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Abstract. In this paper, we propose a novel deep learning based vidiem-sa
cy prediction method, named DeepVS. Specifically, we eistalal large-scale
eye-tracking database of videos (LEDQV), which includes@zjects’ fixation-
s on 538 videos. We find from LEDOV that human attention is niikedy to
be attracted by objects, particularly the moving objectshermoving parts of
objects. Hence, an object-to-motion convolutional nenedvork (OM-CNN) is
developed to predict the intra-frame saliency for DeepVS8ictvis composed
of the objectness and motion subnets. In OM-CNN, cross-rastkrand hierar-
chical feature normalization are proposed to combine ta¢iadfeatures of the
objectness subnet and the temporal features of the motiomesuWe further
find from our database that there exists a temporal coroelati human attention
with a smooth saliency transition across video frames. We fiiopose saliency-
structured convolutional long short-term memory (SS-Q@&WM) network, us-
ing the extracted features from OM-CNN as the input. Conestly the inter-
frame saliency maps of a video can be generated, which carnisidh structured
output with center-bias and cross-frame transitions ofdattention maps. Fi-
nally, the experimental results show that DeepVS advareestate-of-the-art in
video saliency prediction.
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1 Introduction

The foveation mechanism in the human visual system (HVSgatds that only a small
fovea region captures most visual attention at high remwlutvhile other peripheral
regions receive little attention at low resolution. To potdhuman attention, saliency
prediction has been widely studied in recent years, withipialapplications [5,21, 22,
38] in object recognition, object segmentation, actiorogggtion, image caption, and
image/video compression, among others. In this paper, weasfon predicting video
saliency at the pixel level, which models attention on eadbe frame.

The traditional video saliency prediction methods maimgifs on the feature in-
tegration theory [16, 19, 20, 26], in which some spatial ardgoral features were de-
veloped for video saliency prediction. Differing from th&egration theory, the deep
learning (DL) based methods [13, 18, 28, 29, 32] have beeamntlcproposed to learn
human attention in an end-to-end manner, significantly awimg the accuracy of im-
age saliency prediction. However, only a few works have rgaddo apply DL in video
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Fig. 1. Attention heat maps of some frames selected from two vidBes.heat maps show that:
(1) the regions with object can draw a majority of human aioer (2) the moving objects or the
moving parts of objects attract more human attention, ajpd (8/namic pixel-wise transition of
human attention occurs across video frames.

saliency prediction [1, 2,23, 27]. Specifically, Cagegal. [1] applied a two-stream C-
NN structure taking both RGB frames and motion maps as thgsrfpr video saliency
prediction. Bazzardt al. [2] leveraged a deep convolutional 3D (C3D) network to learn
the representations of human attention on 16 consecuéiwesfs, and then a long short-
term memory (LSTM) network connected to a mixture densityvoek was learned to
generate saliency maps in a Gaussian mixture distribution.

For training the DL networks, we establish a large-scaletegeking database of
videos (LEDQV) that contains the free-view fixation data @fs2ibjects viewing 538
diverse-content videos. We validate that 32 subjects aomiginthrough consisten-
cy analysis among subjects, when establishing our LEDOVAliete. The previous
databases [24,33] do not investigate the sufficient numitsersjects in the eye-tracking
experiments. For example, although Hollywood [24] corgdiB57 videos, it only has
19 subjects and does not show whether the subjects are snffiMore importantly,
Hollywood focuses on task-driven attention, rather thae-fview saliency prediction.

In this paper, we propose a new DL based video saliency predi¢DeepVS)
method. We find from Figure 1 that people tend to be attracyeith® moving objects
or the moving parts of objects, and this finding is also vetifie the analysis of our
LEDOQV database. However, all above DL based methods do mbbexthe motion of
objects in predicting video saliency. In DeepVS, a novekobjo-motion convolution-
al neural network (OM-CNN) is constructed to learn the feaduof object motion, in
which the cross-net mask and hierarchical feature nori#diaz (FN) are proposed to
combine the subnets of objectness and motion. As such, thismgobjects at different
scales can be located as salient regions.

