
Stacked Cross Attention for

Image-Text Matching

Kuang-Huei Lee1, Xi Chen1, Gang Hua1, Houdong Hu1, and Xiaodong He2⋆

1 Microsoft AI and Research
{kualee,chnxi,ganghua,houhu}@microsoft.com

2 JD AI Research
xiaodong.he@jd.com

Abstract. In this paper, we study the problem of image-text matching.
Inferring the latent semantic alignment between objects or other salient
stuff (e.g. snow, sky, lawn) and the corresponding words in sentences
allows to capture fine-grained interplay between vision and language, and
makes image-text matching more interpretable. Prior work either simply
aggregates the similarity of all possible pairs of regions and words without
attending differentially to more and less important words or regions,
or uses a multi-step attentional process to capture limited number of
semantic alignments which is less interpretable. In this paper, we present
Stacked Cross Attention to discover the full latent alignments using both
image regions and words in a sentence as context and infer image-text
similarity. Our approach achieves the state-of-the-art results on the MS-
COCO and Flickr30K datasets. On Flickr30K, our approach outperforms
the current best methods by 22.1% relatively in text retrieval from image
query, and 18.2% relatively in image retrieval with text query (based
on Recall@1). On MS-COCO, our approach improves sentence retrieval
by 17.8% relatively and image retrieval by 16.6% relatively (based on
Recall@1 using the 5K test set). Code has been made available at: https:
//github.com/kuanghuei/SCAN.
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1 Introduction

In this paper we study the problem of image-text matching, central to image-
sentence cross-modal retrieval (i.e. image search for given sentences with visual
descriptions and the retrieval of sentences from image queries).

When people describe what they see, it can be observed that the descriptions
make frequent reference to objects and other salient stuff in the images, as well
as their attributes and actions (as shown in Figure 1). In a sense, sentence
descriptions are weak annotations, where words in a sentence correspond to some
particular, but unknown regions in the image. Inferring the latent correspondence
between image regions and words is a key to more interpretable image-text
matching by capturing the fine-grained interplay between vision and language.

⋆ Work performed while working at Microsoft Research.

https://github.com/kuanghuei/SCAN
https://github.com/kuanghuei/SCAN
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A few people riding bikes next to a dog on a leash.

Fig. 1. Sentence descriptions make frequent reference to some particular but unknown
salient regions in images, as well as their attributes and actions. Reasoning the under-
lying correspondence is a key to interpretable image-text matching.

Similar observations motivated prior work on image-text matching [19, 20,
32]. These models often detect image regions at object/stuff level and simply
aggregate the similarity of all possible pairs of image regions and words in sen-
tence to infer the global image-text similarity; e.g. Karpathy and Fei-Fei [19]
proposed taking the maximum of the region-word similarity scores with respect
to each word and averaging the results corresponding to all words. It shows the
effectiveness of inferring the latent region-word correspondences, but such ag-
gregation does not consider the fact that the importance of words can depend
on the visual context.

We strive to take a step towards attending differentially to important image
regions and words with each other as context for inferring the image-text simi-
larity. We introduce a novel Stacked Cross Attention that enables attention with
context from both image and sentence in two stages. In the proposed Image-

Text formulation, given an image and a sentence, it first attends to words in
the sentence with respect to each image region, and compares each image region
to the attended information from the sentence to decide the importance of the
image regions (e.g. mentioned in the sentence or not). Likewise, in the proposed
Text-Image formulation, it first attends to image regions with respect to each
word and then decides to pay more or less attention to each word.

Compared to models that perform fixed-step attentional reasoning and thus
only focus on limited semantic alignments (one at a time) [31, 16], Stacked Cross
Attention discovers all possible alignments simultaneously. Since the number of
semantic alignments varies with different images and sentences, the correspon-
dence inferred by our method is more comprehensive and thus making image-text
matching more interpretable.

To identify the salient regions in image, we follow Anderson et al. [1] to
analogize the detection of salient regions at object/stuff level to the spontaneous
bottom-up attention in the human vision system [4, 6, 21], and practically imple-
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ment bottom-up attention using Faster R-CNN [34], which represents a natural
expression of a bottom-up attention mechanism.

