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Abstract. We propose a novel discrete Fourier transform-based pooling
layer for convolutional neural networks. The DFT magnitude pooling
replaces the traditional max/average pooling layer between the convo-
lution and fully-connected layers to retain translation invariance and
shape preserving (aware of shape difference) properties based on the
shift theorem of the Fourier transform. Thanks to the ability to handle
image misalignment while keeping important structural information in
the pooling stage, the DFT magnitude pooling improves the classifica-
tion accuracy significantly. In addition, we propose the DFT+ method
for ensemble networks using the middle convolution layer outputs. The
proposed methods are extensively evaluated on various classification tasks
using the ImageNet, CUB 2010-2011, MIT Indoors, Caltech 101, FMD
and DTD datasets. The AlexNet, VGG-VD 16, Inception-v3, and ResNet
are used as the base networks, upon which DFT and DFT+ methods
are implemented. Experimental results show that the proposed methods
improve the classification performance in all networks and datasets.

1 Introduction

Convolutional neural networks (CNNs) have been widely used in numerous vision
tasks. In these networks, the input image is first filtered with multiple convolution
layers sequentially, which give high responses at distinguished and salient patterns.
Numerous CNNs, e.g., AlexNet [1] and VGG-VD [2], feed the convolution results
directly to the fully-connected (FC) layers for classification with the soft-max
layer. These fully-connected layers do not discard any information and encode
shape/spatial information of the input activation feature map. However, the
convolution responses are not only determined by the image content, but also
affected by the location, size, and orientation of the target object in the image.

To address this misalignment problem, recently several CNN models, e.g.,
GoogleNet [3], ResNet [4], and Inception [5], use an average pooling layer. The
structure of these models is shown in the top two rows of Fig. 1. It is placed
between the convolution and fully-connected layers to convert the multi-channel
2D response maps into a 1D feature vector by averaging the convolution outputs
in each channel. The channel-wise averaging disregard the location of activated
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Fig. 1: Feature maps at the last layers of CNNs. Top two rows: conventional
layouts, without and with average pooling. Bottom two rows: the proposed DFT
magnitude pooling. The DFT applies the channel-wise transformation to the
input feature map and uses the magnitudes for next fully-connected layer. Note
that the top-left cell in the DFT magnitude is the same as the average value since
the first element in DFT is the average magnitude of signals. Here C denotes the
number of channels of the feature map.

neurons in the input feature map. While the model becomes less sensitive to
misalignment, the shapes and spatial distributions of the convolution outputs
are not passed to the fully-connected layers.

Fig. 2 shows an example of the translation invariance and shape preserving
and properties in CNNs. For CNNs without average pooling, the FC layers
give all different outputs for the different shaped and the translated input with
same number of activations (topmost row). When an average pooling layer is
used, the translation in the input is ignored, but it cannot distinguish different
patterns with the same amount of activations (second row). Either without or
with average pooling, the translation invariance and shape preserving properties
are not simultaneously preserved.

Ideally, the pooling layer should be able to handle such image misalignments
and retain the prominent signal distribution from the convolution layers. Although
it may seem that these two properties are incompatible, we show that the proposed
novel DFT magnitude pooling retains both properties and consequently improves
classification performance significantly. The shift theorem of Fourier transform [6]
shows that the magnitude of Fourier coefficients of two signals are identical if
their amplitude and frequency (shape) are identical, regardless of the phase shift
(translation). In DFT magnitude pooling, 2D-DFT (discrete Fourier transform)
is applied to each channel of the input feature map, and the magnitudes are
used as the input to the fully-connected layer (bottom rows of Fig. 1). Further
by discarding the high-frequency coefficients, it is possible to maintain the
crucial shape information, minimize the effect of noise, and reduce the number
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Fig. 2: Comparison of DFT magnitude with and without average pooling. The
middle row shows the feature maps of the convolution layers, where all three
have the same amount of activations, and the first two are same shape but in
different positions. The output of the fully-connected layer directly connected to
this input will output different values for all three inputs, failing to catch the first
two have the same shape. Adding an average pooling in-between makes all three
outputs same, and thus it achieves translation invariance but fails to distinguish
the last from the first two. On the other hand, the proposed pooling outputs the
magnitudes of DFT, and thus the translation in the input patterns is effectively
ignored and the output varies according to the input shapes.

of parameters in the following fully-connected layer. It is worth noting that the
average pooling response is same as the first coefficient of DFT (DC part). Thus
the DFT magnitude is a superset of the average pooling response, and it can be
as expressive as direct linking to FC layers if all coefficients are used.

