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Abstract. In this paper, we propose a novel deep learning based video salien-
cy prediction method, named DeepVS. Specifically, we establish a large-scale
eye-tracking database of videos (LEDOV), which includes 32subjects’ fixation-
s on 538 videos. We find from LEDOV that human attention is morelikely to
be attracted by objects, particularly the moving objects orthe moving parts of
objects. Hence, an object-to-motion convolutional neuralnetwork (OM-CNN) is
developed to predict the intra-frame saliency for DeepVS, which is composed
of the objectness and motion subnets. In OM-CNN, cross-net mask and hierar-
chical feature normalization are proposed to combine the spatial features of the
objectness subnet and the temporal features of the motion subnet. We further
find from our database that there exists a temporal correlation of human attention
with a smooth saliency transition across video frames. We thus propose saliency-
structured convolutional long short-term memory (SS-ConvLSTM) network, us-
ing the extracted features from OM-CNN as the input. Consequently, the inter-
frame saliency maps of a video can be generated, which consider both structured
output with center-bias and cross-frame transitions of human attention maps. Fi-
nally, the experimental results show that DeepVS advances the state-of-the-art in
video saliency prediction.
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1 Introduction

The foveation mechanism in the human visual system (HVS) indicates that only a small
fovea region captures most visual attention at high resolution, while other peripheral
regions receive little attention at low resolution. To predict human attention, saliency
prediction has been widely studied in recent years, with multiple applications [5,21,22,
38] in object recognition, object segmentation, action recognition, image caption, and
image/video compression, among others. In this paper, we focus on predicting video
saliency at the pixel level, which models attention on each video frame.

The traditional video saliency prediction methods mainly focus on the feature in-
tegration theory [16, 19, 20, 26], in which some spatial and temporal features were de-
veloped for video saliency prediction. Differing from the integration theory, the deep
learning (DL) based methods [13, 18, 28, 29, 32] have been recently proposed to learn
human attention in an end-to-end manner, significantly improving the accuracy of im-
age saliency prediction. However, only a few works have managed to apply DL in video
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Fig. 1. Attention heat maps of some frames selected from two videos.The heat maps show that:
(1) the regions with object can draw a majority of human attention, (2) the moving objects or the
moving parts of objects attract more human attention, and (3) a dynamic pixel-wise transition of
human attention occurs across video frames.

saliency prediction [1,2,23,27]. Specifically, Cagdaset al. [1] applied a two-stream C-
NN structure taking both RGB frames and motion maps as the inputs for video saliency
prediction. Bazzaniet al. [2] leveraged a deep convolutional 3D (C3D) network to learn
the representations of human attention on 16 consecutive frames, and then a long short-
term memory (LSTM) network connected to a mixture density network was learned to
generate saliency maps in a Gaussian mixture distribution.

For training the DL networks, we establish a large-scale eye-tracking database of
videos (LEDOV) that contains the free-view fixation data of 32 subjects viewing 538
diverse-content videos. We validate that 32 subjects are enough through consisten-
cy analysis among subjects, when establishing our LEDOV database. The previous
databases [24,33] do not investigate the sufficient number of subjects in the eye-tracking
experiments. For example, although Hollywood [24] contains 1857 videos, it only has
19 subjects and does not show whether the subjects are sufficient. More importantly,
Hollywood focuses on task-driven attention, rather than free-view saliency prediction.

In this paper, we propose a new DL based video saliency prediction (DeepVS)
method. We find from Figure 1 that people tend to be attracted by the moving objects
or the moving parts of objects, and this finding is also verified in the analysis of our
LEDOV database. However, all above DL based methods do not explore the motion of
objects in predicting video saliency. In DeepVS, a novel object-to-motion convolution-
al neural network (OM-CNN) is constructed to learn the features of object motion, in
which the cross-net mask and hierarchical feature normalization (FN) are proposed to
combine the subnets of objectness and motion. As such, the moving objects at different
scales can be located as salient regions.

Both Figure 1 and the analysis of our database show that the saliency maps are s-
moothly transited across video frames. Accordingly, a saliency-structured convolutional
long short-term memory (SS-ConvLSTM) network is developedto predict the pixel-
wise transition of video saliency across frames, with the output features of OM-CNN
as the input. The traditional LSTM networks for video saliency prediction [2, 23] as-
sume that human attention follows the Gaussian mixture distribution, since these LSTM
networks cannot generate structured output. In contrast, our SS-ConvLSTM network is
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capable of retaining spatial information of attention distribution with structured output
through the convolutional connections. Furthermore, since the center-bias (CB) exists in
the saliency maps as shown in Figure 1, a CB dropout is proposed in the SS-ConvLSTM
network. As such, the structured output of saliency considers the CB prior. Consequent-
ly, the dense saliency prediction of each video frame can be obtained in DeepVS in an
end-to-end manner. The experimental results show that our DeepVS method advances
the state-of-the-art of video saliency prediction in our database and other 2 eye-tracking
databases. Both the DeepVS code and the LEDOV database are available online.