To summarize, our primary contribution is the novel Stacked Cross Atten-
tion mechanism for discovering the full latent visual-semantic alignments. To
evaluate the performance of our approach in comparison to other architectures
and perform comprehensive ablation studies, we look at the MS-COCO [29] and
Flickr30K [43] datasets. Our model, Stacked Cross Attention Network (SCAN)
that uses the proposed attention mechanism, achieves the state-of-the-art re-
sults. On Flickr30K, our approach outperforms the current best methods by
22.1% relatively in text retrivel from image query, and 18.2% relatively in im-
age retrieval with text query (based on Recall@1). On MS-COCO, it improves
sentence retrieval by 17.8% relatively and image retrieval by 16.6% relatively
(based on Recall@1 using the 5K test set).

2 Related Work

A rich line of studies have explored mapping whole images and full sentences
to a common semantic vector space for image-text matching [22, 38, 2, 39, 23,
27, 44, 10, 33, 13, 9, 8, 11]. Kiros et al. [22] made the first attempt to learn
cross-view representations with a hinge-based triplet ranking loss using deep
Convolutional Neural Networks (CNN) to encode images and Recurrent Neural
Networks (RNN) to encode sentences. Faghri et al. [10] leveraged hard negatives
in the triplet loss function and yielded significant improvement. Peng et al. [33]
and Gu et al. [13] suggested incorporating generative objectives into the cross-
view feature embedding learning. As opposed to our proposed method, the above
works do not consider the latent vision-language correspondence at the level of
image regions and words. Specifically, we discuss two lines of research addressing
this problem using attention mechanism as follows.

Image-text matching with bottom-up attention. Bottom-up attention is a
terminology that Anderson et al. [1] proposed in their work on image captioning
and Visual Question-Answering (VQA), referring to purely visual feed-forward
attention mechanisms in analogy to the spontaneous bottom-up attention in hu-
man vision system [4, 6, 21] (e.g. human attention tends to be attracted to salient
instances like objects instead of background). Similar observation had motivated
this study and several other works [19, 20, 32, 17]. Karpathy and Fei-Fei [19]
proposed detecting and encoding image regions at object level with R-CNN [12],
and then inferring the image-text similarity by aggregating the similarity scores
of all possible region-word pairs. Niu et al. [32] presented a model that maps
noun phrases within sentences and objects in images into a shared embedding
space on top of full sentences and whole images embeddings. Huang et al. [17]
combined image-text matching and sentence generation for model learning with
an improved image representation including objects, properties, actions, etc. In
contrast to our model, these studies do not use the conventional attention mech-
anism (e.g. [40]) to learn to focus on image regions for given semantic context.
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Conventional attention-based methods. The attention mechanism focuses
on certain aspects of data with respect to a task-specific context (e.g. looking for
something). In computer vision, visual attention aims to focus on specific images
or subregions [1, 40, 41, 26]. Similarly, attention methods for natural language
processing adaptively select and aggregate informative snippets to infer results
[42, 35, 3, 25, 28]. Recently, attention-based models have been proposed for the
image-text matching problem. Huang et al. [16] developed a context-modulated
attention scheme to selectively attend to a pair of instances appearing in both
the image and sentence. Similarly, Nam et al. [31] proposed Dual Attentional
Network to capture fine-grained interplay between vision and language through
multiple steps. However, these models adopt multi-step reasoning with a pre-
defined number of steps to look at one semantic matching (e.g. an object in the
image and a phrase in the sentence) at a time, despite the number of semantic
matchings change for different images and sentence descriptions. In contrast, our
proposed model discovers all latent alignments, thus is more interpretable.

3 Learning Alignments with Stacked Cross Attention

In this section, we describe the Stacked Cross Attention Network (SCAN). Our
objective is to map words and image regions into a common embedding space
to infer the similarity between a whole image and a full sentence. We begin with
bottom-up attention to detect and encode image regions into features. Also, we
map words in sentence along with the sentence context to features. We then apply
Stacked Cross Attention to infer the image-sentence similarity by aligning image
region and word features. We first introduce Stacked Cross Attention in Section
3.1 and the objective of learning alignments in Section 3.2. Then we detail image
and sentence representations in Section 3.3 and Section 3.4, respectively.