Both Figure 1 and the analysis of our database show that tlemsamaps are s-
moothly transited across video frames. Accordingly, sesaly-structured convolutional
long short-term memory (SS-ConvLSTM) network is developegredict the pixel-
wise transition of video saliency across frames, with thgpoufeatures of OM-CNN
as the input. The traditional LSTM networks for video satigprediction [2, 23] as-
sume that human attention follows the Gaussian mixtureibligion, since these LSTM
networks cannot generate structured output. In contras$8-ConvLSTM network is
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capable of retaining spatial information of attention idligition with structured output
through the convolutional connections. Furthermore esthe center-bias (CB) exists in
the saliency maps as shown in Figure 1, a CB dropoutis prajngbe SS-ConvLSTM
network. As such, the structured output of saliency consittee CB prior. Consequent-
ly, the dense saliency prediction of each video frame carbiteirmed in DeepVS in an
end-to-end manner. The experimental results show that eap®S method advances
the state-of-the-art of video saliency prediction in ouatfase and other 2 eye-tracking
databases. Both the DeepVS code and the LEDOV databasesdlebhiesonline.

2 Reated work

Featureintegration methods. Most early saliency prediction methods [16, 20, 26, 34]
relied on the feature integration theory, which is compasfetivo main steps: feature
extraction and feature fusion. In the image saliency ptextidask, many effective s-
patial features were extracted to predict human attentiitim @ither a top-down [17]
or bottom-up [4] strategy. Compared to image, video sajigmediction is more chal-
lenging because temporal features also play an importéirralrawing human atten-
tion. To achieve this, a countable amount of motion-basatufes [11, 42] were de-
signed as additional temporal information for video salieprediction. Besides, some
methods [16, 40] focused on calculating a variety of temjpdifferences across video
frames, which are effective in video saliency predictioakiiig advantage of sophisti-
cated video coding standards, the methods of [7, 37] exglibre spatio-temporal fea-
tures in compressed domain for predicting video saliencgddition to feature extrac-
tion, many works have focused on the fusion strategy to geéeeideo saliency maps.
Specifically, a set of probability models [15, 31, 40] werastoucted to integrate dif-
ferent kinds of features in predicting video saliency. Mver, other machine learning
algorithms, such as support vector machine and neutralanktwere also applied to
linearly [26] or non-linearly [20] combine the saliencylated features. Other advanced
methods [9, 19, 41] applied phase spectrum analysis in tierfunodel to bridge the
gap between features and video saliency. For instance eGalo[9] exploited phase
spectrum of quaternion Fourier transform (PQFT) on foutusachannels to predict
video saliency.

DL based methods. Most recently, DL has been successfully incorporated to-aut
matically learn spatial features for predicting the salieaf images [13, 18, 28,29, 32].
However, only a few works have managed to apply DL in vide@esaly prediction
[1-3, 23, 27,33, 35]. In these works, the dynamic charesttesi were explored in two
ways: adding temporal information to CNN structures [1,i335] or developing a dy-
namic structure with LSTM [2,23]. For adding temporal infation, a four-layer CNN
in [3] and a two-stream CNN in [1] were trained with both RGRrfres and motion
maps as the inputs. Similarly, in [35], the pair of consa@itiames concatenated with
a static saliency map (generated by the static CNN) are tedfire dynamic CNN for
video saliency prediction, allowing the CNN to generalizerematemporal features. In
our work, the OM-CNN structure of DeepVS includes the submétobjectness and
motion, since human attention is more likely to be attractgdhe moving objects or
the moving parts of objects. For developing the dynamiccstine, Bazzanét al. [2]
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Fig.2. Category tree of videos in LEDOV according to the contente Tiumbers of
categories/sub-categories are shown in the bracketsd@&esihe number of videos for each
category/sub-category is also shown in the brackets.

and Liuet al. [23] applied LSTM networks to predict video saliency magdying on
both short- and long-term memory of attention distributiblowever, the fully con-
nected layers in LSTM limit the dimensions of both the inpntl autput; thus, it is
unable to obtain the end-to-end saliency map and the stroogkmowledge needs to
be assumed for the distribution of saliency in [2, 23]. In mark, DeepVS explores
SS-ConvLSTM to directly predict saliency maps in an ena@ito-manner. This allows
learning the more complex distribution of human attenti@ather than a pre-assumed
distribution of saliency.

3 LEDOQV Database

For training the DNN models of DeepVS, we establish the LED@\Wabase. Some
details of establishing LEDQOV database are as follows.

Stimuli. In order to make the content of LEDOV diverse, we constictéier-
archal tree of key words for video categories as shown inr€i@u There were three
main categories, i.e., animal, human and man-made objeté tNat the natural scene
videos were not included, as they are scarce in comparistimothier categories. The
category of animal had 51 sub-categories. Similarly, thegmy of man-made objects
was composed of 27 sub-categories. The category of humathbadib-categories of
daily action, sports, social activity and art performafideese sub-categories of human
were further classified as can be seen in Figure 2. Consdgugatobtained 158 sub-
categories in total, and then collected 538 videos belgnithese 158 sub-categories
from YouTube. The number of videos for each category/subgray can be found in
Figure 2. Some examples of the collected videos are provwidise supplementary ma-
terial. It is worth mentioning that LEDOV contains the videwith a total of 179,336
frames and 6,431 seconds, and that all videos are at leaptrég0lution and 24 Hz
frame rate.

