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Abstract. Image smoothing is a fundamental task in computer vision,
that attempts to retain salient structures and remove insignificant tex-
tures. In this paper, we aim to address the fundamental shortcomings
of existing image smoothing methods, which cannot properly distin-
guish textures and structures with similar low-level appearance. While
deep learning approaches have started to explore structure preservation
through image smoothing, existing work does not yet properly address
textures. To this end, we generate a large dataset by blending natural
textures with clean structure-only images, and use this to build a texture
prediction network (TPN) that predicts the location and magnitude of
textures. We then combine the TPN with a semantic structure predic-
tion network (SPN) so that the final texture and structure aware filtering
network (TSAFN) is able to identify the textures to remove (“texture-
awareness”) and the structures to preserve (“structure-awareness”). The
proposed model is easy to understand and implement, and shows good
performance on real images in the wild as well as our generated dataset.

Keywords: Image smoothing, texture prediction, deep learning

1 Introduction

Image smoothing, a fundamental technology in image processing and computer
vision, aims to clean images by retaining salient structures (to the structure-

only image) and removing insignificant textures (to the texture-only image),
with various applications including denoising [15], detail enhancement [14], image
abstraction [38] and segmentation [36].

There are mainly two types of methods for image smoothing: (1) kernel-based
methods, that calculate the average of the neighborhood for texture pixels while
trying to retain the original value for structural pixels, such as the guided filter
(GF) [18], rolling guidance filter (RGF) [46], segment graph filter (SGF) [45]
and so on; and (2) separation-based methods, which decompose the image into
a structure layer and a texture layer, such as relative total variation (RTV) [42],
fast L0 [27], and static and dynamic guidance filter (SDF) [16,17]. Traditional
approaches rely on hand-crafted features and/or prior knowledge to distinguish
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(c) Framework of proposed deep filtering network 

(d) GF [5] (e) RGF [6] (f) SGF [7] 

(g) Fast L0 [9] (h) SDF [11] (i) DGF [19] 

Fig. 1. (a) Texture in natural images is often hard to identify due to spatial distortion
and high contrast. (b) Illustration of learning “texture awareness”. We generate train-
ing data by adding spatial and color variations to natural texture patterns and blending
them with structure-only images, and then use the result to train a multi-scale tex-
ture network with texture ground-truth. We test the network on both generated data
and natural images. (c) Our proposed deep filtering network is composed of a texture
prediction network (TPN) for predicting textures (white stripes with high-contrast);
a structure prediction network (SPN) for extracting structures (the giraffe’s bound-
ary, which has relatively low contrast to the background); and a texture and structure
aware filtering network (TSAFN) for image smoothing. (d)-(i) Existing methods cannot
distinguish low-contrast structures from high-contrast textures effectively.

textures from structures. These features are largely based on low-level appear-
ance, and generally assume that structures always have larger gradients, and
textures are just smaller oscillations in color intensities.

In fact, it is quite difficult to identify textures. The main reasons are twofold:
(1) textures are essentially repeated patterns regularly or irregularly distributed
within object structures, and they may show significant spatial distortions in an
image (as shown in Fig. 1(a)), making it hard to fully define them mathemati-
cally; (2) in some images there are strong textures with large gradients and color
contrast to the background, which are easy to confuse with structures (such as
the white stripes on the giraffe’s body in Fig. 1(c)). We see from Fig. 1 that GF,
RGF, SGF, fast L0, and SDF perform poorly on the giraffe image. The textures
are either not removed, or suppressed with the structure severely blurred. This
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is because the hand-crafted nature of these filters makes them less robust when
applied to various types of textures, and also leads to poor discrimination of tex-
tures and structures. Some other methods [41,23,21,12,6,11,31] take advantage
of deep neural networks, and aim for better performance by extracting richer
information. However, existing networks use the output of various hand-crafted
filters as ground-truth during training. These deep learning approaches are thus
limited by the shortcomings of hand-crafted filters, and cannot learn how to
effectively distinguish textures from structures.