3.1 Stacked Cross Attention

Stacked Cross Attention expects two inputs: a set of image features V = {v1, ..., vk
}, vi ∈ R

D, such that each image feature encodes a region in an image; a set of
word features E = {e1, ..., en}, ei ∈ R

D, in which each word feature encodes a
word in a sentence. The output is a similarity score, which measures the similarity
of an image-sentence pair. In a nutshell, Stacked Cross Attention attends differ-
entially to image regions and words using both as context to each other while
inferring the similarity. We define two complimentary formulations of Stacked
Cross Attention below: Image-Text and Text-Image.

Image-Text Stacked Cross Attention. This formulation is illustrated in
Figure 2, entailing two stages of attention. First, it attends to words in the
sentence with respect to each image region. In the second stage, it compares
each image region to the corresponding attended sentence vector in order to
determine the importance of the image regions with respect to the sentence.
Specifically, given an image I with k detected regions and a sentence T with n
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A cat is sitting in the bathroom sink

Sentence !:

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

Stage 1: Attend to words

Attended sentence vector "#
$

Similarity
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Fig. 2. Image-Text Stacked Cross Attention: At stage 1, we first attend to words in the
sentence with respect to each image region feature vi to generate an attended sentence
vector at

i for i-th image region. At stage 2, we compare at
i and vi to determine the

importance of each image region, and then compute the similarity score.

words, we first compute the cosine similarity matrix for all possible pairs, i.e.

sij =
vTi ej
||vi||||ej ||

, i ∈ [1, k], j ∈ [1, n]. (1)

Here, sij represents the similarity between the i-th region and the j-th word. We
empirically find it beneficial to threshold the similarities at zero [20] and normal-

ize the similarity matrix as s̄ij = [sij ]+/
√

∑k
i=1[sij ]

2
+, where [x]+ ≡ max(x, 0).

To attend on words with respect to each image region, we define a weighted
combination of word representations (i.e. the attended sentence vector ati, with
respect to the i-th image region)

ati =

n
∑

j=1

αijej , (2)

where

αij =
exp(λ1s̄ij)

∑n
j=1 exp(λ1s̄ij)

, (3)

and λ1 is the inversed temperature of the softmax function [5] (Eq. (3)). This
definition of attention weights is a variant of dot product attention [30].

To determine the importance of each image region given the sentence context,
we define relevance between the i-th region and the sentence as cosine similarity
between the attended sentence vector ati and each image region feature vi, i.e.

R(vi, a
t
i) =

vTi a
t
i

||vi||||ati||
. (4)
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Sentence !: A cat is sitting in the bathroom sink. 
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Fig. 3. Text-Image Stacked Cross Attention: At stage 1, we first attend to image regions
with respect to each word feature ei to generate an attended image vector av

j for j-th
word in the sentence (The images above the symbol av

n represent the attended image
vectors). At stage 2, we compare av

j and ej to determine the importance of each image
region, and then compute the similarity score.

Inspired by the minimum classification error formulation in speech recognition
[18, 15], the similarity between image I and sentence T is calculated by Log-
SumExp pooling (LSE), i.e.

SLSE(I, T ) = log(
k

∑

i=1

exp(λ2R(vi, a
t
i)))

(1/λ2), (5)

where λ2 is a factor that determines how much to magnify the importance of
the most relevant pairs of image region feature vi and attended sentence vector
ati. As λ2 →∞, S(I, T ) approximates to maxk

i=1R(vi, a
t
i). Alternatively, we can

summarize R(vi, a
t
i) with average pooling (AVG), i.e.

SAVG(I, T ) =

∑k
i=1 R(vi, a

t
i)

k
. (6)

Essentially, if region i is not mentioned in the sentence, its feature vi would not
be similar to the corresponding attended sentence vector ati since it would not
be able to collect good information while computing ati. Thus, comparing ati and
vi determines how important region i is with respect to the sentence.
Text-Image Stacked Cross Attention. Likewise, we can first attend to im-
age regions with respect to each word, and compare each word to the corre-
sponding attended image vector to determine the importance of each word. We
call this formulation Text-Image, which is depicted in Figure 3. Specifically, we
normalize cosine similarity si,j between the i-th region and the j-th word as

s̄′i,j = [si,j ]+/
√

∑n
j=1[si,j ]

2
+.