2 Related work

Feature integration methods. Most early saliency prediction methods [16, 20, 26, 34]
relied on the feature integration theory, which is composedof two main steps: feature
extraction and feature fusion. In the image saliency prediction task, many effective s-
patial features were extracted to predict human attention with either a top-down [17]
or bottom-up [4] strategy. Compared to image, video saliency prediction is more chal-
lenging because temporal features also play an important role in drawing human atten-
tion. To achieve this, a countable amount of motion-based features [11, 42] were de-
signed as additional temporal information for video saliency prediction. Besides, some
methods [16, 40] focused on calculating a variety of temporal differences across video
frames, which are effective in video saliency prediction. Taking advantage of sophisti-
cated video coding standards, the methods of [7, 37] explored the spatio-temporal fea-
tures in compressed domain for predicting video saliency. In addition to feature extrac-
tion, many works have focused on the fusion strategy to generate video saliency maps.
Specifically, a set of probability models [15, 31, 40] were constructed to integrate dif-
ferent kinds of features in predicting video saliency. Moreover, other machine learning
algorithms, such as support vector machine and neutral network, were also applied to
linearly [26] or non-linearly [20] combine the saliency-related features. Other advanced
methods [9, 19, 41] applied phase spectrum analysis in the fusion model to bridge the
gap between features and video saliency. For instance, Guoet al. [9] exploited phase
spectrum of quaternion Fourier transform (PQFT) on four feature channels to predict
video saliency.

DL based methods. Most recently, DL has been successfully incorporated to auto-
matically learn spatial features for predicting the saliency of images [13,18,28,29,32].
However, only a few works have managed to apply DL in video saliency prediction
[1–3, 23, 27, 33, 35]. In these works, the dynamic characteristics were explored in two
ways: adding temporal information to CNN structures [1,3,27,35] or developing a dy-
namic structure with LSTM [2,23]. For adding temporal information, a four-layer CNN
in [3] and a two-stream CNN in [1] were trained with both RGB frames and motion
maps as the inputs. Similarly, in [35], the pair of consecutive frames concatenated with
a static saliency map (generated by the static CNN) are fed into the dynamic CNN for
video saliency prediction, allowing the CNN to generalize more temporal features. In
our work, the OM-CNN structure of DeepVS includes the subnets of objectness and
motion, since human attention is more likely to be attractedby the moving objects or
the moving parts of objects. For developing the dynamic structure, Bazzaniet al. [2]
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Fig. 2. Category tree of videos in LEDOV according to the content. The numbers of
categories/sub-categories are shown in the brackets. Besides, the number of videos for each
category/sub-category is also shown in the brackets.

and Liuet al. [23] applied LSTM networks to predict video saliency maps, relying on
both short- and long-term memory of attention distribution. However, the fully con-
nected layers in LSTM limit the dimensions of both the input and output; thus, it is
unable to obtain the end-to-end saliency map and the strong prior knowledge needs to
be assumed for the distribution of saliency in [2, 23]. In ourwork, DeepVS explores
SS-ConvLSTM to directly predict saliency maps in an end-to-end manner. This allows
learning the more complex distribution of human attention,rather than a pre-assumed
distribution of saliency.

3 LEDOV Database

For training the DNN models of DeepVS, we establish the LEDOVdatabase. Some
details of establishing LEDOV database are as follows.

Stimuli. In order to make the content of LEDOV diverse, we constructed a hier-
archal tree of key words for video categories as shown in Figure 2. There were three
main categories, i.e., animal, human and man-made object. Note that the natural scene
videos were not included, as they are scarce in comparison with other categories. The
category of animal had 51 sub-categories. Similarly, the category of man-made objects
was composed of 27 sub-categories. The category of human hadthe sub-categories of
daily action, sports, social activity and art performance.These sub-categories of human
were further classified as can be seen in Figure 2. Consequently, we obtained 158 sub-
categories in total, and then collected 538 videos belonging to these 158 sub-categories
from YouTube. The number of videos for each category/sub-category can be found in
Figure 2. Some examples of the collected videos are providedin the supplementary ma-
terial. It is worth mentioning that LEDOV contains the videos with a total of 179,336
frames and 6,431 seconds, and that all videos are at least 720p resolution and 24 Hz
frame rate.