Procedure. For monitoring the binocular eye movements, a Tobii TX3p@ teack-
er [14] was used in our experiment. During the experimemt distance between sub-
jects and the monitor was fixed at 65 cm. Before viewing videash subject was
required to perform a 9-point calibration for the eye trackdterwards, the subjects
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Fig. 3. The consistency (CC value) for different numbers of sulsjewer all videos in LEDOV.

were asked to free-view videos displayed at a random ordeanwhile, the fixations
of the subjects were recorded by the eye tracker.

Subjects. A new scheme was introduced for determining the sufficiemloer of
participants. We stopped recruiting subjects for eyekirarexperiments once record-
ed fixations converged. Specifically, the subjects (withnewembers), who finished
the eye-tracking experiment, were randomly divided intagRa¢ groups by 5 times.
Then, we measured the linear correlation coefficient (CCheffixation maps from
two groups, and the CC values are averaged over the 5-tinadiv Figure 3 shows
the averaged CC values of two groups, when the number ofdshijereases. As seen
in this figure, the CC value converges when the subject numgashes 32. Thus, we
stopped recruiting subjects, when we collected the fixatioh32 subjects. Finally,
5,058,178 fixations of all 32 subjects on 538 videos wereectdld for our eye-tracking
database.

Findings. We mine our database to analyze human attention on vidpesifigally,
we have the following 3 findings, the analysis of which is preed in the supplemental
material.Finding 1: High correlation exists between objectness and humantaite
Finding 2: Human attention is more likely to be attracted by the mowbgects or
the moving parts of object&inding 3: There exists a temporal correlation of human
attention with a smooth saliency transition across vidamgs.

4  Proposed method

4.1 Framework

For video saliency prediction, we develop a new DNN architexthat combines OM-
CNN and SS-ConvLSTM. According tBindings 1 and 2, human attention is highly
correlated to objectness and object motion. As such, OM-@it#egrates both regions
and motion of objects to predict video saliency through twbreets, i.e., the subnets
of objectness and motion. In OM-CNN, the objectness subietds/a cross-net mask
on the features of theonvolutional layersin the motion subnet. Then, the spatial fea-
tures from the objectness subnet and the temporal featunesthie motion subnet are
concatenated by the proposed hierarchical feature nazati@ln to generate the spatio-
temporal features of OM-CNN. The architecture of OM-CNN f®wn in Figure 4.
Besides, SS-ConvLSTM with the CB dropout is developed tmié@e dynamic salien-
cy of video clips, in which the spatio-temporal features M-@CNN serve as the input.
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Fig. 4. Overall architecture of our OM-CNN for predicting video isaky of intra-frame. The
sizes of convolutional kernels are shown in the figure. Fstaince3 x 3 x 16 means 16 con-
volutional kernels with size of x 3. Note that the7 — 9th convolutional layers (C,C5&C?)

in the objectness subnet have the same size of convolutienatls, thus sharing the same cube
in (a) but not sharing the parameters. Similarly, each ofdakefour cubes in the motion subnet
represents Zonvolutional layers with same kernel size. The details of the inference and fea-
ture normalization modules are shown in (b). Note that tlop@sed cross-net mask, hierarchical
feature normalization and saliency inference module agkligihted with gray background.

Finally, the saliency map of each frame is generated frasac®nvolutional layers of
SS-ConvLSTM. The architecture of SS-ConvLSTM is shown guiFe 5.

4.2 Objectnessand motion subnetsin OM-CNN

In OM-CNN, an objectness subnet is designed for extractingfitecale spatial fea-
tures related to objectness information, which is based prearained YOLO [30].
To avoid over-fitting, a pruned structure of YOLO is appliedthe objectness subnet,
including 9convolutional layers, 5 pooling layers and 2fully connected layers (FC). To
further avoid over-fitting, an additionbhtch-normalization layer is added to eacton-
volutional layer. Assuming thatBN (-), P(-) andx are the batch-normalization, max
pooling and convolution operations, the output of thth convolutional layer C* in
the objectness subnet can be computed as

C§ = Loa(BN(P(C{™) » W™l + By™), (1)

whereW*~1 andB*~! indicate the kernel parameters of weight and bias afthel )-
th convolutional layer, respectively. AdditionallyL, 1(-) is a leaky ReLU activation
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with leakage coefficient af.1. In addition to the objectness subnet, a motion subnet is
also incorporated in OM-CNN to extract multi-scale tempéeatures from the pair of
neighboring frames. Similar to the objectness subnet, aquistructure of FlowNet [6]
with 10 convolutional layers is applied as the motion subnet. For details about object-
ness and motion subnets, please refer to Figure 4-(a). Ifiotlmeving, we propose
combining the subnets of objectness and motion.

