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Abstract. Average precision (AP), the area under the recall-precision
(RP) curve, is the standard performance measure for object detection.
Despite its wide acceptance, it has a number of shortcomings, the most
important of which are (i) the inability to distinguish very different RP
curves, and (ii) the lack of directly measuring bounding box localiza-
tion accuracy. In this paper, we propose “Localization Recall Precision
(LRP) Error”, a new metric specifically designed for object detection.
LRP Error is composed of three components related to localization, false
negative (FN) rate and false positive (FP) rate. Based on LRP, we intro-
duce the “Optimal LRP” (oLRP), the minimum achievable LRP error
representing the best achievable configuration of the detector in terms of
recall-precision and the tightness of the boxes. In contrast to AP, which
considers precisions over the entire recall domain, oLRP determines the
“best” confidence score threshold for a class, which balances the trade-off
between localization and recall-precision. In our experiments, we show
that oLRP provides richer and more discriminative information than AP.
We also demonstrate that the best confidence score thresholds vary sig-
nificantly among classes and detectors. Moreover, we present LRP results
of a simple online video object detector and show that the class-specific
optimized thresholds increase the accuracy against the common approach
of using a general threshold for all classes. Our experiments demonstrate
that LRP is more competent than AP in capturing the performance of
detectors. Our source code for PASCAL VOC AND MSCOCO datasets
are provided at https://github.com/cancam/LRP.

Keywords: Average Precision · Object Detection · Performance Metric
· Optimal Threshold · Recall-precision

1 Introduction

Today “average precision” (AP) is the de facto standard for performance evalua-
tion in object detection competitions [8,14,28], and in the studies on still-image
object detection [6, 13, 16, 24], video object detection [9, 12, 36] and online video
object detection [17, 34]. AP not only enjoys such vast acceptance but it also
appears to be unchallenged. Except for a small number of papers which do abla-
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tion studies [13,24], AP appears to be the sole criterion used to compare object
detection methods.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Three different object detection results (for an image from ILSVRC [28]) with
very different RP curves but the same AP. AP is unable to identify the difference
between these curves. (a,b,c) Red, blue and green colors denote ground-truth, true
positives; false positives respectively. Numbers are detection confidence scores. (d,e,f)
RP curves, AP and LRP results for the corresponding detections in (a,b,c). Red crosses
indicate Optimal LRP points.

Despite its popularity, AP has certain deficiencies. First, AP cannot dis-

tinguish between very different RP curves: In Fig. 1, we present detection
results of three hypothetical object detectors. The detector in (a) detects only
half of the objects but with full precision; this is a low-recall-high-precision de-
tector. In contrast, the detector in (b) detects all objects; however, for each
correct detection it also produces a close-to-duplicate detection which escapes
non-maxima suppression. Hence, detector (b) is a high-recall-low-precision de-
tector. And the detector in (c) is in between; it represents a detector with higher
precision at lower recall and vice versa. Despite their very different characteris-
tics, the APs of these detectors are exactly the same (AP=0.5). One needs to
inspect the RP curves in order to understand the differences in behavior, which
can be time-consuming and impractical with large number of classes such as in
the ImageNet object detection challenge [28] with 200 classes.

Another deficiency of AP is that it does not explicitly include local-

ization accuracy: One cannot infer from AP the tightness level of the bound-
ing box detections. Nevertheless, since extracting tighter bounding boxes is a
desired property, nearly every paper on the topic discusses the issue mostly
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qualitatively [6, 9, 16, 17, 24] and some quantitatively by computing AP scores
for different intersection-over-union (IoU) thresholds [13, 16, 24]. However, this
quantitative approach does not directly measure the localization accuracy either
and for the qualitative approach, it is very likely for the sample boxes to be very
limited and biased. We discuss other less severe deficiencies of AP in Section 3.

A desirable performance metric is expected to include all of the factors related
with performance. In object detection, the most important three factors are (i)
the localization accuracy of the true positives (TP), (ii) the false positives (FP)
rate and (iii) the false negative (FN) rate. Being able to evaluate a detector based
on these factors is another desirable property for a performance measure since
it can reveal improvement directions. Furthermore, a performance metric should
reveal the RP characteristics of a detector (as LRP achieves in Fig. 1). This
ability would benefit certain applications. For instance, using a high-precision
detector is common in visual tracking methods [3,4,31,32,37], while initializing
the tracker, known as tracking by detection as faster response times are required.
Also, in online video object detection, the current approach is to use a still-
image object detector with a general threshold (e.g., Association-LSTM [17] uses
SSD [16] detections with confidence score above 0.8). A desirable performance
measure should help in setting an optimal confidence score threshold per class.