To attend on image regions with respect to each word, we define a weighted
combination of image region features (i.e. the attended image vector avj with re-

spect to j-th word): avj =
∑k

i=1 α
′
ijvi, where α

′
ij = exp(λ1s̄

′
i,j)/

∑k
i=1 exp(λ1s̄

′
i,j).
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Using the cosine similarity between the attended image vector avj and the word
feature ej , we measure the relevance between the j-th word and the image as
R′(ej , a

v
j ) = (eTj a

v
j )/(||ej ||||a

v
j ||). The final similarity score between image I and

sentence T is summarized by LogSumExp pooling (LSE), i.e.

S′
LSE(I, T ) = log(

n
∑

j=1

exp(λ2R
′(ej , a

v
j )))

(1/λ2), (7)

or alternatively by average pooling (AVG)

S′
AVG(I, T ) =

∑n
j=1 R

′(ej , a
v
j )

n
. (8)

In prior work, Karpathy and Fei-Fei [19] defined region-word similarity as a
dot product between vi and ej , i.e. sij = vTi ej and image-text similarity by
aggregating all possible pairs without attention as

S′
SM (I, T ) =

n
∑

j=1

max
i

(sij). (9)

We revisit this formulation in our ablation studies in Section 4.4, dubbed Sum-

Max Text-Image, and also the symmetric form, dubbed Sum-Max Image-Text

SSM (I, T ) =

k
∑

i=1

max
j

(sij). (10)

3.2 Alignment Objective

Triplet loss is a common ranking objective for image-text matching. Previous
approaches [19, 22, 37] have employed a hinge-based triplet ranking loss with
margin α, i.e.

l(I, T ) =
∑

T̂

[α− S(I, T ) + S(I, T̂ )]+ +
∑

Î

[α− S(I, T ) + S(Î , T )]+, (11)

where [x]+ ≡ max(x, 0) and S is a similarity score function (e.g. SLSE). The
first sum is taken over all negative sentences T̂ given an image I; the second
sum considers all negative images Î given a sentence T . If I and T are closer to
one another in the joint embedding space than to any negatives pairs, by the
margin α, the hinge loss is zero. In practice, for computational efficiency, rather
than summing over all the negative samples, it usually considers only the hard
negatives in a mini-batch of stochastic gradient descent.

In this study, we focus on the hardest negatives in a mini-batch following
Fagphri et al. [10]. For a positive pair (I, T ), the hardest negatives are given by
Îh = argmaxm 6=IS(m,T ) and T̂h = argmaxd 6=TS(I, d). We therefore define our
triplet loss as

lhard(I, T ) = [α− S(I, T ) + S(I, T̂h)]+ + [α− S(I, T ) + S(Îh, T )]+. (12)
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3.3 Representing images with Bottom-Up Attention

Given an image I, we aim to represent it with a set of image features V =
{v1, ..., vk}, vi ∈ R

D, such that each image feature encodes a region in an image.
The definition of an image region is generic. However, in this study, we focus on
regions at the level of object and other entities. Following Anderson et al. [1].
we refer to detection of salient regions as bottom-up attention and practically
implement it with a Faster R-CNN [34] model.

Faster R-CNN is a two-stage object detection framework. In the first stage
of Region Proposal Network (RPN), a grid of anchors tiled in space, scale and
aspect ratio are used to generate bounding boxes, or Region Of Interests (ROIs),
with high objectness scores. In the second stage the representations of the ROIs
are pooled from the intermediate convolution feature map for region-wise clas-
sification and bounding box regression. A multi-task loss considering both clas-
sification and localization are minimized in both the RPN and final stages.

We adopt the Faster R-CNN model in conjunction with ResNet-101 [14]
pre-trained by Anderson et al. [1] on Visual Genomes [24]. In order to learn
feature representations with rich semantic meaning, instead of predicting the
object classes, the model predicts attribute classes and instance classes, in which
instance classes contain objects and other salient stuff that is difficult to localize
(e.g. stuff like ‘sky’, ‘grass’, ‘building’ and attributes like ‘furry’).

