be 4. Batch size is 128,
learning rate is 0.005, and the model is trained for about 10 epochs.

TAG algorithm. Following the setting of [4], we set the initial value of 7 as
0.085. To enumerate all possible combinations of (7,7), we first iterate 7 in the
range of [0.085,1) with a step of 0.085. In each iteration, we further iterate 7 in
the range of [0.025, 1] with a step of 0.025. The threshold of NMS is set as 0.95
to eliminate redundant proposals.

PATE setting. We set the first fully-connected layer’s output dimension d,,, =
1024. 6, is set to be 0.1 on THUMOS-14 and ActivityNet v1.3. Batch size is 128
and learning rate is 0.005. PATE is trained for about 10 epochs.

TAR setting. On THUMOS-14, we uniformly sample 8 unit features inside each
proposal (n.y = 4), and 4 unit features as context (nq, = 4). On ActivityNet
v1.3, we set ney = 8 and ng, = 4. dyy, is set to 1024. TAR is optimized using
Adam algorithm [31]. Batch size is 128 and learning rate is 0.005. TAR is trained
for 10 epoches on THUMOS-14 and 4 epoches on ActivityNet v1.3.
Evaluation Metrics. For temporal action proposal generation task, Average
Recall (AR) is usually used as evaluation metrics. Following previous work, we
use IoU thresholds set from 0.5 to 1.0 with a step of 0.05 on THUMOS-14
and 0.5 to 0.95 with a step of 0.05 on ActivityNet v1.3. We draw the curve
of AR with different Average Number(AN) of retrieved proposals to evaluate
the relationship between recall and proposal number, which is called AR-AN
curve. On ActivityNet v1.3, we also use area under the AR-AN curve (AUC) as
metrics, where AN varies from 0 to 100. For the evaluation of temporal action
detection, we follow the traditional mean Average Precision (mAP) metric used
in THUMOS-14. A prediction is regarded as positive only when it has correct
category prediction and tIoU with ground truth higher than a threshold. We use
the official toolkit of THUMOS-14.
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4.3 Evaluation on THUMOS-14

In this part, we evaluate our method on THUMOS-14 dataset. First, we compare
our proposal ranking and boundary adjustment module TAR with TURN [2].
Second, we evaluate the effectiveness of PATE and the proposal complementary
filtering module. Third, we compare our full model with state-of-the-art methods,
and finally we apply our proposals on action detection task to verify the its
performance advantage.

Table 1. Performance comparison between TAR and TURN [2] on THUMOS-14 test
set. Same unit feature (flow-16) and test sliding windows are used on TAR and TURN
for fair comparison. Average Recall (AR) at different numbers is reported.

Method | AR@50 AR@100 AR@200

TURN[2] | 21.75  31.84  42.96
TAR 22.99 32.21  45.08

TAR vs TURN [2]. As we presented before, TURN [2] uses temporal mean
pooling to aggregate features, it losses temporal ordering information, which
could be important for boundary adjustment. TAR uses temporal convolution
to extract temporal information from unit features, and adopts independent sub-
networks for proposal ranking and boundary adjustment. To fairly compare with
TURN, we use flow-16 features, and the same test sliding window settings as
TURN. As shown in Table 1, we can see that, at AN=50, 100 and 200, TAR
outperforms TURN at all these points, which shows the effectiveness of TAR.

Complementary filtering. Besides using PATE in the proposal complemen-
tary filtering, we design three baseline methods to combine the sliding win-
dows and actionness proposals. The first method is a simple “union”; in which
we simply put all actionness proposals and all sliding windows together, and
send them into TAR module for ranking and adjustment. The second method
is “union” +NMS, in which we apply NMS to filter the duplicate proposals from
the union set; the threshold of NMS is set to 0.7, which achieves the best per-
formance among {0.5,0.7,0.9}. The third method is tIoU-based: all actionness
proposals are selected; we calculate the tloU between the sliding windows and

Table 2. Complementary filtering evaluation on THUMOS-14 test set, compared with
“Union” and “tIoU-selection”. Average Recall (AR) at different numbers is reported.

Method | AR@50 AR@100 AR@200
Union 25.80  34.70  46.19
Union+NMS 28.07  39.71  49.60
tIoU-selection 30.35 38.34 42.41

PATE complementary filtering | 31.03  40.23 50.13
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Fig. 3. AR-AN curves of the complementary results with flow-16 feature (F16) and two-
stream-6 feature (TS6). Complementary filtering proposals outperform sliding windows
(SW+TAR) and actionness proposals (TAG+TAR) consistently.

actionness proposals, if there exists a sliding window whose highest tloU with
all actionness proposals is lower than 0.5, then it is selected. We use flow-16 unit
features and the same test sliding windows in “TAR vs TURN” experiments.
The results are shown in Table 2. We can see that, complementary filtering
achieves the best AR on every AN (50, 100 and 200). The performance of “Union”
suffers at low AN, but is higher than “tIoU-selection” at AN=200. We believe
the reason is that simple union method adds too many low quality proposals
from sliding windows. Union+NMS improves the performance, however due to
the lack of priority of TAG and SW proposals, NMS may select an inaccurate
SW proposal with a higher score instead of an accurate TAG proposal with a
lower score. In contrast, PATE tries to preserve such priority and focuses on
picking out the sliding window proposals that TAG may fail on. tloU-selection
also suffers, as it eliminates some high quality windows simply based on the
tloU threshold. Complementary filtering dynamically generates trustworthiness
scores on different windows, which make the selection process more effective.
We also show the AR performance of two sources, actionness proposals and
sliding windows, in Fig. 3. Both flow-16 (F16) feature and twostream-6 (TS6)
feature are illustrated. It can be seen that the performance of complementary
proposals is higher than that of actionness proposals (TAG+TAR) and sliding
windows (SW+TAR) at every AN consistently, which shows that our method
can effectively select high quality complementary proposals from sliding windows
to fill the omitted ones in actionness proposals.