In this paper, we propose a new metric called the “Localization-Recall-
Precision Error” (LRP, for short). LRP involves appropriate components closely
related to the precision, recall, and IoU and each parametrization of LRP cor-
responds to a point on the RP curve. We propose the “Optimal LRP”, the
minimum achievable LRP error, as the alternative performance metric to AP.
Optimal LRP alleviates the drawbacks of AP, represents the tightness of the
bounding-boxes and the shape of the RP curve via its components and is more
suitable for ablation studies. Finally, based on Optimal LRP, a confidence score
thresholding method is proposed to decrease the number of detections in an op-
timal manner. Our extensive experiments confirm that LRP is a highly capable
metric for comparing object detectors thoroughly.

2 Related Work

Information Theoretic Performance Measures: Several performance mea-
sures have been derived on the confusion matrix. Among them, the most relevant
one is the F-measure [25] defined as the harmonic mean of precision and recall.
However, F-measure violates the triangle inequality, and therefore, it is not suit-
able as a metric [20] and it is not symmetric in the positive and negative classes.
These violations and its incapacity to measure bounding box tightness prevent
its use for comparison among detectors in a consistent manner. Moreover, [5]
points out that, except for accuracy, all information theoretic measures have un-
defined intervals. For example, F-measure is undefined when the number of TP
is 0 even if there are detections. AP is an information theoretic measure, too,
with deficiencies discussed in Sections 1 and 3.
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Point Multi-target Tracking Performance Metrics: Object detection
is very similar to the multi-target tracking problem. In both problems, there are
multiple instances to detect, and the localization, FN and FP rates are common
criteria for success. Currently, component-based performance metrics are the
accepted way of evaluating point multi-target tracking filters. The first metric to
combine the localization and cardinality (including both FP and FN) errors is the
Optimal Subpattern Assignment (OSPA) [29]. Following OSPA, several measures
and metrics have been proposed as its variants [19,23,26,27,29,30,35]. Similarly,
CLEAR multi-object tracking metrics [1] considers only FP and mismatch rate
while ignoring the localization error. However, similar measures and metrics are
lacking in the object detection literature, though similar performance evaluation
problems are observed.

Setting the Thresholds of the Classifiers: The research on the optimiza-
tion of a precision-recall balanced performance measure is mostly concentrated
around the F-measure. [7] considers maximizing F-measure at the inference time
using plug-in rules, while [18,33] offer maximization during training for support
vector machines and conditional random fields. Similarly, [15] aims to find opti-
mal thresholds for a probabilistic classifier based on maximizing the F-measure.
Finally, [21] presents a theoretical analysis of optimization of the F-measure,
which also confirms the threshold-F-measure relationship depicted in [15,22].

In summary, we see that existing methods mostly focus on the F-measure
for optimizing the thresholds for classifiers, which, however, has the aforemen-
tioned drawbacks. Moreover, F-measure is shown to be concave with respect to
its inputs, number of TPs and FPs [15], which makes the analytical optimiza-
tion impossible. In addition, none of these studies have considered the object
detection problem in particular, thus no localization error is directly included
for these measures. Therefore, different from the previous work, we specifically
are interested in performance evaluation and optimal thresholding of the deep
object detectors. Moreover, we directly optimize a well-behaving function which
has a smaller domain in practice in order to identify the class-specific thresholds.

3 Average Precision: an analysis and its deficiencies

Due to space constraints, we omit the definition of AP and refer the reader to
the accompanying supplementary material or [8]. There exist minor differences in
AP’s practical usage. For example, AP is computed by simply integrating over 11
points (that divide the entire recall domain in equal pieces) in the PASCAL VOC
2007 challenge [8] whereas in MSCOCO [14], 101 points are used. Precision values
at intermediate points are simply interpolated to prevent wiggles in the curve,
by setting it to the maximum precision obtained in the interval of higher recall
than the current point. While a single intersection-over-union (IoU) threshold,
which is 0.5, is used in PASCAL VOC [8]; a range of IoU thresholds (from 0.5
to 0.95) are used in MSCOCO; the average AP over this range of IoU thresholds
is also called mAP.
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AP aims to evaluate the precision of the detector over the entire recall do-
main. Thus, it favors the methods that have precision over the entire recall
domain, instead of the detectors whose RP curves are nearer to the top-right
corner. In other words, AP does not compare the maximum but the overall capa-
bility/performance of the detectors. The most important two deficiencies of AP
are discussed in Section 1. In the following, we list other, more minor deficiencies.