For each selected region i, fi is defined as the mean-pooled convolutional
feature from this region, such that the dimension of the image feature vector is
2048. We add a fully-connect layer to transform fi to a h-dimensional vector

vi = Wvfi + bv. (13)

Therefore, the complete representation of an image is a set of embedding vectors
v = {v1, ..., vk}, vi ∈ R

D, where each vi encodes an salient region and k is the
number of regions.

3.4 Representing Sentences

To connect the domains of vision and language, we would like to map language to
the same h-dimensional semantic vector space as image regions. Given a sentence
T , the simplest approach is mapping every word in it individually. However, this
approach does not consider any semantic context in the sentence. Therefore, we
employ an RNN to embed the words along with their context.

For the i-th word in the sentence, we represent it with an one-hot vector
showing the index of the word in the vocabulary, and embed the word into a
300-dimensional vector through an embedding matrix We. xi = Wewi, i ∈ [1, n].
We then use a bi-directional GRU [3, 36] to map the vector to the final word
feature along with the sentence context by summarizing information from both
directions in the sentence. The bi-directional GRU contains a forward GRU
which reads the sentence T from w1 to wn

−→
hi =

−−−→
GRU(xi), i ∈ [1, n] (14)
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and a backward GRU which reads from wn to w1

←−
hi =

←−−−
GRU(xi), i ∈ [1, n]. (15)

The final word feature ei is defined by averaging the forward hidden state
−→
hi

and backward hidden state
←−
hi , which summarizes information of the sentence

centered around wi

ei =
(
−→
hi +

←−
hi)

2
, i ∈ [1, n]. (16)

4 Experiments

We carry out extensive experiments to evaluate Stacked Cross Attention Network
(SCAN), and compare various formulations of SCAN to other state-of-the-art ap-
proaches. We also conduct ablation studies to incrementally verify our approach
and thoroughly investigate the behavior of SCAN. As is common in informa-
tion retreival, we measure performance of sentence retrieval (image query) and
image retrieval (sentence query) by recall at K (R@K) defined as the fraction
of queries for which the correct item is retrieved in the closest K points to the
query. The hyperparameters of SCAN, such as λ1 and λ2, are selected on the
validation set. Details of training and the bottom-up attention implementation
are presented in the supplementary material.

4.1 Datasets

We evaluate our approach on the MS-COCO and Flickr30K datasets. Flickr30K
contains 31,000 images collected from Flickr website with five captions each.
Following the split in [19, 10], we use 1,000 images for validation and 1,000
images for testing and the rest for training. MS-COCO contains 123,287 images,
and each image is annotated with five text descriptions. In [19], the dataset is
split into 82,783 training images, 5,000 validation images and 5,000 test images.
We follow [10] to add 30,504 images that were originally in the validation set of
MS-COCO but have been left out in this split into the training set. Each image
comes with 5 captions. The results are reported by either averaging over 5 folds
of 1K test images or testing on the full 5K test images. Note that some early
works such as [19] only use a training set containing 82,783 images.

4.2 Results on Flickr30K

Table 1 presents the quantitative results on Flickr30K where all formulations of
our proposed method outperform recent approaches in all measures. We denote
the Text-Image formulation by t-i, Image-Text formulation by i-t, LogSumExp
pooling by LSE, and average pooling by AVG. The best R@1 of sentence re-
trieval given an image query is 67.9, achieved by SCAN i-t AVG, where we see a
22.1% relative improvement comparing to DPC [44]. Furthermore, we combine
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Table 1. Comparison of the cross-modal retrieval restuls in terms of Recall@K(R@K)
on Flickr30K. t-i denotes Text-Image. i-t denotes Image-Text. AVG and LSE denotes
average and LogSumExp pooling respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