For the further performance boost, we propose the DFT+ method which
ensembles the response from the middle convolution layers. The output size of a
middle layer is much larger than that of the last convolution layer, but the DFT
can select significant Fourier coefficients only to match to the similar resolution
of the final output.
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To evaluate the performance of the proposed algorithms, we conduct extensive
experiments with various benchmark databases and base networks. We show that
DFT and DFT+ methods consistently and significantly improve the state-of-the-
art baseline algorithms in different types of classification tasks.

We make the following contributions in this work:

(i) We propose a novel DFT magnitude pooling based on the 2D shift theorem
of Fourier transform. It retains both translation invariant and shape pre-
serving properties which are not simultaneously satisfied in the conventional
approaches. Thus the DFT magnitude is more robust to image mis-alignment
as well as noise, and it supersedes the average pooling as its output contains
more information.

(ii) We suggest the DFT+ method, which is an ensemble scheme of the middle
convolution layers. As the output feature size can be adjusted by trimming
high-frequency parts in the DFT, it is useful in handling higher resolution
of middle-level outputs, and also helpful in reducing the parameters in the
following layers.

(iii) Extensive experiments using various benchmark datasets (ImageNet, CUB,
MIT Indoors, Caltech 101, FMD and DTD) and numerous base CNNs
(AlexNet, VGG-VD, Inception-v3, and ResNet) show that the DFT and
DFT+ methods significantly improve classification accuracy in all settings.

2 Related Work

One of the most widely used applications of CNNs is the object recognition
task [1,2,3,4,5] on the ImageNet dataset. Inspired by the success, CNNs have
been applied to other recognition tasks such as scene [7,8] and fine-grained object
recognition [9,10,11], as well as other tasks like object detection [12,13,14], and
image segmentation [15,16,17]. We discuss the important operations of these
CNNs and put this work in proper context.

2.1 Transformation Invariant Pooling

In addition to rich hierarchical feature representations, one of the reasons for
the success of CNN is the robustness to certain object deformations. For further
robustness over misalignment and deformations, one may choose to first find the
target location in an image and focus on those regions only. For example, in the
faster R-CNN [13] model, the region proposal network evaluates sliding windows
in the activation map to compute the probability of the target location. While it
is able to deal with uncertain object positions and outlier background regions, this
approach entails high computational load. Furthermore, even with good object
proposals, it is difficult to handle the misalignment in real images effectively by
pre-processing steps such as image warping. Instead, numerous methods have
been developed to account for spatial variations within the networks.
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The max or average pooling layers are developed for such purpose [5,4,18].
Both pooling layers reduce a 2D input feature map in each channel into a scalar
value by taking the average or max value.

Another approach to achieve translation invariance is orderless pooling, which
generates a feature vector insensitive to activation positions in the input feature
map. Gong et al. [19] propose the multi-scale orderless pooling method for image
classification. Cimpoi et al. [20] develop an orderless pooling method by applying
the Fisher vector [21] to the last convolution layer output. Bilinear pooling [9] is
proposed to encode orderless features by outer-product operation on a feature
map. The α-pooling method for fine-grained object recognition by Simon et

al. [22] combines average and bi-linear pooling schemes to form orderless features.
Matrix backpropagation [23] is proposed to train entire layers of a neural network
based on higher order pooling. Gao et al. [24] suggest compact bilinear pooling
that reduce dimensionality of conventional bilinear pooling. Kernel pooling [25]
is proposed to encode higher order information by fast Fourier transform method.
While the above methods have been demonstrated to be effective, the shape
information preserving and translation invariant properties are not satisfied
simultaneously in the pooling.

The spectral pooling method, which uses DFT algorithm, is proposed by [26].
It transforms the input feature map, crop coefficients of the low frequency of
transformed feature map, and then the inverse transform is applied to get the
output pooled feature map on the original signal domain. They use DFT to
reduce the feature map size, so they can preserve shape information but do
not consider the translation property. However, proposed approach in this work
outputs the feature map satisfying both properties by the shift theorem of DFT.