AP is not confidence-score sensitive. Since the sorted list of the de-
tections is required to calculate AP, a detector generating results in a limited
interval will lead to the same AP. As an example, consider only 2 detections
with same confidence score in Fig. 1 out of 4 ground truths. Note that setting
the confidence scores to any value (i.e. 0.01) leads to the same AP as long as the
order is preserved.

AP does not suggest a confidence score threshold for the best set-

ting of the object detector. However, in a practical application, detections are
usually required to be filtered owing to time limitations. For example, the state-
of-the-art online object detector [17] applies a confidence score threshold of 0.8
on the SSD method [16] and obtains 12fps in this fashion.

AP uses interpolation between neighboring recall values, which is
especially problematic for classes with very small size. For example, “toaster”
class of [14] has 9 instances in the validation 2017 set.

4 Localization-Recall-Precision (LRP) Error

Let X be the set of ground truth boxes and Y be the set of boxes returned
by an object detector. To compute LRP(X,Ys), the LRP error of Ys against X
at a given score threshold s (0 ≤ s ≤ 1) and IoU threshold τ (0 ≤ τ < 1);
first, Ys, the set of detections with confidence score larger than s, is constructed
and detections in Ys are assigned to ground-truth boxes in X, as done for AP .
Once the assignments are made, the following values are computed: (i) NTP , the
number of true positives; (ii) NFP , the number of false positives; (iii) NFN , the
number of false negatives. Using these quantities, the LRP error is:

LRP(X,Ys) :=
1

Z
(wIoULRPIoU (X,Ys) + wFPLRPFP (X,Ys) + wFNLRPFN (X,Ys)) ,

(1)

where Z = NTP +NFP +NFN is the normalization constant; and the weights
wIoU = NTP

1−τ
, wFP = |Ys|, and wFP = |X| control the contributions of the terms.

The weights make each component easy to interpret, provide further information
about the detector and prevent the total error from being undefined whenever
the denominator of a single component is 0. LRPIoU represents the IoU tightness
of valid detections as follows:

LRPIoU (X,Ys) :=
1

NTP

NTP∑

i=1

(1− IoU(xi, yxi
)), (2)

which measures the mean bounding box localization error resulting from correct
detections. Another interpretation is that 1−LRPIoU (X,Ys) is the average IoU
of the valid detections.
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The second component, LRPFP , in Eq. 1 measures the false-positives:

LRPFP (X,Ys) := 1− Precision = 1−
NTP

|Ys|
=

NFP

|Ys|
, (3)

and false negatives are measured by LRPFN :

LRPFN (X,Ys) := 1−Recall = 1−
NTP

|X|
=

NFN

|X|
. (4)

FP and FN components together represent precision-recall of the corresponding
Ys by 1− LRPFP (X,Ys) and 1− LRPFN (X,Ys) respectively. Denoting the IoU
between xi ∈ X and its assigned detection yxi

∈ Ys by IoU(xi, yxi
), the LRP

error can be equally defined in a more compact form as:

LRP(X,Ys) :=
1

NTP +NFP +NFN

(

NTP
∑

i=1

1− IoU(xi, yxi
)

1− τ
+NFP +NFN

)

. (5)

LRP penalizes each TP by its erroneous localization normalized by 1− τ to the
[0,1] interval, each FP and FN by 1 that is the penalty upper bound. This sum of
error is averaged by the total number of its contributors, i.e., NTP +NFP +NFN .
So, with this normalization, LRP yields a value representing the average error
per bounding box in the [0,1] interval, where each component equally contributes
to the error. When necessary, the individual importance of IoU, FP, FN can be
changed for different applications. To this end, the prominent component can be
multiplied by a factor (say C) both in the numerator and the denominator [19].
This implies having C artificial errors for each error of the prominent type.

Overall, the ranges of total error and the components are [0, 1] and lower
value implies better performance. At the extreme cases; 0 for LRP means that
each ground truth item is detected with perfect localization, and if LRP is 1,
then no valid detection matches the ground truth (i.e., |Ys| = NFP ). LRP is
undefined only when the ground truth and detection sets are both empty (i.e.,
NTP +NFP +NFN = 0), i.e., there is nothing to evaluate.