4.3 Combination of objectness and motion subnets

In OM-CNN, we propose the hierarchical FN and cross-net niaskmbine the multi-
scale features of both objectness and motion subnets fdictirey saliency. In partic-
ular, the cross-net mask can be used to encode objectnes®@ifon when generating
temporal features. Moreover, the inference module is dg@esl to generate the cross-
net mask or saliency map, based on the learned features.

Hierarchical FN. For leveraging the multi-scale information with variousep-
tive fields, the output features are extracted from diffesenvolutional layers of the
objectness and motion subnets. Here, a hierarchical FNrisdinced to concatenate
the multi-scale features, which have different resolugiand channel numbers. Specif-
ically, we take hierarchical FN for spatial features as aaneple. First, the features of
the4-th, 5-th, 6-th and lastonvolutional layer in the objectness subnet are normalized
through the FN module to obtain 4 sets of spatial feat§®S; }*_,. As shown in Fig-
ure 4-(b), each FN module is composed of & 1 convolutional layer and abilinear
layer to normalize the input features into 128 channels at a résalof 28 x 28. Al-
| spatial feature's{FS,}>_, are concatenated in a hierarchy to obtain a total size of
28 x 28 x 542, as the output of hierarchical FN. Similarly, the featurethe 4-th, 6-th,
8-th and10-th convolutional layers of the motion subnet are concatenated by hierarchi-
cal FN, such that the temporal featufd®T; }1_, with a total size oR8 x 28 x 512 are
obtained.

Inference module. Then, given the extracted spatial featu{€s, }>_, and tempo-
ral features{FT;}?_; from the two subnets of OM-CNN, an inference modiijeis
constructed to generate the saliency rSgpwhich models the intra-frame saliency of
a video frame. Mathematicall§ ; can be computed as

Sy =I;({FSi}i_; {FT:}i)). 2

The inference modulé; is a CNN structure that consists otdnvolutional layers and
2 deconvolutional layers with a stride of2. The detailed architecture @f is shown in
Figure 4-(b). Consequentlf; is used to train the OM-CNN model, as discussed in
Section 4.5. Additionally, the output @bnvolutional layer C, with a size of28 x 28 x
128 is viewed as the final spatio-temporal features, denotdtsAfterwards,FO is
fed into SS-ConvLSTM for predicting intra-frame saliency.

Cross-net mask. Finding 2 shows that attention is more likely to be attracted by
the moving objects or the moving parts of objects. Howeve, motion subnet can

1 F'S; is generated by the output of the |& layer in the objectness subnet, encoding the high
level information of the sizes, class and confidence prditiakiof candidate objects in each
grid.
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Fig.5. Architecture of our SS-ConvLSTM for predicting saliencgrisition across inter-frame,
following the OM-CNN. Note that the training process is nohatated in the figure.

only locate the moving parts of a whole video frame without abject information.
Therefore, the cross-net mask is proposed to impose a makk convol utional layers
of the motion subnet, for locating the moving objects andtiowing parts of objects.
The cross-net mask. can be obtained upon the multi-scale features of the olgestn
subnet. Specifically, given spatial featuddsS; }>_, of the objectness subnei, can
be generated by another inference modulas follows,

Sc = IC({FSi}?:1)~ 3)

Note that the architecture df is same as that af; as shown in Figure 4-(b), but not
sharing the parameters. Consequently, the cross-net$asin be obtained to encode
the objectness information, roughly related to salientoreg) Then, the cross-net mask
S. is used to mask the outputs of the first@wvolutional layers of the motion subnet.
Accordingly, the output of thé-th convolutional layer C¥, in the motion subnet can
be computed as

Cfn = LO-l(M(Cfn_lv SC) * an_l =+ Bfn_l)v
where M(CE-1/S.)=Ck-1.(S.-(1—-7)+1-7). 4

In (4), WE-1 andB%;-! indicate the kernel parameters of weight and bias atithel )-

th convolutional layer in the motion subnet, respectivety(0 < + < 1) is an adjustable
hyper-parameter for controlling the mask degree, mapiegange o8, from [0, 1] to

[, 1]. Note that the last 4onvolutional layers are not masked with the cross-net mask
for considering the motion of the non-object region in sadieprediction.