2.2 Ensemble Using Multi-convolution Layers

Many methods have been developed to use the intermediate features from multi-
convolution layers for performance gain [27]. The hypercolumn [28] features
ensemble outputs of multi-convolution layers via the upsampling method upon
which the decision is made. For image segmentation, the fully convolutional
network (FCN) [15] combines outputs of multiple convolution layers via the
upsampling method. In this work, we present DFT+ method by ensembling
middle layer features using DFT and achieve further performance improvement.

3 Proposed Algorithm

In this section, we discuss the 2D shift theorem of the Fourier transform and
present DFT magnitude pooling method.

3.1 2D Shift Theorem of DFT

The shift theorem [6] from the Fourier transform describes the shift invariance
property in the one-dimensional space. For two signals with same amplitude and
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frequency but different phases, the magnitudes of their Fourier coefficients are
identical. Suppose that the input signal fn is converted to Fk by the Fourier
transform,

Fk =

N−1∑

n=0

fn · e−j2πkn/N ,

a same-shaped input signal but phase-shifted by θ can be denoted as fn−θ, and
its Fourier transformed output as Fk−θ. Here, the key feature of the shift theorem
is that the magnitude of Fk−θ is same as the magnitude of Fk, which means the
magnitude is invariant to phase differences. For the phase-shifted signal, we have

Fk−θ =

N−1∑

n=0

fn−θ · e
−j2πkn/N =

N−1−θ∑

m=−θ

fm · e−j2πk(m+θ)/N

= e−j2πθk/N
N−1∑

m=0

fm · e−j2πkm/N = e−j2πθk/N · Fk.

Since e−j2πθk/N · ej2πθk/N = 1, we have

|Fk−θ| = |Fk| . (1)

The shift theorem can be easily extended to 2D signals. The shifted phase
θ of Eq. 1 in 1D is replaced with (θ1, θ2) in 2D. These two phase parameters
represent the 2D translation in the image space and we can show the following
equality extending the 1D shift theorem, i.e.,

Fk1−θ1,k2−θ2 = e−j2π(θ1k1/N1+θ2k2/N2) · Fk1,k2
.

Since e−j2π(θ1k1/N1+θ2k2/N2) · ej2π(θ1k1/N1+θ2k2/N2) = 1, we have

|Fk1−θ1,k2−θ2 | = |Fk1,k2
| . (2)

The property of Eq. 2 is of critical importance in that the DFT outputs the same
magnitude values for the translated versions of a 2D signal.

3.2 DFT Magnitude Pooling Layer

The main stages in the DFT magnitude pooling are illustrated in the bottom row
of Fig. 1. The convolution layers generate an M ×M × C feature map, where
M is determined by the spatial resolution of the input image and convolution
filter size. The M ×M feature map represents the neuron activations in each
channel, and it encodes the visual properties including shape and location, which
can be used in distinguishing among different object classes. The average or max
pooling removes location dependency, but at the same time, it discards valuable
shape information.

In the DFT magnitude pooling, 2D-DFT is applied to each channel of the
input feature map, and the resulting Fourier coefficients are cropped to N ×N
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Fig. 3: Examples of DFT magnitude pooling usage. It replaces the average pooling
layer of ResNet [4] and it is inserted between the last convolution layer and first
fc4096 layer of VGG-VD 16 [2].

by cutting off high frequency components, where N is a user-specified parameter
used to control the size. The remaining low-frequency coefficients is then fed into
the next fully-connected layer. As shown in Section 3.1, the magnitude of DFT
polled coefficients is translation invariant, and by using more pooled coefficients
of DFT, the proposed method can propagate more shape information in the input
signal to the next fully-connected layer. Hence the DFT magnitude pooling can
achieve both translation invariance and shape preserving properties, which are
seemingly incompatible. In fact, the DFT supersedes the average pooling since
the average of the signal is included in the DFT pooled magnitudes.

As mentioned earlier, we can reduce the pooled feature size of the DFT
magnitude by only selecting the low frequency parts of the Fourier coefficients.
This is one of the merits of our method as we can reduce the parameters in
the fully-connected layer without losing much spatial information. In practice,
the additional computational overhead of DFT magnitude pooling is negligible
considering the performance gain (Table 1 and 2). The details of the computational
overhead and number of parameters are explained in the supplementary material.