DVSA (R-CNN, AlexNet) [19] 22.2 48.2 61.4 15.2 37.7 50.5
HM-LSTM (R-CNN, AlexNet) [32] 38.1 - 76.5 27.7 - 68.8
SM-LSTM (VGG) [16] 42.5 71.9 81.5 30.2 60.4 72.3
2WayNet (VGG) [9] 49.8 67.5 - 36.0 55.6 -
DAN (ResNet) [31] 55.0 81.8 89.0 39.4 69.2 79.1
VSE++ (ResNet) [10] 52.9 - 87.2 39.6 - 79.5
DPC (ResNet) [44] 55.6 81.9 89.5 39.1 69.2 80.9
SCO (ResNet) [17] 55.5 82.0 89.3 41.1 70.5 80.1

Ours (Faster R-CNN, ResNet):
SCAN t-i LSE (λ1 = 9, λ2 = 6) 61.1 85.4 91.5 43.3 71.9 80.9
SCAN t-i AVG (λ1 = 9) 61.8 87.5 93.7 45.8 74.4 83.0
SCAN i-t LSE (λ1 = 4, λ2 = 5) 67.7 88.9 94.0 44.0 74.2 82.6
SCAN i-t AVG (λ1 = 4) 67.9 89.0 94.4 43.9 74.2 82.8
SCAN t-i AVG + i-t LSE 67.4 90.3 95.8 48.6 77.7 85.2

t-i and i-t models by averaging their predicted similarity scores. The best result
of model ensembles is achieved by combining t-i AVG and i-t LSE, selected on
the validation set. The combined model gives 48.6 at R@1 for image retrieval,
which is a 18.2% relative improvement from the current state-of-the-art, SCO
[17]. Our assumption is that different formulations of Stacked Cross Attention
(t-i and i-t; AVG/LSE pooling) approach different aspects of data, such that the
model ensemble further improves the results.

4.3 Results on MS-COCO

Table 2 lists the experimental results on MS-COCO and a comparison with prior
work. On the 1K test set, the single SCAN t-i AVG achieves comparable results
to the current state-of-the-art, SCO. Our best result on 1K test set is achieved by
combining t-i LSE and i-t AVG which improves 4.0% on image query and 8.0%
relatively comparing to SCO. On the 5K test set, we choose to list the best single
model and ensemble selected on the validation set due to space limitation. Both
models outperform SCO on all metrics, and SCAN t-i AVG + i-t LSE improves
17.8% on sentence retrieval (R@1) and 16.6% on image retrieval (R@1) relatively.

4.4 Ablation Studies

To begin with, we would like to incrementally validate our approach by revisiting
a basic formulation of inferring the latent alignments between image regions and
words without attention; i.e. the Sum-Max Text-Image proposed in [19] and its
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Table 2. Comparison of the cross-modal retrieval restuls in terms of Recall@K(R@K)
on MS-COCO. t-i denotes Text-Image. i-t denotes Image-Text. AVG and LSE denotes
average and LogSumExp pooling respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

1K Test Images

DVSA (R-CNN, AlexNet) [19] 38.4 69.9 80.5 27.4 60.2 74.8
HM-LSTM (R-CNN, AlexNet) [32] 43.9 - 87.8 36.1 - 86.7
Order-embeddings (VGG) [38] 46.7 - 88.9 37.9 - 85.9
SM-LSTM (VGG) [16] 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet (VGG) [9] 55.8 75.2 - 39.7 63.3 -
VSE++ (ResNet) [10] 64.6 - 95.7 52.0 - 92.0
DPC (ResNet) [44] 65.6 89.8 95.5 47.1 79.9 90.0
GXN (ResNet) [13] 68.5 - 97.9 56.6 - 94.5
SCO (ResNet) [17] 69.9 92.9 97.5 56.7 87.5 94.8

Ours (Faster R-CNN, ResNet):
SCAN t-i LSE (λ1 = 9, λ2 = 6) 67.5 92.9 97.6 53.0 85.4 92.9
SCAN t-i AVG (λ1 = 9) 70.9 94.5 97.8 56.4 87.0 93.9
SCAN i-t LSE (λ1 = 4, λ2 = 20) 68.4 93.9 98.0 54.8 86.1 93.3
SCAN i-t AVG (λ1 = 4) 69.2 93.2 97.5 54.4 86.0 93.6
SCAN t-i LSE + i-t AVG 72.7 94.8 98.4 58.8 88.4 94.8