As for the parameters, s is the confidence score threshold, and τ is the IoU
threshold. Since the RP pair is directly identified by the FP&FN components,
each different detection set Ys corresponds to a specific point of the RP curve.
For this reason, decreasing s corresponds to moving along the RP curve in the
positive recall direction. τ defines minimum overlap for a detection to be vali-
dated as a TP. In other words, higher τ means we require tighter BBs. Overall,
both parameters are related with the RP curve: A τ value sets the RP curve and
an s value moves along the RP curve to evaluate the LRP error.

In the supplementary material, we prove that LRP is a metric.



LRP: A New Performance Metric for Object Detection 7

5 Optimal LRP (oLRP) Error: The Performance Metric
and Thresholder

Optimal LRP (oLRP) is defined as the minimum achievable LRP error with
τ = 0.5, which makes oLRP parameter independent:

oLRP := min
s

LRP(X,Ys). (6)

For ablation studies and practical requirements, different τ values can be adopted.
In such cases, oLRP@τ can be used to denote the Optimal LRP error at τ .

oLRP searches among the confidence scores to find the best balance for com-
peting precision-recall-IoU. The RP setting of the RP curve that oLRP has found
corresponds to the top-right part of the curve, where the optimal balanced set-
ting resides. We call a curve sharper than another RP curve, if its peak point at
the top-right part is nearer to the (1, 1) RP pair. To illustrate, the RP curves in
Fig. 1(d) and 1(e) are sharper than that in Fig. 1(f).

The components of oLRP are coined as optimal box localization (oLRPIoU ),
optimal FP (oLRPFP ), and optimal FN (oLRPFN ) components. In this case,
oLRPIoU describes the mean average tightness for a class, and oLRPFP and
oLRPFN together pertain to the sharpness of the curve since the corresponding
RP pair is the maximum achievable performance value of the detector for this
class. One can directly pinpoint the sharpness point by 1 − oLRPFP and 1 −
oLRPFN . Overall, different from AP, oLRP aims to find out the best class specific
setting of the detector and it favors sharper ones that also represent better BB
tightness.

Denoting oLRP error of class c ∈ C by oLRPc, Mean Optimal LRP (moLRP)
is defined as follows:

moLRP :=
1

|C|

∑

c∈C

oLRPc. (7)

As in mAP, moLRP is the performance metric for the entire detector. Mean opti-
mal box localization, FP and FN components, denoted by moLRPIoU , moLRPFP ,
moLRPFN respectively, are similarly defined as the mean of the class specific
components. Different from the components in oLRP, the mean optimal FP and
FN components are not necessarily on the average of the RP curves of all classes
due to averaging moLRPFP (i.e., precision) with different moLRPFN (i.e., re-
call) values but still provides information on the sharpness of the RP curves as
shown in the experiments.

Owing to its filtering capability, oLRP can be used for thresholding purposes.
If a problem needs an image object detector as the backbone and processing is
to be completed within limited time, then only a small subset of the detections
should be selected. For such methods, using an overall confidence score for the
object detector is a common approach [17]. For such a task, oLRP identifies
the class-specific best confidence score thresholds. One possible drawback of this
method is that validated detections can still be too large to be processed in the
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desired limited time. However, by accepting larger LRP errors, higher confidence
scores can be set, but again in a class-specific manner. Second practical usage of
oLRP is about the deployment of the devised object detector into a platform in
which confidence scores are to be discarded for user-friendliness. In such a case,
one needs to set the τ threshold considering the application requirements while
optimizing for the best confidence score.

In essence, calculating oLRP is an optimization problem. However, thanks to
the smaller search space, we propose to discretize the s domain into 0.01 spaced
intervals and search exhaustively in this limited space.

6 Experimental Evaluation

In this section, we analyze the parameters of LRP, represent its discrimina-
tive power on common object detectors and finally show that the class specific
thresholds increase the performance of a simple online video object detector.

Evaluated Object Detectors: We evaluate commonly used deep object
detectors; namely, Faster R-CNN, RetinaNet, and SSD. For Faster R-CNN and
RetinaNet variants, we use the models by [11] and for SSD variants, the models
of [10] are utilized. For the variants, we use R50, R101 and X101 while referring to
the ResNet-50, ResNet-101 and RexNeXt-101 backbones respectively and FPN
for feature pyramid network. All models are tested on “MS COCO validation
2017” including 80 classes and 5000 images.
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Fig. 2: For each class, LRP components & total error of Faster R-CNN (X101+FPN)
are plotted against s. The optimal confidence scores are marked with crosses.