A recently-proposed double-guided filter (DGF) [25] addresses this issue by
introducing the idea of “texture guidance”, which infers the location of texture,
and combines it with “structure guidance” to achieve both goals of texture re-
moval and structure preservation. However, DGF uses a hand-crafted separation-
based algorithm called Structure Gradient and Texture Decorrelating (SGTD)
[22] to construct the texture confidence map that still cannot essentially over-
come the natural deficiency. We argue that this is not true “texture awareness”,
because in many cases, some structures are inevitably blurred when the filter
tries to remove strong textures after several iterations. As can be seen in Fig. 1(i),
although the stripe textures are largely smoothed out, the structure of the giraffe
is unexpectedly blurred, especially around the head and the tail (red boxes).

In this paper, we hold the idea that “texture awareness” should reflect both
the texture region (where the texture is) and texture magnitude (texture with
high contrast to the background is harder to remove). Thus, we take advantage
of deep learning and propose a texture prediction network (TPN) that aims to
learn textures from natural images. However, since there are no available datasets
containing natural images with labeled texture regions, we make use of texture-
only datasets [8,10]. The process of learning “texture awareness” is shown in
Fig. 1(b). Specifically, we generate the training data by adding spatial and color
variations to natural texture patterns and blending them with the structure-only
image. Then we construct a multi-scale network (containing different levels of
contextual information) to train these images with texture ground-truth (G.T. in
short). The proposed TPN is able to predict textures through a full consideration
of both low-level appearance, e.g., gradient, and other statistics, e.g., repetition,
tiling, spatial varying distortion. The network achieves good performance on our
generated testing data, and can also generalize well to natural images, effectively
locating texture regions and measuring texture magnitude by assigning different
confidence, as shown in Fig. 1(b). More details can be found in Section 3.

For the full problem, we are inspired by the idea of “double guidance” in-
troduced in [25] and propose a deep neural network based filter that learns to
predict textures to remove (“texture-awareness” by our TPN) and structures
to preserve (“structure-awareness” by HED semantic edge detection [39]). This
is an end-to-end image smoothing architecture which we refer to as “Texture
and Structure Aware Filtering Network” (TSAFN), as shown in Fig. 1(c). The
network is trained with our own generated dataset. Different from the work in
[25], we generate texture and structure guidance with deep learning approaches,
and replace the hand-crafted kernel filter with a deep learning model to achieve
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a more consistent and effective combination of these two types of guidance. Ex-
perimental results show that our proposed filter outperforms DGF [25] in terms
of both effectiveness and efficiency, achieves state-of-the-art performance on our
dataset, and generalizes well to natural images.

The main contributions of this paper are: (1) We propose a deep neural
network to robustly predict textures in natural images. (2) We present a large
dataset that enables training texture prediction and image smoothing. (3) We
propose an end-to-end deep neural network for image smoothing that achieves
both “texture-awareness” and “structure-awareness”, and outperforms existing
methods on challenging natural images.

2 Related Work

Texture extraction from structures The basic assumption of this type of
work is that an image can be decomposed into structure and texture layers (the
structure layer is a smoothed version of the input and contains salient structures,
while the texture layer contains insignificant details or textures). The pioneering
work, Total Variation [30], aims to minimize the quadratic difference between
the input and output images to maintain structure consistency with the gradient
loss as an additional penalty. Later works retain the quadratic form and propose
other regularizer terms or features (gradient loss is still necessary to keep the

structures as sharp as possible), such as weighted least squares (WLS) [13], ℓ0
norm smoothing [40,27], ℓ1 norm smoothing [3], local extrema [32], structure
gradient and texture decorrelating (SGTD) [22]. Other works also focuses on
accelerating the optimization [4] or improving existing algorithms [24]. There
are two general issues that have not been handled effectively in existing work.
Firstly, as they are largely dependent on gradient information, these methods
lack discrimination of textures and structures, especially when they have similar
low-level appearance, particularly in terms of scale or magnitude. Secondly, all
the objective functions aremanually defined, and may not be adaptive and robust
to the huge variety of possible textures, especially in natural images.