4.4 SS-ConvLSTM

According toFinding 3, we develop the SS-ConvLSTM network for learning to predict
the dynamic saliency of a video clip. At frantetaking the OM-CNN featureF'O

as the input (denoted @0"), SS-ConvLSTM leverages both long- and short-term
correlations of the input features through the memory O{M_é{l, Mgfl) and hidden
states H, ™!, H, ') of the 1-st and 2-nd LSTM layers at last frame. Then, the énidd
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states of the 2-nd LSTM layéi}, are fed into 2leconvolutional layersto generate final
saliency mas! at frame t. The architecture of SS-ConvLSTM is shown in Fégfir
We propose a CB dropout for SS-ConvLSTM, which improves thieegalization
capability of saliency prediction via incorporating thegorof CB. It is because the
effectiveness of the CB prior in saliency prediction hasbesrified [37]. Specifically,
the CB dropoutis inspired by the Bayesian dropout [8]. Giaernput dropout ratg,,
the CB dropout operatd(p;) is defined based on artime Monte Carlo integration:

Z(pb) = BinO(L,pb . SCB)/(L . Mear(SCB)),
V= W/2)? + (- H/2)*
V(W/2)% + (H/2)?

Bino(L, P) is a randomly generated mask, in which each pixel) is subject to a_-
trial Binomial distribution according to probabilil(z, j). Here, the probability matrix
P is modeled by CB ma@cg, which is obtained upon the distance from pix&lj)
to the cente(W/2, H/2). Consequently, the dropout operator takes the CB prior into
account, the dropout rate of which is basedpgn

Next, similar to [36], we extend the traditional LSTM by raping the Hadamard
product (denoted as) by the convolutional operator (denotedgs to consider the
spatial correlation of input OM-CNN features in the dynamiodel. Taking the first
layer of SS-ConvLSTM as an example, a single LSTM cell at #awan be written as

where Scp(i,j) =1 —

(®)

I =o((H{ ' o Z}) « W} + (F' 0 Z]) « W/ + By),
Al=c(H 0 ZM) « W + (F 0 Z)) « WI + B,),

O!=o((H" o ZM) « Wh + (Ft 0 Z]) + W/ + B,),
Gi=tanh((H{ ' 0 Z}) « W} + (F' 0 Z)) « W/ + B,),
Mi=AloM!' +T 0 G}, H! = 0! octanh(M}), (6)

whereos andtanh are the activation functions of sigmoid and hyperbolic &mtgre-
spectively. In (6){W" W’ W W W/ W{ W/ W/} and{B,,B,,B,, B,}
denote the kernel parameters of weight and bias ateahlutional layer; I, A and
O! are the gates of input) forget @) and output §) for framet; G, M} andH! are
the input modulationg), memory cells and hidden statég.(They are all represented
by 3-D tensors with a size @8 x 28 x 128. Besides{Z}, Z, Z", Z!"} are four sets
of randomly generated CB dropout masRS8 & 28 x 128) throughZ(py,) in (5) with a
hidden dropout rate gf,,. They are used to mask on the hidden stééswhen com-
puting different gates or modulatidii, A, O, G }. Similarly, given feature dropout
ratepy, {Z/,Z1,Z{,Z}} are four randomly generated CB dropout masks f&(p)
for the input feature®". Finally, saliency ma$! is obtained upon the hidden states of

the 2-nd LSTM layeiH} for each frame.

4.5 Training process

For training OM-CNN, we utilize the Kullback-Leibler (KL)igergence-based loss
function to update the parameters. This function is chosmralse [13] has proven
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that the KL divergence is more effective than other metrdsaining DNNSs to predict
saliency. Regarding the saliency map as a probabilityibigion of attention, we can
measure the KL divergendBxy, between the saliency magy; of OM-CNN and the
ground-truth distributiorG of human fixations as follows:

DL(G,Sp) = (1/WH) Y 37" Giylog(Guy /S, ™)

whereG,; andS"/ refer to the values of locatiofi, j) in G andS; (resolution:W x
H). In (7), a smaller KL divergence indicates higher accuriacgaliency prediction.
Furthermore, the KL divergence between the cross-net rfiagsk OM-CNN and the
ground-truthG is also used as an auxiliary function to train OM-CNN. Thi®#&sed
on the assumption that the object regions are also cordaldtk salient regions. Then,
the OM-CNN model is trained by minimizing the following lofsction:

LOMfCNN:HL)\DKL(G,Sf)‘f'l_'_L/\DKL(GaSc)~ (8)

In (8), A is a hyper-parameter for controlling the weights of two Kkeatigences. Note
that OM-CNN is pre-trained on YOLO and FlowNet, and the rarimaj parameters
of OM-CNN are initialized by the Xavier initializer. We fodrfrom our experimental
results that the auxiliary function can decrease KL divaogeby 0.24.