6.1 Analyzing Parameters s and τ

Using Faster R-CNN (X101+FPN) results of the first 10 classes and mean-error
for clarity, the effects of the s and τ are analyzed in Fig. 2 and 3. We observe
that box localization component is not significantly affected by increasing s,
except for large s, where the error slightly decreases since the results tend to be
more “confident”. FP and FN components act in contrast to precision and recall
respectively, as expected. Therefore, lower curves imply better performance for
these components. Finally, the total error (oLRP) has a second-order shape.
Since the localization error is not affected significantly by s, the behavior of the
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total error is mainly determined by FP and FN components, which result in the
global minima of the total error to have a good precision and recall balance.

In Fig. 3, oLRP and moLRP are plotted against different τ values. As ex-
pected, larger τ values imply lower the box localization component (oLRPIoU).
On the other hand, increase τ causes FP and FN components to increase rapidly,
leading to higher total error (oLRP). This is intuitive since at the extreme case,
i.e., when τ = 1, there are hardly any valid detections and all the detections
are false positives, which makes oLRP to be approximately 1. Therefore, oLRP
allows measuring the performance of a detector designed for an application that
requires a different τ by also providing additional information. In addition, in-
vestigating oLRP for different τ values represents a good extension for ablation
studies.
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Fig. 3: For each class, oLRP and its components for Faster R-CNN (X101+FPN) are
plotted against τ . The mean represents the mean of 80 classes.

Table 1: Performance comparison of common object detectors. R50, R101 and X101
represent the backbone networks used by ResNet-50, ResNet-101 and RexNeXt-101,
respectively, and FPN refers to the feature pyramid network. s∗min and s∗max denote
minimum and maximum class-specific thresholds respectively for oLRP. Note that un-
like AP, lower scores are better for LRP.

mAP mAP@0.5 moLRP moLRPIoU moLRPFP moLRPFN s
∗

min
s
∗

max

SSD-300 0.161 0.383 0.854 0.281 0.403 0.622 0.05 0.53
SSD-512 0.284 0.481 0.763 0.202 0.331 0.549 0.08 0.63
Faster R-CNN (R50) 0.348 0.557 0.714 0.183 0.292 0.484 0.18 0.93
RetinaNet (R50+FPN) 0.357 0.547 0.711 0.169 0.293 0.503 0.26 0.60
Faster R-CNN (R50+FPN) 0.379 0.593 0.689 0.175 0.259 0.454 0.41 0.94
RetinaNet (X101+FPN) 0.398 0.595 0.677 0.161 0.255 0.462 0.28 0.70
Faster R-CNN (R101+FPN) 0.398 0.613 0.673 0.168 0.255 0.436 0.37 0.94
Faster R-CNN (X101+FPN) 0.413 0.637 0.663 0.171 0.256 0.413 0.39 0.94

6.2 Evaluating Common Image Object Detectors

General Overview: Table 1 compares the detectors using mAP as the COCO’s
standard metric, mAP@0.50, moLRP and the class-specific threshold ranges. We
observe that moLRP values are indicative of the known performances of the de-
tectors. For any type of the detector, each new property (i.e., including FPN,
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increasing depth, using ResNext for Faster R-CNN and RetinaNet, increasing
input size to 512 for SSD) decreases moLRP as expected. Moreover, the overall
order is consistent with mAP except for RetinaNet (X101+FPN) and Faster R-
CNN (R101+FPN), which are equal in terms of mAP; however, Faster R-CNN
(R101+FPN) surpasses RetinaNet (X101+FPN) in terms of moLRP, which is
discussed below. Note that moLRPFP and moLRPFN values in Table 1 are also
consistent with the sharpness of the RP curves of the methods as presented
in Fig. 4. To illustrate, Faster R-CNN (X101+FPN) has the best moLRPFP,
moLRPFN combination, corresponding to the sharpest RP curve. Another in-
teresting example pertains to the RetinaNet (X101+FPN) and Faster R-CNN
(R50+FPN) curves. For these methods, moLRPFP and moLRPFN comparison
slightly favors Faster R-CNN (R50+FPN), which is justified by their PR curves
in Fig. 4.
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Fig. 4: Average RP curves of the
common detectors.