Image smoothing with guidance The guidance image can provide structure
information to help repair and sharpen structures in the target image. Since
adding guidance into separation-based methods may make it harder to opti-
mize, this idea is more widely used in kernel-based methods. Static guidance
refers to the use of a fixed guidance image, such as the bilateral filter [35], joint
bilateral filter [28], and guided filter [18]. To make the guidance more structure-
aware, existing filters also employ techniques such as leverage tree distance [2],
superpixels [45], region covariances [20], co-occurrence matrix [19], propagation
distance [29], multipoint estimation [34], fully connected regions [9] and edge
maps [43,7,44]. In contrast, dynamic guidance methods update the guidance im-
age to suppress more details [46,16,17] by iteratively refining the target image.
Overall, the aforementioned guidance methods only address structure informa-
tion, or assume that structures and textures can be sufficiently distinguished
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with a single guidance. However, in most cases, structures and textures interfer-
e with each other severely. Lu et al. [25] address this issue by introducing the
concept of “texture guidance”, which infers texture regions by normalizing the
texture layer separated by SGTD [22] to construct the texture confidence map.
They then naively combine it with structure guidance to form a double-guided
kernel filter. However, this method is still largely dependent on hand-crafted fea-
tures (in particular it relies on the hand-crafted SGTD to infer textures, which is
not robust in essence). Structures may be blurred when the filter tries to smooth
out strong textures after several iterations.

Deep image smoothing Deep learning has been widely used in low-level vision
tasks, such as super resolution [33], deblurring [26] and dehazing [5]. Compared
with non-learning approaches, deep learning is able to extract richer informa-
tion from images. In image smoothing, current deep filtering models all focus on
approximating and accelerating existing non-learning filters. [41] is a pioneering
paper, where the learning is performed on the gradient domain and the out-
put is reconstructed from the refined gradients produced by the deep network.
Liu et al. [23] take advantage of both convolutional networks (for perceiving
salient structures) and recurrent networks (for producing smoothing output in
a data-driven manner). Li et al. [21] fuse the features from the original input
and guidance image together and then produce the guided smoothing result
(this work is mainly for upsampling). Fan et al. [12] first construct a network
called E-CNN to predict the edge/structure confidence map based on gradients,
and then use it to guide the filtering network called I-CNN. Similar work can
be found in [11] by the same authors. Most recent works mainly focus on ex-
tracting richer information from input images ([31] introduces a convolutional
neural pyramid to extract features of different scales, and [6] utilizes context ag-
gregation networks to include more contextual information) and yielding more
satisfying results. One common issue is all of these approaches have to take the
output of existing filters as ground-truth. Hence, they are unable to overcome
their deficiency in discriminating textures.

3 Texture Prediction

In this section, we give insights into textures in natural images, which inspire
the design of the texture prediction network (TPN) and the dataset for training.

3.1 What is texture?

Appearance of texture It is well known that many different types of textures
occur in nature and it is difficult to fully define them mathematically. General-
ly speaking, textures are repeated patterns regularly or irregularly distributed
within object structures. For example, in Fig. 1(c), the white stripes on the gi-
raffe’s surface are recognized as textures. In Fig. 2, textures are widely spread in
the image on clothes, books, and the table cloth. For cognition and vision tasks,
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(a) Input (b) Gradient map (c) Close-up 

Fig. 2. Close observation of structures and textures. In contrast with the assumptions
used in existing methods, large gradients do not necessarily indicate structures (IV),
and small gradients may also belong to structures (III). The challenge to distinguish
them motivates us to propose two independent texture and structure guidance.

an intuitive observation is that the removal of these textures will not affect the
spatial structure of objects. Thus, they can be removed by image smoothing as
a preprocessing step for other visual tasks.

Textures do not necessarily have small gradients Existing methods gener-
ally assume that textures are minor oscillations and have small gradients. Thus,
they can easily hand-craft the filter or loss function. However, in many cases, tex-
tures may also have large gradients, e.g., the white stripes on the giraffe’s body
in Fig. 1(b), and the stripes occurring on the books in close-up IV of Fig. 2(c).
Therefore, defining textures purely based on local contrast is insufficient.

Mathematically modeling texture repetition is non-trivial By definition,
textures are patterns with spatial repetitions. However, modeling and describ-
ing the repetition is non-trivial due to the existence of various distortions (see
Fig. 1(a)).

Learn to predict textures To tackle these issues, we take advantage of deep
neural networks. Provided sufficient training examples are available, the network
is able to learn to predict textures without explicit modeling.