Procedure. For monitoring the binocular eye movements, a Tobii TX300 eye track-
er [14] was used in our experiment. During the experiment, the distance between sub-
jects and the monitor was fixed at 65 cm. Before viewing videos, each subject was
required to perform a 9-point calibration for the eye tracker. Afterwards, the subjects
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Fig. 3. The consistency (CC value) for different numbers of subjects over all videos in LEDOV.

were asked to free-view videos displayed at a random order. Meanwhile, the fixations
of the subjects were recorded by the eye tracker.

Subjects. A new scheme was introduced for determining the sufficient number of
participants. We stopped recruiting subjects for eye-tracking experiments once record-
ed fixations converged. Specifically, the subjects (with even numbers), who finished
the eye-tracking experiment, were randomly divided into 2 equal groups by 5 times.
Then, we measured the linear correlation coefficient (CC) ofthe fixation maps from
two groups, and the CC values are averaged over the 5-time division. Figure 3 shows
the averaged CC values of two groups, when the number of subjects increases. As seen
in this figure, the CC value converges when the subject numberreaches 32. Thus, we
stopped recruiting subjects, when we collected the fixations of 32 subjects. Finally,
5,058,178 fixations of all 32 subjects on 538 videos were collected for our eye-tracking
database.

Findings. We mine our database to analyze human attention on videos. Specifically,
we have the following 3 findings, the analysis of which is presented in the supplemental
material.Finding 1: High correlation exists between objectness and human attention.
Finding 2: Human attention is more likely to be attracted by the movingobjects or
the moving parts of objects.Finding 3: There exists a temporal correlation of human
attention with a smooth saliency transition across video frames.

4 Proposed method

4.1 Framework

For video saliency prediction, we develop a new DNN architecture that combines OM-
CNN and SS-ConvLSTM. According toFindings 1 and 2, human attention is highly
correlated to objectness and object motion. As such, OM-CNNintegrates both regions
and motion of objects to predict video saliency through two subnets, i.e., the subnets
of objectness and motion. In OM-CNN, the objectness subnet yields a cross-net mask
on the features of theconvolutional layers in the motion subnet. Then, the spatial fea-
tures from the objectness subnet and the temporal features from the motion subnet are
concatenated by the proposed hierarchical feature normalization to generate the spatio-
temporal features of OM-CNN. The architecture of OM-CNN is shown in Figure 4.
Besides, SS-ConvLSTM with the CB dropout is developed to learn the dynamic salien-
cy of video clips, in which the spatio-temporal features of OM-CNN serve as the input.
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(a) The overall architecture of OM-CNN

 

 (b) The details for sub-modules of inference module and feature normal-
ization

Fig. 4. Overall architecture of our OM-CNN for predicting video saliency of intra-frame. The
sizes of convolutional kernels are shown in the figure. For instance,3 × 3 × 16 means 16 con-
volutional kernels with size of3 × 3. Note that the7 − 9th convolutional layers (C7

o
,C8

o
&C

9

o
)

in the objectness subnet have the same size of convolutionalkernels, thus sharing the same cube
in (a) but not sharing the parameters. Similarly, each of thelast four cubes in the motion subnet
represents 2convolutional layers with same kernel size. The details of the inference and fea-
ture normalization modules are shown in (b). Note that the proposed cross-net mask, hierarchical
feature normalization and saliency inference module are highlighted with gray background.

Finally, the saliency map of each frame is generated from 2deconvolutional layers of
SS-ConvLSTM. The architecture of SS-ConvLSTM is shown in Figure 5.

4.2 Objectness and motion subnets in OM-CNN

In OM-CNN, an objectness subnet is designed for extracting multi-scale spatial fea-
tures related to objectness information, which is based on apre-trained YOLO [30].
To avoid over-fitting, a pruned structure of YOLO is applied as the objectness subnet,
including 9convolutional layers, 5 pooling layers and 2fully connected layers (FC). To
further avoid over-fitting, an additionalbatch-normalization layer is added to eachcon-
volutional layer. Assuming thatBN(·), P (·) and∗ are the batch-normalization, max
pooling and convolution operations, the output of thek-th convolutional layer C

k
o in

the objectness subnet can be computed as

C
k
o = L0.1(BN(P (Ck−1

o ) ∗Wk−1
o +B

k−1
o )), (1)

whereWk−1
o andBk−1

o indicate the kernel parameters of weight and bias at the(k−1)-
th convolutional layer, respectively. Additionally,L0.1(·) is a leaky ReLU activation
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with leakage coefficient of0.1. In addition to the objectness subnet, a motion subnet is
also incorporated in OM-CNN to extract multi-scale temporal features from the pair of
neighboring frames. Similar to the objectness subnet, a pruned structure of FlowNet [6]
with 10 convolutional layers is applied as the motion subnet. For details about object-
ness and motion subnets, please refer to Figure 4-(a). In thefollowing, we propose
combining the subnets of objectness and motion.