Class-Based Comparison and Inter-

preting the Components: Now we ana-
lyze oLRP on a class-basis and look at the
individual components to get a better feel-
ing about the characteristics of methods –
see Fig. 5. For all three classes, oLRP is de-
termined at the RP pairs where there ex-
ists a sharp precision decrease on the top
right part of the curve. Moreover, intuitively,
these pairs provide a good balance between
precision and recall. Considering the FP and
FN components, one can infer the structure
of the curve. For all methods, the “zebra”

class has the sharpest RP curves which correspond to lower FP & FN error val-
ues. For example, Faster R-CNN has 0.069 and 0.188 FP and FN error values,
respectively. Thus, without looking at the curve, one may consider that the peak
of the curve resides at 1−0.069 = 0.931 precision and 1−0.188 = 0.812 recall. For
the “broccoli” curve, a less sharp one, the optimal point is at 1− 0.498 = 0.502
and 1 − 0.484 = 0.516 as precision and recall respectively. Similar to “zebra”,
these values suggest that the peak of the curve is around the center of the
RP range. The localization component (oLRPIoU) shows that the tightness of
the boxes for the “bus” class is better than that of “zebra” for all detectors
even though “zebra” has a sharper RP curve. For RetinaNet, average IoU is
1 − 0.106 = 0.894 and 1 − 0.122 = 0.878 for the “bus” and “zebra” classes re-
spectively. With this analysis, we also see that it is easy to compare the tightness
of the boxes among the methods and classes.

Same mAP but different behaviors, Faster R-CNN vs. RetinaNet:

Now we compare two detectors with equal AP in order to identify their char-
acteristics using the components of moLRP; namely, RetinaNet (X101+FPN),
a single shot detector and Faster R-CNN (R101+FPN), a two-step detector.
Firstly, we use the box localization component (moLRPIoU) in Table 1 to dis-
criminate between these two detectors. The standard metric used in MS COCO
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Fig. 5: Example RP curves representing the optimal configurations marked with crosses.
The curves are drawn for τ = 0.5. The tables in the figures represent the performance
of the methods with respect to AP and moLRP. The rows of the table correspond to
SSD-512, RetinaNet (X101+FPN) and Faster R-CNN (R101+FPN) respectively. Note
that unlike AP, lower scores are better for LRP.

aims to include the localization error by averaging over 10 mAP values. Since
1.8% difference for these two detectors is present in the mAP@0.5, one can infer
that RetinaNet seems to produce more tight boxes. However, this inference is
possible only by examining all 10 mAP results one by one and still it is not pos-
sible to quantize this tightness. In contrast, moLRPIoU directly suggests that,
among all the detectors in Table 1, RetinaNet (X101+FPN) produces the tight-
est bounding boxes with an average tightness of 1− 0.161 = 0.839 in IoU terms.

Secondly, we compare the sharpness of the same two detectors, which are
evidently different (Fig. 4). RetinaNet (X101+FPN) produces 486, 108 bounding
boxes for 36, 781 annotations, whereas Faster R-CNN (R101+FPN) yields only
127, 039 thanks to its RPN method. For RetinaNet, confidence scores of 57%
of the detections are under 0.1, and 87% of them are under 0.25 (these values
are 29% and 56% for Faster R-CNN), which generally causes RetinaNet to have
lower or equal precision than Faster R-CNN throughout the recall domain except
for the tail of the RP curve. In the tail of RetinaNet, owing to its large number of
results, it has some precision even though that of Faster R-CNN drops to 0. Fig.
5 illustrates this phenomenon, which is best observed in the “zebra” curve. Even
though RetinaNet has higher AP than Faster R-CNN with 0.899 to 0.880, this
AP difference originates from the large number of RetinaNet detections, which
causes the better RP curve tail. This shallow curve-longer tail phenomenon is
observed to be more or less valid for more than 50 classes including the ones in
Fig. 6. On the other hand, oLRP and thus moLRP do not favor these kind of
detectors but the sharper ones as shown in Fig. 5, which causes Faster R-CNN
(R101+FPN) to have lower Optimal LRP error for “zebra” class.