3.2 Dataset Generation

We aim to provide a dataset so that a deep network can learn to predict textures.
Ideally, we would like to learn directly from natural images. However, manually
annotating pixel-wise labels plus alpha-matting would be costly. Moreover, it
would require a full range of textures, each with a full range of distortions in a
broad array of natural scenes. Therefore, we propose a strategy to generate the
training and testing data. Later, we will demonstrate that the proposed network
is able to predict textures in the wild effectively.

We observe that cartoon images have only structural edges filled with pure
color, and can be safely considered “structure-only images”. Specifically, we s-
elect 174 cartoon images from the Internet and 233 different types of natural
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Fig. 3. Illustration of dataset generation. We blend-in natural texture patterns to
structure-only images, adding spatial and color variation to increase texture diver-
sity. We mainly focus on image patches motivated by the fact that textures are always
clustered in certain regions.

texture-only images from public datasets [8,10]. The data generation process is
illustrated in Fig. 3(a). Note that texture images in these datasets show textures
only and all have simple backgrounds, so that separating them from the colored
background is simple and efficient even using Relative Total Variation (RTV)
[42]. The texture layer separated by RTV is normalized to [0, 1].

Texture itself can be irregular, and textures in the wild may be distorted
because of geometric projection. This arises because textures can appear on
planar surfaces that are not orthogonal to the viewing direction, as well as being
projected onto object with complex 3D surfaces. Therefore, we apply both spatial
and color variation to the regular textures during dataset generation. As shown
in Fig. 3(a), we blend-in the texture to the structure-only image. In detail, we
rescale all the texture images to 100 × 100 and extract texture patterns with
RTV. We model spatial variation, capturing projected texture at patch level
by performing geometric transforms including rotation, scaling, shearing, and
linear and non-linear distortion. We randomly select the geometric transform
and parameters for the operation. Based on the deformed result, we generate a
binary mask M.

As for color variation, given the structure-only image S, the value of pixel

i in the jth channel of the generated image I
(j)
i is determined by both S and

the mask M. If Mi = 1, I
(j)
i = rand[κ · (1 − S

(j)
i ), 1 − S

(j)
i ], where κ is used to

control the range of random generation and empirically set as 0.75. Otherwise,

I
(j)
i = S

(j)
i . We repeat this by sliding the mask over the whole image without

overlapping. The ground-truth texture confidence is calculated by averaging the
values of the three channels of the texture layer:

T∗

i = δ(
1

3

3
∑

j=1

∣

∣

∣
I
(j)
i − S

(j)
i

∣

∣

∣
), (1)

where δ(x) = 1/(1+ exp(−x)) is the sigmoid function to scale the value to [0, 1].
We use this color variation to generate significant contrast between the textures
and the background. Using this method, it is unlikely that two images have



8 Kaiyue Lu , Shaodi You , Nick Barnes

Structure 
guidance 

Input 

Stage 1 Stage 2 Stage 3 Stage 4 

T-conv1_1 
(3,3,16,1) 

1/2 Input T-conv1_2 
(3,3,16,1) 

1/4 Input 
T-conv1_3 
(3,3,16,1) 

1/8 Input T-conv1_4 
(3,3,16,1) 

Texture 
guidance 

D-conv1 
(7,7,64,1) 

D-conv2 
(5,5,32,1) 

D-conv3 
(3,3,16,1) 

D-conv4 
(5,5,3,1) 

+ 

Output 

Structure Prediction  
Network (SPN) 

Texture and Structure 
Aware Filtering 

Network (TSAFN) 

Stage 5 

T-conv2_1 
(3,3,8,1) 

T-conv2_2 
(3,3,8,1) 

T-conv2_3 
(3,3,8,1) 

T-conv2_4 
(3,3,8,1) 

T-conv3_1 
(3,3,4,1) 

T-conv3_2 
(3,3,4,1) 

T-conv3_3 
(3,3,4,1) 

T-conv3_4 
(3,3,4,1) 

+ 

upsampling 

T-conv4 
(3,3,1,1) 

Texture Prediction Network (TPN) 

Fig. 4. Our proposed network architecture. The outputs of the texture prediction net-
work (TPN) and structure prediction network (SPN) are concatenated with the original
input, and then fed to the texture and structure aware filtering network (TSAFN) to
produce the final smoothing result. (k,k,c,s) for a convolutional layer means the kernel
is k × k in size with c feature maps, and the stride is s.

the same textures even when the textures come from the same original pattern.
Fig. 3(b) shows eight generated image patches.