5K Test Images

Order-embeddings (VGG) [38] 23.3 - 84.7 31.7 - 74.6
VSE++ (ResNet) [10] 41.3 - 81.2 30.3 - 72.4
DPC (ResNet) [44] 41.2 70.5 81.1 25.3 53.4 66.4
GXN (ResNet) [13] 42.0 - 84.7 31.7 - 74.6
SCO (ResNet) [17] 42.8 72.3 83.0 33.1 62.9 75.5

Ours (Faster R-CNN, ResNet):
SCAN i-t LSE 46.4 77.4 87.2 34.4 63.7 75.7
SCAN t-i AVG + i-t LSE 50.4 82.2 90.0 38.6 69.3 80.4

Table 3. Effect of inferring the latent vision-language alignment at the level of regions
and words. Results are reported in terms of Recall@K(R@K). Refer to Eqs. (9) (10)
for the definition of Sum-Max. t-i denotes Text-Image. i-t denotes Image-Text.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

VSE++ (fixed ResNet, 1 crop) [10] 31.9 - 68.0 23.1 - 60.7
Sum-Max t-i 59.6 85.2 92.9 44.1 70.0 79.0
Sum-Max i-t 56.7 83.5 89.7 36.8 65.6 74.9
SCO [17] (current state-of-the-art) 55.5 82.0 89.3 41.1 70.5 80.1

SCAN t-i AVG (λ1 = 9) 61.8 87.5 93.7 45.8 74.4 83.0
SCAN i-t AVG (λ1 = 10) 67.9 89.0 94.4 43.9 74.2 82.8
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Table 4. Effect of different SCAN configurations on Flickr30K. Results are reported in
terms of Recall@K(R@K). i-t denotes Image-Text. SUM and MAX denote summation
and max pooling instead of AVG/LSE at the pooling step, respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

Baseline: SCAN i-t AVG 67.9 89.0 94.4 43.9 74.2 82.8

No hard negatives 45.8 77.8 86.2 33.9 63.7 73.4
Not normalize image embedding 67.8 89.3 94.6 43.3 73.7 82.7
SCAN i-t SUM 63.9 89.0 93.9 45.0 73.1 82.0
SCAN i-t MAX 59.7 83.9 90.8 43.3 72.0 80.9
One-directional GRU 63.6 87.7 93.7 43.2 73.1 82.3

compliment, Sum-Max Image-Text (See Eqs. (9) (10)). Our Sum-Max models
adopt the same learning objectives with hard negatives sampling, bottom-up
attention-based image representation, and sentence representation as SCAN. The
only difference is that it simply aggregates the similarity scores of all possible
pairs of image regions and words. The results and a comparison are presented
in Table 3. VSE++ [10] matches whole images and full sentences on a single
embedding vector. It uses pre-defined ResNet-152 trained on ImageNet [7] to
extract one feature per image for training (single crop) and also leveraged hard
negatives sampling, same as SCAN. Essentially, it represents the case without
considering the latent correspondence but keeping other configurations similar to
our Sum-Max models. The comparison between Sum-Max and VSE++ shows
the effectiveness of inferring the latent alignments. With a better bottom-up
attention model (compared to R-CNN in [19]), Sum-Max t-i even outperforms
the current state-of-the-art. By comparing SCAN and Sum-Max models, we show
that Stacked Cross Attention can further improve the performance significantly.

We further investigate in several different configurations with SCAN i-t AVG
as our baseline model, and present the results in Table 4. Each experiment is
performed with one alternation. It is observed that the gain we obtain from
hard negatives in the triplet loss is very significant for our model, improving
the model by 48.2% in terms of sentence retrieval R@1. Not normalizing the
image embedding (See Eq. (1)) changes the importance of image sample [10],
but SCAN is not significantly affected by this factor. Using summation (SUM) or
maximum (MAX) instead of average or LogSumExp as the final pooling function
yields weaker results. Finally, we find that using bi-directional GRU improves
sentence retrieval R@1 by 4.3 and image retrieval R@1 by 0.7.