4.3 Combination of objectness and motion subnets

In OM-CNN, we propose the hierarchical FN and cross-net maskto combine the multi-
scale features of both objectness and motion subnets for predicting saliency. In partic-
ular, the cross-net mask can be used to encode objectness information when generating
temporal features. Moreover, the inference module is developed to generate the cross-
net mask or saliency map, based on the learned features.

Hierarchical FN. For leveraging the multi-scale information with various recep-
tive fields, the output features are extracted from different convolutional layers of the
objectness and motion subnets. Here, a hierarchical FN is introduced to concatenate
the multi-scale features, which have different resolutions and channel numbers. Specif-
ically, we take hierarchical FN for spatial features as an example. First, the features of
the4-th,5-th, 6-th and lastconvolutional layer in the objectness subnet are normalized
through the FN module to obtain 4 sets of spatial features{FSi}

4
i=1. As shown in Fig-

ure 4-(b), each FN module is composed of a1 × 1 convolutional layer and abilinear
layer to normalize the input features into 128 channels at a resolution of 28 × 28. Al-
l spatial features1 {FSi}

5
i=1 are concatenated in a hierarchy to obtain a total size of

28× 28× 542, as the output of hierarchical FN. Similarly, the features of the4-th,6-th,
8-th and10-th convolutional layers of the motion subnet are concatenated by hierarchi-
cal FN, such that the temporal features{FTi}

4
i=1 with a total size of28× 28× 512 are

obtained.
Inference module. Then, given the extracted spatial features{FSi}

5
i=1 and tempo-

ral features{FTi}
4
i=1 from the two subnets of OM-CNN, an inference moduleIf is

constructed to generate the saliency mapSf , which models the intra-frame saliency of
a video frame. Mathematically,Sf can be computed as

Sf = If ({FSi}
5
i=1, {FTi}

4
i=1). (2)

The inference moduleIf is a CNN structure that consists of 4convolutional layers and
2 deconvolutional layers with a stride of2. The detailed architecture ofIf is shown in
Figure 4-(b). Consequently,Sf is used to train the OM-CNN model, as discussed in
Section 4.5. Additionally, the output ofconvolutional layer C4 with a size of28× 28×
128 is viewed as the final spatio-temporal features, denoted asFO. Afterwards,FO is
fed into SS-ConvLSTM for predicting intra-frame saliency.

Cross-net mask. Finding 2 shows that attention is more likely to be attracted by
the moving objects or the moving parts of objects. However, the motion subnet can

1
FS5 is generated by the output of the lastFC layer in the objectness subnet, encoding the high
level information of the sizes, class and confidence probabilities of candidate objects in each
grid.
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Fig. 5. Architecture of our SS-ConvLSTM for predicting saliency transition across inter-frame,
following the OM-CNN. Note that the training process is not annotated in the figure.

only locate the moving parts of a whole video frame without any object information.
Therefore, the cross-net mask is proposed to impose a mask ontheconvolutional layers
of the motion subnet, for locating the moving objects and themoving parts of objects.
The cross-net maskSc can be obtained upon the multi-scale features of the objectness
subnet. Specifically, given spatial features{FSi}

5
i=1 of the objectness subnet,Sc can

be generated by another inference moduleIc as follows,

Sc = Ic({FSi}
5
i=1). (3)

Note that the architecture ofIc is same as that ofIf as shown in Figure 4-(b), but not
sharing the parameters. Consequently, the cross-net maskSc can be obtained to encode
the objectness information, roughly related to salient regions. Then, the cross-net mask
Sc is used to mask the outputs of the first 6convolutional layers of the motion subnet.
Accordingly, the output of thek-th convolutional layer C

k
m in the motion subnet can

be computed as

C
k
m = L0.1(M(Ck−1

m ,Sc) ∗W
k−1
m +B

k−1
m ),

where M(Ck−1
m ,Sc) = C

k−1
m · (Sc · (1− γ) + 1 · γ). (4)

In (4),Wk−1
m andBk−1

m indicate the kernel parameters of weight and bias at the(k−1)-
th convolutional layer in the motion subnet, respectively;γ (0 ≤ γ ≤ 1) is an adjustable
hyper-parameter for controlling the mask degree, mapping the range ofSc from [0, 1] to
[γ, 1]. Note that the last 4convolutional layers are not masked with the cross-net mask
for considering the motion of the non-object region in saliency prediction.