3.3 Late Fusion in DFT+

In typical CNNs, only the output of the final convolution layer is used for classi-
fication. However, the middle convolution layers contain rich visual information
that can be utilized together with the final layer’s output. In [29], the SVM
classifier output is combined with the responses of spatial and temporal networks
where these two networks are trained separately. Similar to [29], we adopt the late
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Fig. 4: Example of DFT+ usage for ResNet. The DFT magnitude pooling, fully-
connected and softmax layers together with batch-normalization are added to
the middle convolution layers. The SVM is used for the late fusion.

fusion approach to combine the outputs of multiple middle layers. The mid-layer
convolution feature map is separately processed through a DFT, a fully-connected,
a batch normalization, and a softmax layers to generate the mid-layer probabilis-
tic classification estimates. In the fusion layer, all probabilistic estimates from
the middle layers and the final layer are vectorized and concatenated, and SVM
on the vector determines the final decision.

Furthermore, we use a group of middle layers to incorporate more and richer
visual information. The middle convolution layers in the network are grouped
according to their spatial resolutions (M×M) of output feature maps. Each layer
group consists of more than one convolution layers of the same size, and depending
on the level of fusion, different numbers of groups are used in training and testing.
The implementation of this work is available at http://cvlab.hanyang.ac.kr/
project/eccv_2018_DFT.html. In the following section we present the detailed
experiment setups and the extensive experimental results showing the effectiveness
of DFT magnitude pooling.

http://cvlab.hanyang.ac.kr/project/eccv_2018_DFT.html
http://cvlab.hanyang.ac.kr/project/eccv_2018_DFT.html
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4 Experimental Results

We evaluate the performance of the DFT and DFT+ methods on the large
scale ImageNet [35] dataset, and CUB [36], MIT67 [33], as well as Caltech
101 [37] datasets. The AlexNet [1], VGG-VD16 [2], Inception-v3 [5], ResNet-50,
ResNet-101, and ResNet-152 [4] are used as the baseline algorithm. To show
the effectiveness of the proposed approaches, we replace only the pooling layer
in each baseline algorithm with the DFT magnitude pooling and compare the
classification accuracy. When the network does not have an average pooling layer,
e.g., AlexNet and VGG, the DFT magnitude pooling is inserted between the
final convolution and first fully-connected layers.

The DFT+ uses the mid layer outputs, which are fed into a separate DFT
magnitude pooling and fully-connected layers to generate the probabilistic class
label estimates. The estimates by the mid and final DFT magnitude pooling are
then combined using a linear SVM for the final classification. In the DFT+ method,
batch normalization layers are added to the mid DFT method for stability in
back-propagation. In this work, three settings with the different number of middle
layers are used. The DFT+

1 method uses only one group of middle layers located
close to the final layer. The DFT+

2 method uses two middle layer groups, and the
DFT+

3 method uses three. Fig. 3 and 4 show network structures and settings of
DFT and DFT+ methods.

For performance evaluation, DFT and DFT+ methods are compared to the
corresponding baseline network. For DFT+, we also build and evaluate the
average+ , which is an ensemble of the same structure but using average pooling.
Unless noted otherwise, N is set to the size of the last convolution layer of the
base network (6, 7, or 8).

Table 1: Classification error of the networks trained from scratch on the Ima-
geNet (top1/top5 error). Both DFT and DFT+ methods significantly improve the
baseline networks, while average+ does not improve the accuracy meaningfully.

Method
AlexNet VGG-VD16 ResNet-50

(no-AP) (no-AP) (with-AP)

Baseline 41.12 / 19.08 29.09 / 9.97 25.15 / 7.78

DFT 40.23 / 18.12 27.28 / 9.10 24.37 / 7.45

-0.89 / -0.96 -1.81 / -0.87 -0.78 / -0.33

DFT+ 39.80 / 18.32 27.07 / 9.02 24.10 / 7.31

-1.32 / -0.76 -2.02 / -0.95 -1.05 / -0.47

average+ 41.09 / 19.53 28.97 / 9.91 25.13 / 7.77

-0.03 / +0.45 -0.12 / -0.06 -0.02 / -0.01
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Table 2: Classification accuracy of transferring performance to different domains.
DFT magnitude pooling results and the best results of DFT+ method are marked
as bold. The accuracy of DFT method is improved in all cases except Caltech101-
AlexNet, and DFT+ always outperforms average+ , as well as the baseline and
DFT. See Section 4.2 for more details.