5 Visualization and Analysis

5.1 Visualizing Attention

By visualizing the attention component learned by the model, we are able to
showcase the interpretablity of our model. In Figure 4, we qualitatively present
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Fig. 4. Visualization of the attended image regions with respect to each word in the sen-
tence description, outlining the region with the maximum attention weight in red. The
regional brightness represents the attention strength, which considers the importance
of both region and word estimated by our model. Our model generates interpretable fo-
cus shift and stresses on words like “boy” and “tennis racket”, as well as the attributes
(young) and actions (holding). (Best viewed in color)

the attention changes predicted by our Text-Image model. For the selected im-
age, we visualize the attention weights with respect to each word in the sentence
description “A young boy is holding a tennis racket.” in different sub-figures.
The regional brightness represents the attention weights which considers both
importance of the region and the word corresponding to the sub-figure. We can
observe that “boy”, “holding”, “tennis” and “racket” receive strong and focused
attention on the relatively precise locations, while attention weights correspond-
ing to “a” and “is” are weaker and less focused. This shows that our attention
component learns interpretable alignments between image regions and words,
and is able to generate reasonable focus shift and attention strength to weight
regions and words by their importance while inferring image-text similarity.

5.2 Image and Sentence Retrieval

Figure 5 shows the qualitative results of sentence retrieval given image queries on
Flickr30K. For each image query, we show the top-5 retrieved sentences ranked by
the similarity scores predicted by our model. Figure 6 illustrates the qualitative
results of image retrieval given sentence queries on Flickr30K. Each sentence
corresponds to a ground-truth image. For each sentence query we show the top-
3 retrieved images, ranking from left to right. We outline the true matches in
green and false matches in red.

6 Conclusions

We propose Stacked Cross Attention that gives the state-of-the-art performance
on the Flickr30K and MS-COCO datasets in all measures. We carry out com-
prehensive ablation studies to verify that Stacked Cross Attention is essential to
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1:Older women and younger girl are opening presents up . 
2:Two ladies and a little girl in her pajamas opening gifts 
3:A family opening up their Christmas presents . 
4:A mother and two children opening gifts on a Christmas morning . 
5:A little girl opening a Christmas present . 

(a) (b) (c)

1:A female runner dressed in blue athletic wear is running in a 

competition , while spectators line the street . 
2:A lady dressed in blue running a marathon . 
3:A young woman is running a marathon in a light blue tank top and 

spandex shorts . 
4:A lady standing at a crosswalk . 
5:A woman who is running , with blue shorts . 

1:Two men dressed in green are preparing food in a restaurant . 
2:A man , wearing a green shirt , is cooking food in a restaurant . 
3:A check with a green shirt uses a blowtorch on some food . 
4:An Asian man in a green uniform shirt with a white speckled 

headband is using a torch to cook food in a restaurant . 
5:An Asian man wearing gloves is working at a food stall . 

Fig. 5. Qualitative results of sentence retrieval given image queries on Flickr30K
dataset. For each image query we show the top-5 ranked sentences. We observe that
our Stacked Cross Attention model retrieves the correct results in the top ranked sen-
tences even for image queries of complex and cluttered scenes. The model outputs some
reasonable mismatches, e.g. (b.5). On the other hand, there are incorrect results such
as (c.4), which is possibly due to a poor detection of action in static images. (Best
viewed in color when zoomed in.)

Query: A man riding a motorcycle is performing a trick at a track . Query: A baseball catcher trying to tag a base runner in a baseball game .

Query: Two dogs play by a tree . Query: A construction worker is driving heavy equipment at a work site .

Fig. 6. Qualitative results of image retrieval given sentence queries on Flickr30K. For
each sentence query, we show the top-3 ranked images, ranking from left to right. We
outline the true matches in green boxes and false matches in red boxes. In the examples
we show, our model retrieves the ground truth image in the top-3 list. Note that other
results are also reasonable outputs. (Best viewed in color.)

the performance of image-text matching, and revisit prior work to confirm the
importance of inferring the latent correspondence between image regions and
words. Furthermore, we show how the learned Stacked Cross Attention can be
leveraged to give more interpretablity to such vision-language models.
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