4.4 SS-ConvLSTM

According toFinding 3, we develop the SS-ConvLSTM network for learning to predict
the dynamic saliency of a video clip. At framet, taking the OM-CNN featuresFO
as the input (denoted asFOt), SS-ConvLSTM leverages both long- and short-term
correlations of the input features through the memory cells(Mt−1

1 ,Mt−1
2 ) and hidden

states (Ht−1
1 ,Ht−1

2 ) of the 1-st and 2-nd LSTM layers at last frame. Then, the hidden
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states of the 2-nd LSTM layerHt
2 are fed into 2deconvolutional layers to generate final

saliency mapSt
l at frame t. The architecture of SS-ConvLSTM is shown in Figure 5.

We propose a CB dropout for SS-ConvLSTM, which improves the generalization
capability of saliency prediction via incorporating the prior of CB. It is because the
effectiveness of the CB prior in saliency prediction has been verified [37]. Specifically,
the CB dropout is inspired by the Bayesian dropout [8]. Givenan input dropout ratepb,
the CB dropout operatorZ(pb) is defined based on anL-time Monte Carlo integration:

Z(pb) = Bino(L, pb · SCB)/(L · Mean(SCB)),

where SCB(i, j) = 1−

√

(i−W/2)2 + (j −H/2)2
√

(W/2)2 + (H/2)2
. (5)

Bino(L,P) is a randomly generated mask, in which each pixel(i, j) is subject to aL-
trial Binomial distribution according to probabilityP(i, j). Here, the probability matrix
P is modeled by CB mapSCB, which is obtained upon the distance from pixel(i, j)
to the center(W/2, H/2). Consequently, the dropout operator takes the CB prior into
account, the dropout rate of which is based onpb.

Next, similar to [36], we extend the traditional LSTM by replacing the Hadamard
product (denoted as◦) by the convolutional operator (denoted as∗), to consider the
spatial correlation of input OM-CNN features in the dynamicmodel. Taking the first
layer of SS-ConvLSTM as an example, a single LSTM cell at frame t can be written as

I
t
1=σ((Ht−1

1 ◦ Zh
i ) ∗W

h
i + (Ft ◦ Zf

i ) ∗W
f
i +Bi),

A
t
1=σ((Ht−1

1 ◦ Zh
a) ∗W

h
a + (Ft ◦ Zf

a) ∗W
f
a +Ba),

O
t
1=σ((Ht−1

1 ◦ Zh
o ) ∗W

h
o + (Ft ◦ Zf

o ) ∗W
f
o +Bo),

G
t
1=tanh((Ht−1

1 ◦ Zh
g ) ∗W

h
g + (Ft ◦ Zf

g ) ∗W
f
g +Bg),

M
t
1=A

t
1 ◦M

t−1
1 + I

t
1 ◦G

t
1, H

t
1 = O

t
1 ◦ tanh(M

t
1), (6)

whereσ andtanh are the activation functions of sigmoid and hyperbolic tangent, re-
spectively. In (6),{Wh

i ,W
h
a , W

h
o ,W

h
g ,W

f
i ,W

f
a ,W

f
o ,W

f
g} and{Bi,Ba,Bo,Bg}

denote the kernel parameters of weight and bias at eachconvolutional layer; It1,At
1 and

O
t
1 are the gates of input (i), forget (a) and output (o) for framet; Gt

1, Mt
1 andHt

1 are
the input modulation (g), memory cells and hidden states (h). They are all represented
by 3-D tensors with a size of28 × 28 × 128. Besides,{Zh

i ,Z
h
a ,Z

h
o ,Z

h
g} are four sets

of randomly generated CB dropout masks (28× 28× 128) throughZ(ph) in (5) with a
hidden dropout rate ofph. They are used to mask on the hidden statesH

t
1, when com-

puting different gates or modulation{It1,A
t
1,O

t
1,G

t
1}. Similarly, given feature dropout

ratepf , {Zf
i ,Z

f
a ,Z

f
o ,Z

f
g} are four randomly generated CB dropout masks fromZ(pf )

for the input featuresFt. Finally, saliency mapSt
l is obtained upon the hidden states of

the 2-nd LSTM layerHt
2 for each framet.