Data Network Base DFT DFT+
1 average+1 DFT+

2 average+2 DFT+
3 average+3

C
U
B

AlexNet 64.9 68.1 68.7 64.9 68.5 64.7 68.6 64.9

VGG-VD16 75.0 79.6 79.7 75.0 79.9 74.8 80.1 75.0

Inception-v3 80.1 80.9 82.2 80.4 82.4 80.2 82.0 80.2

ResNet-50 77.5 81.0 81.8 77.7 82.0 77.9 82.7 77.8

ResNet-101 80.4 82.1 82.7 81.0 83.1 81.0 82.9 80.8

ResNet-152 81.4 83.7 83.6 81.5 83.8 81.6 83.8 81.5

M
IT

In
d
o
o
r

AlexNet 59.2 59.4 59.9 59.3 59.6 58.9 59.9 59.0

VGG-VD16 72.2 72.6 74.2 73.1 74.6 72.8 75.2 73.1

Inception-v3 73.2 73.4 76.9 74.5 77.3 74.5 74.3 73.9

ResNet-50 73.0 74.8 76.9 75.0 76.3 75.2 75.9 75.0

ResNet-101 73.3 76.0 76.1 75.1 76.9 75.2 76.6 74.9

ResNet-152 73.5 75.3 76.4 75.5 76.5 75.3 76.3 74.9

C
a
lt
ec
h

1
0
1

AlexNet 88.1 87.4 88.1 88.0 88.2 88.1 88.3 88.1

VGG-VD16 93.2 93.2 93.4 93.3 93.4 93.2 93.6 93.2

Inception-v3 94.0 94.1 95.2 94.2 95.1 94.2 94.5 94.0

ResNet-50 93.2 93.9 94.6 93.5 94.8 93.3 94.7 93.5

ResNet-101 93.1 94.2 94.0 93.4 94.2 93.3 94.4 93.2

ResNet-152 93.2 94.0 94.3 93.7 94.7 93.7 94.4 93.3

4.1 Visual Classification on the ImageNet

We use the AlexNet, VGG-VD16, and ResNet-50 as the baseline algorithm and
four variants (baseline with no change, DFT, DFT+, and average+) are trained
from scratch using the ImageNet database with the same training settings and
standard protocol for fair comparisons. In this experiment, DFT+ only fuses the
second last convolution layer with the final layer, and we use a weighted sum of
the two softmax responses instead of using an SVM.

Table 1 shows that the DFT magnitude pooling reduces classification error
by 0.78 to 1.81%. In addition, the DFT+ method further reduces the error by
1.05 to 2.02% in all three networks. On the other hand, the A-pooling+ method
hardly reduce the classification error rate.

The experimental results demonstrate that the DFT method performs favor-
ably against the average pooling (with-AP) or direct connection to the fully-
connected layer (no-AP). Furthermore, the DFT+ is effective in improving classi-
fication performance by exploiting features from the mid layer.
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4.2 Transferring to Other Domains

The transferred CNN models have been applied to numerous domain-specific
classification tasks such as scene classification and fine-grained object recognition.
In the following experiments, we evaluate the generalization capability, i.e., how
well a network can be transferred to other domains, with respect to the pooling
layer. The baseline, DFT and DFT+ methods are fine-tuned using the CUB
(fine-grained), MIT Indoor (scene), and Caltech 101 (object) datasets using
the standard protocol to divide training and test samples. As the pre-trained
models, we use the AlexNet, VGG-VD16, and ResNet-50 networks trained from
scratch using the ImageNet in Section 4.1 . For the Inception-v3, ResNet-101,
and ResNet-152, the pre-trained models in the original work are used. Also, the
soft-max and the final convolution layers in the original networks are modified for
the transferred domain. Table 2 shows that DFT magnitude pooling outperforms
the baseline algorithms in all networks except one case of the AlexNet on the
Caltech101 dataset. In contrast the A-pool+ model does not improve the results.