To train SS-ConvLSTM, the training videos are cut into chiyith the same length
T'. In addition, when training SS-ConvLSTM, the parameter®bf-CNN are fixed to
extract the spatio-temporal features of edeframe video clip. Then, the loss function
of SS-ConvLSTM is defined as the average KL divergence dvieames:

T
1 _
Lss_convLSTM = T Zl Dx1(S], Gi). 9)

In (9), {Si}Z, are the final saliency maps @f frames generated by SS-ConvLSTM,
and {G;}L_, are their ground-truth attention maps. For each LSTM ck#, kernel
parameters are initialized by the Xavier initializer, vehihe memory cells and hidden
states are initialized by zeros.

5 Experimental results

5.1 Settings

In our experiment, the 538 videos in our eye-tracking datalme randomly divided
into training (456 videos), validation (41 videos) and {@sdt videos) sets. Specifically,
to learn SS-ConvLSTM of DeepVS, we temporally segment 4&iitng videos into
24,685 clips, all of which contaii’ (= 16) frames. An overlap of 10 frames is allowed
in cutting the video clips, for the purpose of data augmémaBefore inputting to OM-
CNN of DeepVS, the RGB channels of each frame are resizéd®« 448, with their
mean values being removed. In training OM-CNN and SS-ComWLSwve learn the
parameters using the stochastic gradient descent algowith the Adam optimizer.
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Table 1. The values of hyper-parameters in OM-CNN and SS-ConvLSTM.

Objectness mask parametem (4) 0.5
KL divergences weighA in (8) 0.5
OM-CNN St‘rlldek between input frames in motion subftet o

Initial learning rate 1x107°
Training epochs (iterations) 12(~ 1.5 x 10°)
Batch size 12
Weight decay 5x 1076
Bayesian dropout ratgs, andp ¢ 0.75&0.75
Times of Monte Carlo integratioh 100

SS-ConvLSTMinitial learning rate 1x107%
Training epochs (iterations) 15(~ 2 x 10°)
Weight decay 5x 1076

Here, the hyper-parameters of OM-CNN and SS-ConvLSTM areddo minimize the
KL divergence of saliency prediction over the validatioh 3éne tuned values of some
key hyper-parameters are listed in Table 1. Given the tdaimedels of OM-CNN and
SS-ConvLSTM, all 41 test videos in our eye-tracking datelzas used to evaluate the
performance of our method, in comparison with 8 other stétve-art methods. All
experiments are conducted on a single Nvidia GTX 1080 GPueting from that,
our method is able to make real-time prediction for videtesaly at a speed of 30 Hz.

5.2 Evaluation on our database

In this section, we compare the video saliency predictiocueacy of our DeepVS
method and to other state-of-the-art methods, includiny SBL1], PQFT [9], Rudoy
[31], OBDL [12], SALICON [13], Xu [37], BMS [39] and SalGAN [8]. Among these
methods, [11], [9], [31], [12] and [37] are 5 state-of-thesaliency prediction methods
for videos. Moreover, we compare two latest DNN-based nuthid 3] and [28]. Note
that other DNN-based methods on video saliency predicfiph, 3] are not compared
in our experiments, since their codes are not public. In @peements, we apply four
metrics to measure the accuracy of saliency predictionatba under the receiver op-
erating characteristic curve (AUC), normalized scanpatiescy (NSS), CC, and KL
divergence. Note that larger values of AUC, NSS or CC indicabre accurate pre-
diction of saliency, while a smaller KL divergence meangdyesaliency prediction.
Table 2 tabulates the results of AUC, NSS, CC and KL divergdoc our method
and 8 other methods, which are averaged over the 41 testsvimfeaur eye-tracking
database. As shown in this table, our DeepVS method perfoonsiderably better
than all other methods in terms of all 4 metrics. Specificallyr method achieves at
least 0.01, 0.51, 0.12 and 0.33 improvements in AUC, NSS, &CKd., respectively.
Moreover, the two DNN-based methods, SALICON [13] and SaN328], outperform
other conventional methods. This verifies the effectiverdsaliency-related features
automatically learned by DNN. Meanwhile, our method is Sigantly superior to [13]
and [28]. The main reasons for this result are as followsQ) method embeds the
objectness subnet to utilize objectness information iilesay prediction. (2) The object
motion is explored in the motion subnet to predict videoesaly. (3) The network of
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Table 2. Mean (standard deviation) of saliency prediction accufacyur and 8 other methods
over all test videos in our database.