4.5 Training process

For training OM-CNN, we utilize the Kullback-Leibler (KL) divergence-based loss
function to update the parameters. This function is chosen because [13] has proven
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that the KL divergence is more effective than other metrics in training DNNs to predict
saliency. Regarding the saliency map as a probability distribution of attention, we can
measure the KL divergenceDKL between the saliency mapSf of OM-CNN and the
ground-truth distributionG of human fixations as follows:

DKL(G,Sf ) = (1/WH)
∑W

i=1

∑H

j=1
Gij log(Gij/S

ij
f ), (7)

whereGij andSij
f refer to the values of location(i, j) in G andSf (resolution:W ×

H). In (7), a smaller KL divergence indicates higher accuracyin saliency prediction.
Furthermore, the KL divergence between the cross-net maskSc of OM-CNN and the
ground-truthG is also used as an auxiliary function to train OM-CNN. This isbased
on the assumption that the object regions are also correlated with salient regions. Then,
the OM-CNN model is trained by minimizing the following lossfunction:

LOM−CNN=
1

1 + λ
DKL(G,Sf )+

λ

1 + λ
DKL(G,Sc). (8)

In (8),λ is a hyper-parameter for controlling the weights of two KL divergences. Note
that OM-CNN is pre-trained on YOLO and FlowNet, and the remaining parameters
of OM-CNN are initialized by the Xavier initializer. We found from our experimental
results that the auxiliary function can decrease KL divergence by 0.24.

To train SS-ConvLSTM, the training videos are cut into clipswith the same length
T . In addition, when training SS-ConvLSTM, the parameters ofOM-CNN are fixed to
extract the spatio-temporal features of eachT -frame video clip. Then, the loss function
of SS-ConvLSTM is defined as the average KL divergence overT frames:

LSS−ConvLSTM =
1

T

T
∑

i=1

DKL(S
i
l ,Gi). (9)

In (9), {Si
l}

T
i=1 are the final saliency maps ofT frames generated by SS-ConvLSTM,

and{Gi}
T
i=1 are their ground-truth attention maps. For each LSTM cell, the kernel

parameters are initialized by the Xavier initializer, while the memory cells and hidden
states are initialized by zeros.

5 Experimental results

5.1 Settings

In our experiment, the 538 videos in our eye-tracking database are randomly divided
into training (456 videos), validation (41 videos) and test(41 videos) sets. Specifically,
to learn SS-ConvLSTM of DeepVS, we temporally segment 456 training videos into
24,685 clips, all of which containT (= 16) frames. An overlap of 10 frames is allowed
in cutting the video clips, for the purpose of data augmentation. Before inputting to OM-
CNN of DeepVS, the RGB channels of each frame are resized to448× 448, with their
mean values being removed. In training OM-CNN and SS-ConvLSTM, we learn the
parameters using the stochastic gradient descent algorithm with the Adam optimizer.
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Table 1. The values of hyper-parameters in OM-CNN and SS-ConvLSTM.

OM-CNN

Objectness mask parameterγ in (4) 0.5
KL divergences weightλ in (8) 0.5
Stridek between input frames in motion subnet5
Initial learning rate 1 × 10−5

Training epochs (iterations) 12(∼ 1.5 × 105)
Batch size 12
Weight decay 5 × 10−6

SS-ConvLSTM

Bayesian dropout ratesph andpf 0.75&0.75
Times of Monte Carlo integrationL 100
Initial learning rate 1 × 10−4

Training epochs (iterations) 15(∼ 2 × 105)

Weight decay 5 × 10−6

Here, the hyper-parameters of OM-CNN and SS-ConvLSTM are tuned to minimize the
KL divergence of saliency prediction over the validation set. The tuned values of some
key hyper-parameters are listed in Table 1. Given the trained models of OM-CNN and
SS-ConvLSTM, all 41 test videos in our eye-tracking database are used to evaluate the
performance of our method, in comparison with 8 other state-of-the-art methods. All
experiments are conducted on a single Nvidia GTX 1080 GPU. Benefiting from that,
our method is able to make real-time prediction for video saliency at a speed of 30 Hz.

5.2 Evaluation on our database

In this section, we compare the video saliency prediction accuracy of our DeepVS
method and to other state-of-the-art methods, including GBVS [11], PQFT [9], Rudoy
[31], OBDL [12], SALICON [13], Xu [37], BMS [39] and SalGAN [28]. Among these
methods, [11], [9], [31], [12] and [37] are 5 state-of-the-art saliency prediction methods
for videos. Moreover, we compare two latest DNN-based methods: [13] and [28]. Note
that other DNN-based methods on video saliency prediction [1,2,23] are not compared
in our experiments, since their codes are not public. In our experiments, we apply four
metrics to measure the accuracy of saliency prediction: thearea under the receiver op-
erating characteristic curve (AUC), normalized scanpath saliency (NSS), CC, and KL
divergence. Note that larger values of AUC, NSS or CC indicate more accurate pre-
diction of saliency, while a smaller KL divergence means better saliency prediction.
Table 2 tabulates the results of AUC, NSS, CC and KL divergence for our method
and 8 other methods, which are averaged over the 41 test videos of our eye-tracking
database. As shown in this table, our DeepVS method performsconsiderably better
than all other methods in terms of all 4 metrics. Specifically, our method achieves at
least 0.01, 0.51, 0.12 and 0.33 improvements in AUC, NSS, CC and KL, respectively.
Moreover, the two DNN-based methods, SALICON [13] and SalGAN [28], outperform
other conventional methods. This verifies the effectiveness of saliency-related features
automatically learned by DNN. Meanwhile, our method is significantly superior to [13]
and [28]. The main reasons for this result are as follows. (1)Our method embeds the
objectness subnet to utilize objectness information in saliency prediction. (2) The object
motion is explored in the motion subnet to predict video saliency. (3) The network of
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Table 2. Mean (standard deviation) of saliency prediction accuracyfor our and 8 other methods
over all test videos in our database.