4.3 Comparison with state-of-the-art methods

We also compare proposed DFT based method with state-of-the-art methods such
as the Fisher Vector(FV) [21] with CNN feature [20], the bilinear pooling [9,34],
the compact bilinear pooling [24] and the texture feature descriptor e.g.Deep-TEN
[30]. The results of the single image scale are reported for the fair comparison
except that the results of Deep-TENmulti and FVmulti of ResNet-50 are acquired

Table 3: Comparison of DFT and DFT+ methods with state-of-the-art methods.
DFT and DFT+ methods gives favorable classification rate compared to previous
state-of-the-art methods. DFT+ method improves previous results based on
ResNet-50 and also enhances the performance of state-of-the-art methods with
VGG-VD 16 in most cases, while we use only single 224× 224 input image. The
results of the FV on all cases are reproduced by [30] and the B-CNN [9] on
FMD [31], DTD [32] and MIT Indoor [33] with VGG-VD 16 are obtained by [34].
Numbers marked with ∗ are the results by 448× 448 input image. More results
under various experimental settings are shown in the supplementary material.

VGG-VD 16

Method
Dataset

FMD DTD
Caltech

101
CUB

MIT

Indoor

FV 75.0 - 83.0 - 67.8
B-CNN 77.8 69.6 - 84.0

∗ 72.8
B-CNNcompact - 64.5∗ - 84.0

∗ 72.7∗

DFT 78.8 72.4 93.2 79.6 72.6
DFT+

80.0 73.2 93.6 80.1 75.2

ResNet-50

Method
Dataset

FMD
Caltech

101

MIT

Indoor

FVmulti 78.2 - 76.1
Deep-TEN 80.2 85.3 71.3
Deep-TENmulti 78.8 - 76.2
DFT 79.2 93.9 74.8
DFT+

81.2 94.8 76.9
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on the multiscale setting. The input image resolution is 224× 224 for all methods
except some results of Bilinear(B-CNN) and compact bilinear(B-CNNcompact)
pooling methods, which uses 448 × 448 images. The results of Table 3 shows
that DFT and DFT+ methods improves classification accuracy of state-of-the-art
methods in most cases. DFT and DFT+ methods does not enhance the classifi-
cation accuracy with only one case: B-CNN and B-CNNcompact of CUB dataset
with VGG-VD 16, which use larger input image compared to our implementation.
In the other cases, DFT+ method performs favorably compared to previous
transformation invariant pooling methods. Especially, DFT+ method improves
classification accuracy about 10% for Caltech 101. This is because the previous
pooling methods are designed to consider the orderless property of images. While
considering the orderless property gives fine results to fine-grained recognition
dataset (CUB 2000-2201), it is not effective for object image dataset (Caltech 101).
Since, shape information, that is the order of object parts, is very informative to
recognize object images, so orderless pooling does not improve performance for
Caltech 101 dataset. However, DFT and DFT+ methods acquire favorable per-
formance by also preserving the shape information for object images. Therefore,
this result also validates the generalization ability of the proposed method for
the deep neural network architecture.

Table 4: Experimental result of the DFT and DFT+ methods with respect to the
pooling size. Performance tends to get better as pooling size increases, but it can
be seen that N=4 is enough to improve the baseline method significantly.

Dataset Network Base
DFT DFT+

3

N=2 N=4 full N=2 N=4 full

CUB

Alexnet 64.9 67.9 67.9 68.1 68.2 68.4 68.6
VGG-VD 16 75.0 79.0 78.9 79.6 78.9 79.0 80.1
Inception v3 80.1 78.3 79.1 80.9 80.3 80.7 82.0
ResNet-50 77.5 76.2 78.2 81.0 78.7 81.1 82.7
ResNet-101 80.4 81.7 82.4 82.1 82.1 83.1 82.9
ResNet-152 81.4 82.6 83.1 83.7 82.7 83.3 83.8

MIT Indoor

Alexnet 59.2 59.4 59.3 59.4 61.2 61.6 59.9
VGG-VD 16 72.2 75.2 74.1 72.6 75.5 75.4 75.2
Inception v3 73.3 72.8 72.0 73.4 74.8 74.1 74.3
ResNet-50 73.0 73.5 73.8 74.8 76.0 75.6 75.9
ResNet-101 73.3 74.0 75.4 76.0 74.5 76.2 76.6
ResNet-152 73.5 73.4 75.6 75.3 74.0 76.3 76.3