Finally, we generate 30,000 images in total (a handful of low-quality im-
ages have been manually removed). For ground-truth, besides the purely-clean
structure-only images, we also provide binary structure maps and texture con-
fidence maps of all the generated images. Currently we distribute textures over
the entire image and the textures are not object-dependent, which may be typ-
ical appearance in natural images. Later we will show the use of patch learning
can bridge the gap, motivated by the fact that textures are always clustered
in certain regions. Moreover, we aim to let the network learn the statistics of
appearance of local textures rather than the global structure.

3.3 Texture prediction network

Network design We propose the texture prediction network (TPN), which is
trained on our generated dataset. Considering that textures have various colors,
scales, and shapes, we employ a multi-scale learning strategy. Specifically, we
apply 1/2, 1/4, and 1/8 down-sampling to the input respectively. For each image,
we use 3 convolutional layers for feature extraction, with the same size 3×3 kernel
and different number of feature maps. Then, all the feature maps are resized to
the original input size and concatenated to form a 16-channel feature map. They
are further convolved with a 3× 3 layer to yield the final 1-channel result. Note
that each convolutional layer is followed by ReLU except for the output layer,
which is followed by a sigmoid activation function to scale the values to [0, 1].
The architecture of TPN is shown in Fig. 4. Consequently, given the input image
I, the predicted texture guidance T̃ is obtained by:

T̃ = g

(

I,
1

2
I,

1

4
I,

1

8
I

)

. (2)
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(a) Texture prediction results on generated images (b) Texture prediction results on natural images 
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Fig. 5. Texture prediction results. First row: input (including both generated and natu-
ral images). Second row: texture extraction results by RTV [42] (we compare it because
we use it to extract textures from texture-only images). Third row: texture prediction
results by our proposed TPN. The network is able to find textures in both generated
and natural images effectively, and indicate the magnitude of textures by assigning
pixel-level confidence.

Network training The network is trained by minimizing the mean squared
error (MSE) between the predicted texture guidance map and the ground-truth:

ℓT (θ) =
1

N

∑

i

∥

∥

∥
T̃i −T∗

i

∥

∥

∥

2

2
, (3)

where N is the number of pixels in the image, ∗ denotes the ground-truth, and
θ represents parameters. More training details can be found in the experiment
section.

Texture prediction results We present the texture prediction results on our
generated images in Fig. 5(a) and natural images in Fig. 5(b). The network is able
to find textures in both the generated and natural images effectively, and indicate
the magnitude of textures by assigning pixel-level confidence (the third row). For
comparison, we also list the texture extraction results from these examples by
RTV [42] in the second row. RTV performs worse on the more complex scenes,
because just like other hand-crafted filters, RTV also assumes structures have
large gradients and hence has poor discrimination of strong textures.

3.4 Texture and structure aware filtering network

Network design Once the structure and texture guidance are generated, the
texture and structure aware filtering network (TSAFN) concatenates them with
the input to form a 5-channel tensor. TSAFN consists of 4 layers. We set a
relatively large kernel (7× 7) in the first layer to take more original information
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into account. The kernel size decreases in the following two layers (5× 5, 3× 3
respectively). In the last layer, the kernel size is increased to 5×5 again. The first
three layers are followed by ReLU, while the last layer has no activation function
(transforming the tensor into the 3-channel output). Empirically, we remove all
the pooling layers, the same as [41,21,12,6]. We set the filtering network without
any guidance as the baseline. The whole process can be denoted as:

Ĩ = h(I, Ẽ, T̃). (4)

Network training The network is trained by minimizing:

ℓD(θ) =
1

N

∑

i

(
∥

∥

∥
Ĩi − I∗i

∥

∥

∥

2

2
). (5)

More details can be found in the experiment section.

4 Experiments and Analysis

In this section, we demonstrate the effectiveness of our proposed deep image
smoothing network through.

Environment setup We construct the networks in Tensorflow [1], and train
and test all the data on a single NVIDIA Titan X graphics card.

Dataset Because there is no publicly-available texture removal dataset, we
perform training using our generated images. More specifically, we select 19,505
images (65%) from the dataset for training, 2,998 (10%) for validation, and
7,497 (25%) for testing (all test images are resized to 512 × 512). There is no
overlapping of structure-only and texture images between training, validation
and testing samples.