Ours  GBVS[11] PQFT [9] Rudoy [31] OBDL [12] SALICON[13] Xu[37] BMS [39] SalGAN" [28]

AUC 0.90(0.04) 0.84(0.06) 0.70(0.08) 0.80(0.08) 0.80(0.09)  (E¥) 0.83(0.06) 0.76(0.09) 0.87(0.06)
NSS 2.94(0.85) 1.54(0.74) 0.69(0.46) 1.45(0.64) 1.54(0.84) D4X) 1.47(0.47) 0.98(0.48) 2.39(0.59)
CC 057(0.12) 0.32(0.13) 0.14(0.08) 0.32(0.14) 0.32(0.16)  (4B§) 0.38(0.11) 0.21(0.09) 0.45(0.09)
KL 1.24(0.39) 1.82(0.39) 2.46(0.39) 2.42(1.53) 2.05(0.74) 1054) 1.65(0.30) 2.23(0.39) 1.62(0.33)

* DNN-based methods have been fine-tuned by our databaseheitdefault settings.
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Fig. 6. Saliency maps of 8 videos randomly selected from the tesf seir eye-tracking database.
The maps were yielded by our and 8 other methods as well thdrtyuth human fixations. Note
that the results of only one frame are shown for each seletted.

SS-ConvLSTM is leveraged to model saliency transition s&€radeo frames. Section
5.4 analyzes the above three reasons in more detalil.

Next, we compare the subjective results in video salienegliption. Figure 6 demon-
strates the saliency maps of 8 randomly selected video®itest set, detected by our
DeepVS method and 8 other methods. In this figure, one framnselected for each
video. As shown in Figure 6, our method is capable of wellfingpthe salient regions,
which are close to the ground-truth maps of human fixatiomgohtrast, most of the
other methods fail to accurately predict the regions theaeithuman attention.

5.3 Evaluation on other databases

To evaluate the generalization capability of our methodfwrher evaluate the perfor-
mance of our method and 8 other methods on two widely usetals¢s, SFU [10] and
DIEM [25]. In our experiments, the models of OM-CNN and SSa@coSTM, learned
from the training set of our eye-tracking database, aretljrased to predict the salien-
cy of test videos from the DIEM and SFU databases. Table Zpteshe average results
of AUC, NSS, CC and KL for our method and 8 other methods ovés 8kd DIEM.
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Table 3. Mean (standard deviation) values for saliency predictiooueacy of our and other
methods over SFU and DIEM databases.

SFU
Ours _GBVS [11] PQFT [9] Rudoy [31] OBDL [12] SALICON[13] Xu[37] BMS [39] SalGAN" [28]
AUC[0.81(0.07) 0.76(0.07) 0.61(0.09) 0.73(0.08) 0.74(0.10) _ WA&K)  0.80(0.07) 0.66(0.08) 0.79(0.07
NSS|1.46(0.65) 0.91(0.47) 0.31(0.34) 0.83(0.45) 1.03(0.64) 10BE)  1.24(0.39) 0.50(0.31) 1.25(0.47
CC |0.55(0.15) 0.44(0.15) 0.12(0.15) 0.34(0.15) 0.42(0.21) @58{)  0.43(0.12) 0.25(0.11) 0.51(0.13
KL |0.67(0.24) 0.61(0.19) 0.98(0.27) 0.93(0.36) 0.80(0.33)  1.12(1.76) 1K) 0.83(0.20) 0.70(0.25)
DIEM
Our  GBVS [11] PQFT 9] Rudoy [31] OBDL [12] SALICON[I3] Xu[37] BMS [39] SalGAN [28]
AUC|0.86(0.08) 0.81(0.09) 0.71(0.11) 0.80(0.11) 0.75(0.14)  W7E()  0.80(0.11) 0.77(0.11) 0.81(0.08
NSS|2.25(1.16) 1.21(0.82) 0.86(0.71) 1.40(0.83) 1.26(1.03)  16BY)  1.34(0.74) 1.20(0.80) 1.60(0.71
CC |0.49(0.21) 0.30(0.18) 0.19(0.14) 0.38(0.20) 0.29(0.22) ~ M3BY)  0.35(0.17) 0.28(0.17) 0.35(0.13
KL |1.30(0.55) 1.64(0.48) 1.73(0.44) 2.33(2.05) 2.77(1.58) 106E) 1.67(0.39) 1.96(1.13) 1.64(0.41

+ DNN-based methods have been fine-tuned by our databasehwitidefault settings.