Caltech 101

Alexnet 88.1 87.4 87.3 87.4 88.0 87.9 88.3
VGG-VD 16 93.2 92.5 92.9 93.2 92.6 93.6 93.6
Inception v3 94.0 93.1 93.0 94.1 94.0 93.8 94.5
ResNet-50 93.2 92.8 92.8 93.9 93.2 93.3 94.7
ResNet-101 93.1 93.4 94.0 94.2 93.5 93.7 94.3
ResNet-152 93.2 93.8 94.2 94.0 93.9 94.0 94.4



DFT-based Transformation Invariant Pooling Layer for Visual Classification 13

(a) VGG-VD16 (b) ResNet-101

Fig. 5: Performance comparison of average with DFT magnitude pooling in
average+3 and DFT+

3 methods on Caltech 101. The reported classification
accuracy values are obtained from the middle softmax layers independently.

5 Discussion

To further evaluate the DFT magnitude pooling, the experiment with regard
to the pooling sizes are performed in Table 4. It shows that the small pooling
size also improves the performance of the baseline method. Fig. 5 shows the
classification accuracy of the individual middle layers by the DFT magnitude and
average pooling layers before the late fusion. The DFT method outperforms the
average pooling, and the performance gap is much larger in the lower layers than
the higher ones. It is known that higher level outputs contain more abstract and
robust information, but middle convolution layers also encode more detailed and
discriminant features that higher levels cannot capture. The results are consistent
with the findings in the supplementary material that the DFT method is robust
to spatial deformation and misalignment, which are more apparent in the lower
layers in the network (i.e., spatial deformation and misalignment are related to
low level features than semantic ones). Since the class estimated by the DFT
method from the lower layers is much more informative than those by the average
pooling scheme, the DFT+ achieves more performance gain compared to the
baseline or the average+ scheme. These results show that the performance of
ensemble using the middle layer outputs can be enhanced by using the DFT as
in the DFT+ method.

The DFT+ method can also be used to facilitate training CNNs by supplying
additional gradient to the middle layers in back-propagation. One of such examples
is the auxiliary softmax layers of the GoogleNet [3], which helps back-propagation
stable in training. In GoogleNet, the auxiliary softmax with average pooling
layers are added to the middle convolution layers during training. As such, the
proposed DFT+ method can be used to help training deep networks.

Another question of interest is whether a deep network can learn translation
invariance property without adding the DFT function. The DFT magnitude
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Table 5: Comparison of learnable DFT with the baseline DFT (top1/top5 error).
The classification error is measured on the AlexNet with learning from scratch
using the ImageNet.

Baseline DFT
DFT-learnable

2D DFT-init Random-init

41.12 / 19.08 40.23 / 18.12 40.64 / 18.76 40.71 / 18.87

pooling explicitly performs the 2D-DFT operation, but since DFT function itself
can be expressed as a series of convolutions for real and imaginary parts (referred
to as a DFT-learnable), it may be possible to learn such a network to achieve the
same goal. To address this issue, we design two DFT-learnable instead of explicit
DFT function, where one is initialized with the correct parameters of 2D-DFT,
and the other with random values. AlexNet is used for this experiment to train
DFT-learnable using the ImageNet. The results are presented in Table 5. While
both DFT-learnable networks achieve lower classification error than the baseline
method, their performance is worse than that by the proposed DFT magnitude
pooling. These results show that while DFT-learnable may be learned from data,
such approaches do not perform as well as the proposed model in which both
translation invariance and shape preserving factors are explicitly considered.

6 Conclusions

In this paper, we propose a novel DFT magnitude pooling for retaining trans-
formation invariant and shape preserving properties, as well as an ensemble
approach utilizing it. The DFT magnitude pooling extends the conventional aver-
age pooling by including shape information of DFT pooled coefficients in addition
to the average of the signals. The proposed model can be easily incorporated with
existing state-of-the-art CNN models by replacing the pooling layer. To boost
the performance further, the proposed DFT+ method adopts an ensemble scheme
to use both mid and final convolution layer outputs through DFT magnitude
pooling layers. Extensive experimental results show that the DFT and DFT+

based methods achieve significant improvements over the conventional algorithms
in numerous classification tasks.
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