Overall, even though RetinaNet has the best bounding box localization,
Faster R-CNN (R101+FPN) with the same AP has lower mean oLRP error.
Moreover, considering the RP curve of these variants, Faster R-CNN is sharper
than RetinaNet as shown in Fig. 4. This is also validated by the components
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with nearly equal moLRPFP and difference in moLRPFN in favor of Faster R-
CNN. Similarly, both moLRPFP and moLRPFN for RetinaNet (R50+FPN) are
greater than those of Faster R-CNN (R50) due to the same shallow curve-longer
tail phenomenon, preventing its RP curves to be sharper. Again, what makes
RetinaNet (R50+FPN) to have better performance regarding both mAP and
moLRP is its strength to produce tight bounding boxes as shown in Table 1.

6.3 Better Threshold, Better Performance

In this experiment, we demonstrate a use-case where oLRP helps us to set class-
specific optimal thresholds as an alternative to the naive approach of using a
general threshold for all classes. To this end, we developed a simple, online
video object detection framework where we use an off-the-shelf still-image object
detector (RetinaNet-50 [13] trained on MS-COCO [14]) and built three different
versions of the video object detector. The first version, denoted with B, uses the
still-image object detector to process each frame of the video independently. The
second and third versions, denoted with G and S, respectively, again use the still-
image object detector to process each frame and in addition, they link bounding
boxes across subsequent frames using the Hungarian matching algorithm [2] and
update the scores of these linked boxes using a simple Bayesian rule (details of
this simple online video object detector is given in the Supplementary Material).
The only difference between G and S is that while G uses a validated threshold
of 0.5 (see s∗ of B in Table 2 and Fig. 1 in Supplementary Material for validation)
as the confidence score threshold for all classes, S uses the optimal threshold per
class which achieves the oLRP error. We test these three detectors on 346 videos
of ImageNet VID validation set [28] for 15 object classes which also happen to
be included in MS COCO.
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Fig. 6: Example RP curves of the methods. Optimal RP pairs are marked with crosses.

AP vs. oLRP: We compare G with B in order to represent the evaluation
perspectives of AP and oLRP – see Fig. 6 and Table 2. Since B is a conventional
object detector, with conventional RP curves as illustrated in Fig. 6. On the
other hand, in order to be faster, G ignores some of the detections causing its
maximum recall to be less than that of B. Thus, these shorter ranges in the
recall set a big problem in the AP evaluation. Quantitatively, B surpasses G by
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7.5% AP. On the other hand, despite limited recall coverage, G obtains higher
precision than B especially through the end of its RP curve. To illustrate, for the
“boat” class in Fig. 6, G has significantly better precision after approximately
between 0.5 and 0.9 recall even though its AP is lower by 6%. Since oLRP
compares methods concerning their best configurations (i.e. the peak of their
RP curves), this difference is clearly addressed comparing their oLRP error in
which G surpasses S by 4.1%. Furthermore, the superiority of G is shown to be
its higher precision since FN components of G and S are very close while FP
component of G is 8.6% better, which is also the exact difference of precisions
in their peaks of RP curves.

Therefore, while G seems to have very low performance in terms of AP, for
12 classes G reaches better peaks than B as illustrated by the oLRP values in
Table 2. This suggests that oLRP is better than AP in capturing the performance
details of the methods.

Table 2: Comparison among B, G, S with respect to AP & oLRP and their best class-
specific configurations. The mean of class thresholds are assigned as N/A since the
thresholds are set class-specific and the mean is not used. Note that unlike AP, lower
scores are better for LRP.
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A
P