Comparison with state-of-the-art methods. We compare our full model
with state-of-the-art methods on THUMOS-14 dataset by the Average recall
on average number of proposals (AR-AN) curve and recall@100-tIoU curve, as
shown in Fig. 4. It can be seen that our model outperforms the state-of-the-art
model by a large margin on both curves. Specifically, for AR@100, the perfor-
mance of CTAP is around 43%, while the state-of-the-art method TURN [2]
only achieves about 32%.
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Fig. 4. AN-AR curve and recall@QAN=100 curve of CTAP and state-of-the-art methods
on THUMOS-14 test set.

Table 3. Comparison of CTAP and other proposal generation methods with the same
action detector (SCNN) on THUMOS-14 test set, mean Average Precision (mAP %
@tIoU=0.5) is reported.

Method | Sparse [8] DAPs [11] SCNN-prop[3] TURN [2] TAG[4] | CTAP-F16 CTAP-TS6
tIoU=0.5 ‘ 15.3 16.3 19.0 25.6 25.9 ‘ 27.9 29.9

CTAP for Temporal action detection. To verify the quality of our propos-
als, we feed CTAP proposals into SCNN [3], and compare with other proposal
generation methods on the same action detector (SCNN). The results are shown
in Table 3. We can see that our CTAP-TS6 achieves the best performance, and
outperforms the state-of-the-art proposal method TURN [2] and TAG [1] by
over 4%, which proves the effectiveness of the proposed method.

4.4 Evaluation on ActivityNet v1.3

Evaluation of TAR. To show the effectiveness of TAR, we report the AR@100
values and area under AR-AN curve for different models in Table 4. For sliding
window proposals, we observe that TAR’s prediction (SW-TAR) achieves 18.29%
and 6.86% improvement in AR@100 and AUC compared to those of TURN [2]

Table 4. Evaluation of TURN [2], TAR, MSAR [32], Prop-SSAD [33] and CTAP on
ActivityNet v1.3 validation set. AR@Q100 and AUC of AR-AN curve are reported. (The
AR@100 of MSRA [32] is not available.)

SW- TAG- | SW- TAG- | MSRA  Prop
Method ‘ TURN [J] TURN [1]‘ TAR TAR | [37]  SSAD [33] | OTAY
AR@100 | 49.73 6346 | 68.02 6401 | - 73.01 | 73.17
AUC 54.16 53.92 61.02 64.62 63.12 64.40 65.72
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Fig. 5. Visualization of temporal action proposals generated by CTAP. First two rows
represent 4 temporal action proposals from 2 videos in THUMOS-14. Last two rows
represent 4 temporal action proposals from 2 videos in ActivityNet v1.3.

(SW-TURN). The results show that TAR is more effective in temporal boundary
adjustment and proposal ranking. For actionness proposals, we observe that TAR
achieves 10.70% increase compared to TURN [2] on AUC.

Evaluation of PATE. Based on TAR, we further explore the function of PATE
complementary filtering. We evaluate three different models: (1) sliding window
proposals with TAR (SW-TAR) (2) actioness proposals with TAR (TAG-TAR)
(3) PATE Complementary proposals with TAR (our full model, CTAP). Differ-
ent models’ performances of AR@Q100 and AUC are reported in Table 4. CTAP
achieves consistently better performance of AR@Q100 and AUC compared to SW-
TAR and TAG-TAR, which shows its advantage of selecting complementary
proposals from sliding windows to fill the omitted ones in actionness proposals.
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Table 5. Generalization evaluation of CTAP on Activity Net v1.3 (validation set) in
terms of AR@100 and AR-AN under curve area.

Seen (100 classes) Unseen (100 classes)

AR@100 74.06 72.51
AR-AN 66.01 64.92

Comparison with state-of-the-art methods. CTAP is compared with state-
of-the-art methods on ActivityNet v1.3 validation set by the Average Recall at
top 100 ranked proposals (AR@100) and area under AR-AN curve (AUC). In
Table 4, we find CTAP achieves 2.60% and 1.32% increase in AR@100 compared
with state-of-the-art methods MSRA [32] and Prop-SSAD [33] respectively.
Generalization ability of proposals. We evaluate the generalization ability
of CTAP on ActivityNet v1.3 validation set. Following the setting of [34], we
evaluate the AR@100 and AR-AN under curve area (AUC) for 100 seen classes
and unseen classes respectively. In Table 5, we observe that CTAP achieves
better performance on 100 seen classes. On unseen 100 classes, there is only a
slight drop in AR@100 and AUC, which shows the generalizability of CTAP.

4.5 Qualitative Results

We further visualize some temporal action proposals generated by CTAP. As
shown in Fig. 5, CTAP is able to select most suitable initial proposals from ac-
tionness proposals or sliding windows, and then adjust their temporal boundaries
more precisely.

5 Conclusion

Previous methods for temporal action proposal generation can be divided to two
groups: sliding window ranking and actionness score grouping, which are comple-
mentary to each other: sliding windows uniformly cover all segments in videos,
but the temporal boundaries are imprecise; actionness score based method may
have more precise boundaries but it may omit some proposals when the qual-
ity of actioness scores is low. We propose a novel Complementary Temporal
Action Proposal (CTAP) generator, which could collect high quality comple-
mentary proposals from sliding windows and actionness proposals. A temporal
convolutional network for proposal ranking and boundary adjustment is also de-
signed. CTAP outperforms state-of-the-art methods by a large margin on both
THUMOS-14 and ActivityNet 1.3 datasets. Further experiments on action de-
tection show consistent large performance improvements.
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