Training We first train the three networks separately. 300,000 patches with the
size 64 × 64 are randomly and sparsely collected from training images. We use
gradient descent with a learning rate of 0.0001, and momentum of 0.9. Finally,
we perform fine-tuning by jointly training the whole network with a smaller
learning rate of 0.00001, and the same momentum 0.9. The fine-tuning loss is

ℓ(θ) = γ · ℓD(θ) + λ · (ℓT (θ) + ℓE(θ)), (6)

where we empirically set γ = 0.6, and λ = 0.2.

4.1 Existing methods to compare

Non-learning methods We compare our filter with 2 classical filters: Total
Variation (TV) [30], bilateral filter (BLF) [35], and 9 recently-proposed filters:
L0 [40], Relative Total Variation (RTV) [42], guided filter (GF) [18], Structure
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Input Ground-truth Ours SDF [PAMI’17] DFF [ICCV’17] CEILNet [ICCV’17] DGF [DICTA’17] 

Fig. 6. Smoothing results on generated images. Our filter can smooth out various
types of textures while preserving structures more effectively than other approaches.

Gradient and Texture Decorrelation (SGTD) [22], rolling guidance filter (RGF)
[46], fast L0 [27], segment graph filter (SGF) [45], static and dynamic filter (SDF)
[17], double-guided filter (DGF) [25]. Note that, BLF, GF, RGF, SGF, DGF are
kernel-based, while TV, L0, RTV, SGTD, fast L0, SDF are separation-based.
We use the default parameters defined in the open-source code for each method.

Deep learning methods We select 5 state-of-the-art deep filtering models:
deep edge-aware filter (DEAF) [41], deep joint filter (DJF) [21], deep recursive
filter (DRF) [23], deep fast filter (DFF) [6], and cascaded edge and image learning
network (CEILNet) [12] . We retrain all the models with our dataset.

4.2 Results

Quantitative results on generated images We first compare the average
MSE, PSNR, SSIM [37], and processing time (in seconds) of 11 non-learning
filters on our testing data in Table 1. Our method achieves the smallest MSE
(closest to ground-truth), largest PSNR and SSIM (removing textures and pre-
serving main structures most effectively), and lowest running time, indicating its
superiority in both effectiveness and efficiency. Note that although the double-
guided filter (DGF) [25] achieves better quantitative results than other hand-
crafted approaches, it runs quite slowly (more than 50 times slower than ours).
We also compare the quantitative results on different deep models trained and
tested on our dataset in Table 2. Our model achieves the best MSE, PSNR and
SSIM, with comparable efficiency to the other methods. We additionally select
4 state-of-the-art methods (SDF [17], DGF [25], DFF [6], and CEILNet [12]) for
visual comparison in Fig. 6. Our method gives favorable qualitative results.

Qualitative comparison on real images in the wild We visually compare
smoothing results of 5 challenging natural images with SDF [17], DGF [25], DF-
F [6], and CEILNet [12] in Fig. 7. In the first example, the leopard is covered
with black texture, and it has relatively low contrast to the background (weak
structure). Only our filter smooths out most of the textures while effectively
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Input SDF [PAMI’17] DFF [ICCV’17] Ours DGF [DICTA’17] CEILNet [ICCV’17] 

Fig. 7. Smoothing results on natural images. The first example shows the ability of
weak structure preservation and enhancement in textured scenes. The next four exam-
ples present various texture types with different shapes, contrast, and distortion. Our
filter performs consistently better than state-of-the-art methods in all the examples.

preserving and enhancing the structure. The next four examples present various
texture types with different shapes, contrast, and distortion, and our filter per-
forms consistently well. We analyze the last challenging vase example in more
detail. The vase is covered with strong dotted textures, densely wrapped on the
surface. SDF fails to remove these textures since they are regarded as structures
with large gradients. DGF smooths out the black dots more effectively but the
entire image looks blurry. This is because just as [25] points out, a larger kernel
size and more iterations are required to remove more textures, resulting in the
blurred structure as a penalty. Also, the naive combination of structure and tex-
ture kernels makes the filter not robust to various types of textures. The two deep
filters do not demonstrate much improvement over the hand-crafted approaches
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Table 1. Quantitative evaluation of different non-learning filters tested on our dataset