Ours GBVS [11] PQFT [9] Rudoy [31] OBDL [12] SALICON∗ [13] Xu [37] BMS [39] SalGAN∗ [28]

AUC 0.90(0.04) 0.84(0.06) 0.70(0.08) 0.80(0.08) 0.80(0.09) 0.89(0.06) 0.83(0.06) 0.76(0.09) 0.87(0.06)
NSS 2.94(0.85) 1.54(0.74) 0.69(0.46) 1.45(0.64) 1.54(0.84) 2.43(0.87) 1.47(0.47) 0.98(0.48) 2.39(0.59)
CC 0.57(0.12) 0.32(0.13) 0.14(0.08) 0.32(0.14) 0.32(0.16) 0.43(0.13) 0.38(0.11) 0.21(0.09) 0.45(0.09)
KL 1.24(0.39) 1.82(0.39) 2.46(0.39) 2.42(1.53) 2.05(0.74) 1.57(0.42) 1.65(0.30) 2.23(0.39) 1.62(0.33)

∗ DNN-based methods have been fine-tuned by our database with their default settings.

 

Fig. 6. Saliency maps of 8 videos randomly selected from the test setof our eye-tracking database.
The maps were yielded by our and 8 other methods as well the ground-truth human fixations. Note
that the results of only one frame are shown for each selectedvideo.

SS-ConvLSTM is leveraged to model saliency transition across video frames. Section
5.4 analyzes the above three reasons in more detail.

Next, we compare the subjective results in video saliency prediction. Figure 6 demon-
strates the saliency maps of 8 randomly selected videos in the test set, detected by our
DeepVS method and 8 other methods. In this figure, one frame isselected for each
video. As shown in Figure 6, our method is capable of well locating the salient regions,
which are close to the ground-truth maps of human fixations. In contrast, most of the
other methods fail to accurately predict the regions that attract human attention.

5.3 Evaluation on other databases

To evaluate the generalization capability of our method, wefurther evaluate the perfor-
mance of our method and 8 other methods on two widely used databases, SFU [10] and
DIEM [25]. In our experiments, the models of OM-CNN and SS-ConvLSTM, learned
from the training set of our eye-tracking database, are directly used to predict the salien-
cy of test videos from the DIEM and SFU databases. Table 3 presents the average results
of AUC, NSS, CC and KL for our method and 8 other methods over SFU and DIEM.
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Table 3. Mean (standard deviation) values for saliency prediction accuracy of our and other
methods over SFU and DIEM databases.

SFU
Ours GBVS [11] PQFT [9] Rudoy [31] OBDL [12] SALICON∗ [13] Xu [37] BMS [39] SalGAN∗ [28]

AUC 0.81(0.07) 0.76(0.07) 0.61(0.09) 0.73(0.08) 0.74(0.10) 0.78(0.08) 0.80(0.07) 0.66(0.08) 0.79(0.07)
NSS 1.46(0.65) 0.91(0.47) 0.31(0.34) 0.83(0.45) 1.03(0.64) 1.24(0.60) 1.24(0.39) 0.50(0.31) 1.25(0.47)
CC 0.55(0.15) 0.44(0.15) 0.12(0.15) 0.34(0.15) 0.42(0.21) 0.58(0.22) 0.43(0.12) 0.25(0.11) 0.51(0.13)
KL 0.67(0.24) 0.61(0.19) 0.98(0.27) 0.93(0.36) 0.80(0.33) 1.12(1.76) 1.35(0.25) 0.83(0.20) 0.70(0.25)

DIEM
Our GBVS [11] PQFT [9] Rudoy [31] OBDL [12] SALICON∗ [13] Xu [37] BMS [39] SalGAN∗ [28]