As shown in this table, our method again outperforms all carag methods, especially
in the DIEM database. In particular, there are at least @@, 0.11 and 0.34 improve-
ments in AUC, NSS, CC and KL, respectively. Such improvemant comparable to
those in our database. This demonstrates the generatizatpability of our method in
video saliency prediction.

5.4 Performance analysis of DeepVS

Performance analysis of components. Depending on the independently trained mod-
els of the objectness subnet, motion subnet and OM-CNN, wieduanalyze the con-
tribution of each component for saliency prediction accytia DeepVs, i.e., the com-
bination of OM-CNN and SS-ConvLSTM. The comparison resafesshown in Figure
7. We can see from this figure that OM-CNN performs better tharobjectness subnet
with a 0.05 reduction in KL divergence, and it outperforms thotion subnet with a
0.09 KL divergence reduction. Similar results hold for thkes metrics of AUC, CC
and NSS. These results indicate the effectiveness of mtiegrthe subnets of object-
ness and motion. Moreover, the combination of OM-CNN andC88vLSTM reduces
the KL divergence by 0.09 over the single OM-CNN architeeti@imilar results can
be found for the other metrics. Hence, we can conclude thea€@®LSTM can fur-
ther improve the performance of OM-CNN due to exploring #raporal correlation of
saliency across video frames.

Performanceanalysisof SS-ConvL STM. We evaluate the performance of the pro-
posed CB dropout of SS-ConvLSTM. To this end, we train theC®8vLSTM models
at different values of hidden dropout raig and feature dropout raggr, and then test
the trained SS-ConvLSTM models over the validation set.aMeeaged KL divergences
are shown in Figure 8-(a). We can see that the CB dropout carcekL divergence by
0.03 when bothp, andp; are set to 0.75, compared to the model without CB dropout
(pn = ps = 1). Meanwhile, the KL divergence sharply rises by 0.08, whethlp,,
andp decrease fror.75 to 0.2. This is caused by the under-fitting issue, as most con-
nections in SS-ConvLSTM are dropped. Thps,andp; are set to 0.75 in our model.
The SS-ConvLSTM model is trained for a fixed video lendgth £ 16). We further
evaluate the saliency prediction performance of the tch®®-ConvLSTM model over
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OM-CNN+2C-LSTM
OM-CNN
Objectness subnet
Motion subnet
SalGAN

SALICON

KL = CC m NSS mAUC 0.00 0.50 1.00 1.50 2.00 2.50 3.00

Fig. 7. Saliency prediction accuracy of objectness subnet, mstibmet, OM-CNN and the com-
bination of OM-CNN and SS-ConvLSTM (i.e., DeepVS), comphvath SALICON [13] and
SalGAN [28]. Note that the smaller KL divergence indicataghbr accuracy in saliency predic-
tion.
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Fig.8. (a): KL divergences of our models with different dropoutesat(b): KL divergences over
test videos with variable lengths.

variable-length videos. Here, we test the trained SS-C8Auinodel over the validation
set, the videos of which are clipped at different lengthguFe 8-(b) shows the averaged
KL divergences for video clips at various lengths. We canteaethe performance of
SS-ConvLSTM is even a bit better, when the video length isr2ZZRo This is probably
because the well-trained LSTM cell is able to utilize morpuits to achieve a better
performance for video saliency prediction.

6 Conclusion

In this paper, we have proposed the DeepVS method, whichagtseddeo saliency
through OM-CNN and SS-ConvLSTM. For training the DNN modefsOM-CNN
and SS-ConvLSTM, we established the LEDOV database, whashtle fixations of
32 subjects on 538 videos. Then, the OM-CNN architecturepvagosed to explore
the spatio-temporal features of the objectness and objetiomto predict the intra-
frame saliency of videos. The SS-ConvLSTM architecture deagloped to model the
inter-frame saliency of videos. Finally, the experimemésults verified that DeepVS
significantly outperforms 8 other state-of-the-art methoder both our and other two
public eye-tracking databases, in terms of AUC, CC, NSS,Kindhetrics. Thus, the
prediction accuracy and generalization capability of D&ggan be validated.
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