MSE PSNR SSIM Time MSE PSNR SSIM Time

TV [30] 0.2791 11.33 0.6817 2.44 RGF [46] 0.2094 15.73 0.7173 0.87

BLF [35] 0.3131 10.89 0.6109 4.31 Fast L0 [27] 0.2068 15.50 0.7359 1.36

L0 [40] 0.2271 14.62 0.7133 0.94 SGF [45] 0.2446 13.92 0.7002 2.26

RTV [42] 0.2388 14.07 0.7239 1.23 SDF [17] 0.1665 16.82 0.7633 3.71

GF [18] 0.2557 12.22 0.6948 0.83 DGF [25] 0.1247 17.89 0.7552 8.66

SGTD [22] 0.1951 16.14 0.7538 1.59 Ours 0.0051 25.07 0.9152 0.16

Table 2. Quantitative evaluation of deep models trained and tested on our dataset

MSE PSNR SSIM Time MSE PSNR SSIM Time

DEAF [41] 0.0297 20.62 0.8071 0.35 DFF [6] 0.0172 22.21 0.8675 0.07

DJF [21] 0.0352 19.01 0.7884 0.28 CEILNet [12] 0.0156 22.65 0.8712 0.13

DRF [23] 0.0285 21.14 0.8263 0.12 Ours 0.0051 25.07 0.9152 0.16

Input Double guidance 
 (trained separately) 

No guidance Structure guidance only Texture guidance only Double guidance 
 (fine-tuned) 

Fig. 8. Image smoothing results with no guidance, single guidance, double guidance
(trained separately, and fine-tuned). With only structure guidance, the main structures
are retained as well as the textures. With only texture guidance, all the textures are
smoothed out but the structures are severely blurred. The result with double guidance
performs well in both structure preservation and texture removal. Fine-tuning the
whole network can further improve the performance.

because “texture-awareness” is not specially emphasized in their network design.
Only our filter removes textures without blurring the main structure.

Ablation study of each guidance To investigate the effect of guidance, we
train the filtering network with no guidance, only structure guidance, only tex-
ture guidance, and double guidance respectively. We list the average MSE, P-
SNR, and SSIM of the testing results compared with ground-truth in Table 3,
demonstrating that the results with double guidance have smaller MSE, larg-
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Table 3. Ablation study of image smoothing effects with no guidance, only structure
guidance, only texture guidance, and double guidance (trained separately and fine-
tuned)

MSE PSNR SSIM

No guidance (Baseline) 0.0316 20.32 0.7934

Only structure guidance 0.0215 21.71 0.8671

Only texture guidance 0.0118 23.23 0.8201

Double guidance (trained separately) 0.0059 24.78 0.9078

Double guidance (fine-tuned) 0.0051 25.07 0.9152

er PSNR, and larger SSIM. Also, the fine-tuning process improves the filtering
network. Further, we show two natural images in Fig. 8. Compared with the
baseline without guidance, the result only with structure guidance retains more
structure, as well as the texture (this is mainly because HED may also be nega-
tively affected by strong textures, resulting in a larger MSE loss when training
the network). In contrast, the structures are severely blurred with only texture
guidance, even though most textures are removed. Combining both structure
and texture guidance produces a better result due to the good discrimination
of structures and textures. Fine-tuning further improves the result (in the red
rectangle of the first example, the structures are sharper; in the second exam-
ple, the textures within the red region are further suppressed) because it takes
all the three networks as a whole and this synergistic strategy allows different
features to support and complement each other for better performance. All the
observations are consistent with the quantitative evaluation in Table 3.

5 Conclusion

In this paper, we propose an end-to-end texture and structure aware filter-
ing network that is able to smooth images with both “texture-awareness” and
“structure-awareness”. The “texture-awareness” benefits from the newly-proposed
texture prediction network. To facilitate training, we blend-in natural textures
onto structure-only cartoon images with spatial and color variations. The “structure-
awareness” is realized by semantic edge detection. Experiments show that the
texture network can predict textures effectively. And our filtering network out-
performs other filters on both generated images and natural images. The network
structure is intuitive and easy to implement. In future work, we will introduce
object-based texture cues - moving to a more object-based approach for texture
prediction and image smoothing.
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