AUC 0.86(0.08) 0.81(0.09) 0.71(0.11) 0.80(0.11) 0.75(0.14) 0.79(0.11) 0.80(0.11) 0.77(0.11) 0.81(0.08)
NSS 2.25(1.16) 1.21(0.82) 0.86(0.71) 1.40(0.83) 1.26(1.03) 1.68(1.04) 1.34(0.74) 1.20(0.80) 1.60(0.71)
CC 0.49(0.21) 0.30(0.18) 0.19(0.14) 0.38(0.20) 0.29(0.22) 0.36(0.19) 0.35(0.17) 0.28(0.17) 0.35(0.13)
KL 1.30(0.55) 1.64(0.48) 1.73(0.44) 2.33(2.05) 2.77(1.58) 1.66(0.58) 1.67(0.39) 1.96(1.13) 1.64(0.41)

∗ DNN-based methods have been fine-tuned by our database with their default settings.

As shown in this table, our method again outperforms all compared methods, especially
in the DIEM database. In particular, there are at least 0.05,0.57, 0.11 and 0.34 improve-
ments in AUC, NSS, CC and KL, respectively. Such improvements are comparable to
those in our database. This demonstrates the generalization capability of our method in
video saliency prediction.

5.4 Performance analysis of DeepVS

Performance analysis of components. Depending on the independently trained mod-
els of the objectness subnet, motion subnet and OM-CNN, we further analyze the con-
tribution of each component for saliency prediction accuracy in DeepVS, i.e., the com-
bination of OM-CNN and SS-ConvLSTM. The comparison resultsare shown in Figure
7. We can see from this figure that OM-CNN performs better thanthe objectness subnet
with a 0.05 reduction in KL divergence, and it outperforms the motion subnet with a
0.09 KL divergence reduction. Similar results hold for the other metrics of AUC, CC
and NSS. These results indicate the effectiveness of integrating the subnets of object-
ness and motion. Moreover, the combination of OM-CNN and SS-ConvLSTM reduces
the KL divergence by 0.09 over the single OM-CNN architecture. Similar results can
be found for the other metrics. Hence, we can conclude that SS-ConvLSTM can fur-
ther improve the performance of OM-CNN due to exploring the temporal correlation of
saliency across video frames.

Performance analysis of SS-ConvLSTM. We evaluate the performance of the pro-
posed CB dropout of SS-ConvLSTM. To this end, we train the SS-ConvLSTM models
at different values of hidden dropout rateph and feature dropout ratepf , and then test
the trained SS-ConvLSTM models over the validation set. Theaveraged KL divergences
are shown in Figure 8-(a). We can see that the CB dropout can reduce KL divergence by
0.03 when bothph andpf are set to 0.75, compared to the model without CB dropout
(ph = pf = 1). Meanwhile, the KL divergence sharply rises by 0.08, when both ph
andpf decrease from0.75 to 0.2. This is caused by the under-fitting issue, as most con-
nections in SS-ConvLSTM are dropped. Thus,ph andpf are set to 0.75 in our model.
The SS-ConvLSTM model is trained for a fixed video length (T = 16). We further
evaluate the saliency prediction performance of the trained SS-ConvLSTM model over
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Fig. 7. Saliency prediction accuracy of objectness subnet, motionsubnet, OM-CNN and the com-
bination of OM-CNN and SS-ConvLSTM (i.e., DeepVS), compared with SALICON [13] and
SalGAN [28]. Note that the smaller KL divergence indicates higher accuracy in saliency predic-
tion.
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Fig. 8. (a): KL divergences of our models with different dropout rates. (b): KL divergences over
test videos with variable lengths.

variable-length videos. Here, we test the trained SS-ConvLST model over the validation
set, the videos of which are clipped at different lengths. Figure 8-(b) shows the averaged
KL divergences for video clips at various lengths. We can seethat the performance of
SS-ConvLSTM is even a bit better, when the video length is 24 or 32. This is probably
because the well-trained LSTM cell is able to utilize more inputs to achieve a better
performance for video saliency prediction.

6 Conclusion

In this paper, we have proposed the DeepVS method, which predicts video saliency
through OM-CNN and SS-ConvLSTM. For training the DNN modelsof OM-CNN
and SS-ConvLSTM, we established the LEDOV database, which has the fixations of
32 subjects on 538 videos. Then, the OM-CNN architecture wasproposed to explore
the spatio-temporal features of the objectness and object motion to predict the intra-
frame saliency of videos. The SS-ConvLSTM architecture wasdeveloped to model the
inter-frame saliency of videos. Finally, the experimentalresults verified that DeepVS
significantly outperforms 8 other state-of-the-art methods over both our and other two
public eye-tracking databases, in terms of AUC, CC, NSS, andKL metrics. Thus, the
prediction accuracy and generalization capability of DeepVS can be validated.
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