B 0.681 0.630 0.547 0.565 0.555 0.587 0.463 0.601 0.661 0.473 0.602 0.561 0.713 0.829 0.816 0.619

G 0.621 0.445 0.492 0.398 0.417 0.510 0.416 0.568 0.588 0.441 0.571 0.547 0.600 0.769 0.765 0.544

S 0.645 0.535 0.500 0.485 0.419 0.492 0.434 0.569 0.589 0.444 0.573 0.545 0.609 0.792 0.782 0.561

o
L
R
P

B 0.627 0.776 0.718 0.702 0.759 0.692 0.728 0.700 0.625 0.723 0.692 0.677 0.583 0.594 0.436 0.669

G 0.606 0.783 0.691 0.727 0.758 0.679 0.714 0.697 0.614 0.699 0.654 0.648 0.586 0.553 0.432 0.656

S 0.603 0.762 0.687 0.688 0.759 0.678 0.712 0.697 0.613 0.701 0.655 0.649 0.583 0.551 0.425 0.651

o
L
R
P
Io

U B 0.182 0.271 0.169 0.177 0.207 0.145 0.166 0.203 0.170 0.155 0.192 0.154 0.159 0.199 0.128 0.179

G 0.181 0.258 0.170 0.160 0.207 0.151 0.165 0.200 0.170 0.160 0.195 0.155 0.156 0.195 0.128 0.177

S 0.186 0.270 0.170 0.173 0.207 0.148 0.170 0.200 0.170 0.160 0.194 0.155 0.159 0.197 0.131 0.179

o
L
R
P
F
P B 0.080 0.228 0.300 0.203 0.303 0.224 0.242 0.248 0.095 0.246 0.158 0.141 0.099 0.163 0.034 0.184

G 0.006 0.116 0.174 0.137 0.311 0.218 0.229 0.279 0.071 0.221 0.049 0.078 0.091 0.077 0.016 0.142

S 0.087 0.226 0.184 0.193 0.320 0.182 0.269 0.283 0.075 0.231 0.084 0.078 0.110 0.089 0.030 0.163

o
L
R
P
F
N B 0.383 0.427 0.478 0.477 0.499 0.504 0.533 0.394 0.395 0.540 0.448 0.494 0.344 0.224 0.220 0.424

G 0.359 0.523 0.480 0.571 0.493 0.473 0.512 0.372 0.388 0.494 0.415 0.467 0.360 0.221 0.227 0.424

S 0.326 0.389 0.489 0.461 0.488 0.490 0.480 0.369 0.385 0.493 0.406 0.468 0.339 0.203 0.202 0.398

s
∗

B 0.38 0.31 0.44 0.27 0.49 0.61 0.42 0.49 0.49 0.52 0.45 0.51 0.41 0.45 0.31 N/A

G 0.00 0.69 0.97 0.68 0.00 0.96 0.48 0.70 0.33 0.64 0.60 0.84 0.59 0.90 0.00 N/A

S 0.00 0.54 0.98 0.45 0.00 0.91 0.49 0.64 0.39 0.58 0.63 0.85 0.55 0.89 0.54 N/A

Effect of the Class-specific Thresholds: Compared to G, owing to the
class-specific thresholds, S has 2.3% better mAP and 0.6% better moLRP as
shown in Table 2. However, since the mean is dominated by s∗ around 0.5, it is
better to focus on classes with low or high s∗ values in order to grasp the effect
of the approach. The “bus” class has the lowest s∗ with 0.27. For this class, S
surpasses G by 8.7% in AP and 4.1% in oLRP. This performance increase is also
observed for other classes with very low thresholds, such as “airplane”, “bicycle”



14 K. Oksuz, B.C. Cam, E. Akbas and S. Kalkan

and “zebra”. For these classes with lower thresholds, the effect of class-specific
threshold on the RP curve is to stretch the curve in the recall domain (maybe by
accepting some loss in precision) as shown in the “bus” example in Fig. 6. Not
surprisingly, “cow” is one of the two classes for which AP of S is lower since its
threshold is the highest and thereby causing recall to be more limited. On the
other hand, regarding oLRP, the result is not worse since this time the RP curve
is stretched through the positive precision, as shown in Fig. 6, allowing better
FP errors. Thus, in any case, lower or higher, the threshold setting method aims
to discover the best RP curve. There are four classes in total for which G is
better than S in terms of oLRP. However, note that the maximum difference
is 0.2% in oLRP and these are the classes with thresholds around 0.5. These
suggest that choosing class-specific thresholds rather than the common general
thresholding approach increases the performance of the detector especially for
classes with low or high class-specific thresholds.

7 Conclusion

We introduced a novel performance metric, LRP, as an alternative to the dom-
inantly used AP. LRP has a number of advantages over AP, which we demon-
strated in the paper: (i) AP cannot distinguish between very different RP curves
whereas LRP, through its error components, provides a richer evaluation in terms
of TP, FN and localization. (ii) AP not does have a localization component and
one needs to calculate AP@τ with different τ values. However, LRP explicitly
includes a localization error component (1 − oLRPIoU gives the mean localiza-
tion accuracy of a detector). (iii) There are many practical use cases where one
needs to set a detection threshold in order to obtain detections to be used in a
subsequent stage. Optimal LRP provides a practical solution to this problem,
which we demonstrated for online video object detection.

Supplementary Material. Supplementary material contains a detailed defi-
nition of AP, a result on the distribution of confidence thresholds, a description
of the online detector and the proof that LRP is a metric.
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