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Abstract. Critical to the registration of point clouds is the establish-
ment of a set of accurate correspondences between points in 3D space.
The correspondence problem is generally addressed by the design of dis-
criminative 3D local descriptors on the one hand, and the development
of robust matching strategies on the other hand. In this work, we first
propose a multi-view local descriptor, which is learned from the images
of multiple views, for the description of 3D keypoints. Then, we develop
a robust matching approach, aiming at rejecting outlier matches based
on the efficient inference via belief propagation on the defined graphical
model. We have demonstrated the boost of our approaches to registra-
tion on the public scanning and multi-view stereo datasets. The superior
performance has been verified by the intensive comparisons against a
variety of descriptors and matching methods.
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1 Introduction

Registration of point clouds integrates 3D data from different sources into a
common coordinate system, serving as an essential component of many high-level
applications like 3D modeling [1, 2], SLAM [3] and robotic perception [4]. Critical
to a registration task is the determination of correspondences between spatially
localized 3D points within each cloud. To tackle the correspondence problem,
on the one hand, a bunch of 3D local descriptors [5–12] have been developed to
facilitate the description of 3D keypoints. On the other hand, matching strategies
[13–15] have also been progressing towards higher accuracy and robustness.
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The exploration of 3D geometric descriptors has long been the focus of inter-
est in point cloud registration. It involves the hand-crafted geometric descriptors
[5–9] as well as the learned ones [10–12, 16]. Both kinds of methods mainly rely
on 3D local geometries. Meanwhile, with the significant progress of CNN-based
2D patch descriptors [17–21], more importance is attached to leveraging the 2D
projections for the description of underlying 3D structures [22–25]. Particularly
for the point cloud data generally co-registered with camera images [26–29], the
fusion of multiple image views, which has reported success on various tasks [30–
33], is expected to further improve the discriminative power of 3D local descrip-
tors. With this motivation, we propose a multi-view descriptor, named MVDesc,
for the description of 3D keypoints based on the synergy of the multi-view fu-
sion techniques and patch descriptor learning. Rather than a replacement, the
MVDesc is well complementary to existing geometric descriptors [5–12].

Given the local descriptors, the matching problem is another vital issue in
point cloud registration. A set of outlier-free point matches is desired by most
registration algorithms [15, 34–38]. Currently, the matching strategies, e.g., the
nearest neighbor search, mutual best [15] and ratio test [13], basically estimate
correspondences according to the similarities of local descriptors alone. Without
considering the global geometric consistency, these methods are prone to spurious
matches between locally-similar 3D structures. Efforts are also spent on jointly
solving the outlier suppression via line process and the optimization of global
registration [15]. But the spatial organizations of 3D point matches are still over-
looked when identifying outliers. To address this, we develop a robust matching
approach by explicitly considering the spatial consistency of point matches in 3D
space. We seek to filter outlier matches based on a graphical model describing
their spatial properties and provide an efficient solution via belief propagation.

The main contributions of this work can be summarized twofold. 1) We are
the first to leverage the fusion of multiple image views for the description of 3D
keypoints when tackling point cloud registration. 2) The proposed effective and
efficient outlier filter, which is based on a graphical model and solved by belief
propagation, remarkably enhances the robustness of 3D point matching.

2 Related Works

3D local descriptor. The representation of a 3D local structure used to rely
on traditional geometric descriptors such as Spin Images [5], PFH [6], FPFH
[7], SHOT [8], USC [9] and et al., which are mainly produced based on the his-
tograms over local geometric attributes. Recent studies seek to learn descriptors
from different representations of local geometries, like volumetric representa-
tions of 3D patches [10], point sets [12] and depth maps [16]. The CGF [11] still
leverages the traditional spherical histograms to capture the local geometry but
learns to map the high-dimensional histograms to a low-dimensional space for
compactness.

Rather than only using geometric properties, some existing works refer to
extracting descriptors from RGB images that are commonly co-registered with
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point clouds as in scanning datasets [26–28] and 3D reconstruction datasets
[29, 39]. Registration frameworks like [22–25] use SIFT descriptors [13] as the
representations of 3D keypoints based on their projections in single-view RGB
images. Besides, the other state-of-the-art 2D descriptors like DeepDesc [17],
L2-Net [18] and et al. [19–21] can easily migrate here for the description of 3D
local structures.

Multi-view fusion. The multi-view fusion technique is used to integrate in-
formation from multiple views into a single representation. It has been widely
proved by the literature that the technique effectively boosts the performance of
instance-level detection [30], recognition [31, 32] and classification [33] compared
with a single view. Su et al. [30] first propose a probabilistic representation of
a 3D-object class model for the scenario where an object is positioned at the
center of a dense viewing sphere. A more general strategy of multi-view fusion
is view pooling [31–33, 40], which aggregates the feature maps of multiple views
via element-wise maximum operation.

Matching. The goal of matching for registration is to find correspondences
across 3D point sets given keypoint descriptors. Almost all the registration al-
gorithms [15, 34–38] demand accurate point correspondences as input. Nearest-
neighbor search, mutual best filtering [15] and ratio test [13] are effective ways of
searching for potential matches based on local similarities for general matching
tasks. However, as mentioned above, these strategies are prone to mismatches
without considering the geometric consistency. To absorb geometric informa-
tion, [41] and [42] discover matches in geometric agreement using game-theoretic
scheme. Ma et al. [43] propose to reject outliers by enforcing consistency in lo-
cal neighborhood. Zhou et al. [15] use a RANSAC-style tuple test to eliminate
matches with inconsistent scales. Besides, the line process model [44] is applied
in registration domain to account for the presence of outliers implicitly [15].

3 Multi-View Local Descriptor (MVDesc)

In this section, we propose to learn multi-view descriptors (MVDesc) for 3D key-
points which combine multi-view fusion techniques [30–33] with patch descriptor
learning [17–21]. Specifically, we first propose a new view-fusion architecture to
integrate feature maps across views into a single representation. Second, we build
the MVDesc network for learning by putting the fusion architecture above mul-
tiple feature networks [45]. Each feature network is used to extract feature maps
from the local patch of each view.

3.1 Multi-View Fusion

Currently, view pooling is the dominant fusion technique used to merge feature
maps from different views [31–33, 40]. However, as reported by the literature [32,
46, 47], the pooling operation is somewhat risky in terms of feature aggregation
due to its effect of smoothing out the subtle local patterns. Inspired by ResNet
[48], we propose an architecture termed Fuseption-ResNet which uses the view
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Fig. 1: An overview of proposed Fuseption-ResNet (FRN). (a) Architecture of FRN
that fuses feature maps of multiple views. Backed by the view pooling branch as a
shortcut connection, (b) the Fuseption branch takes charge of learning the residual
mapping. (c) The parameters of the convolutional layers are listed

pooling as a shortcut connection and adds a sibling branch termed Fuseption in
charge of learning the underlying residual mapping.

Fuseption. As shown in Figure 1(b), the Fuseption is an Inception-style [49, 50]
architecture capped above multi-view feature maps. First, following the structure
of inception modules [49, 50], three lightweight cross-spatial filters with different
kernel sizes, 3×3, 1×3 and 3×1, are adopted to extract different types of features.
Second, the 1×1 convolution Conv6, employed above concatenated feature maps,
is responsible for the merging of correlation statistics across channels and the
dimension reduction as suggested by [49, 51].

Fuseption-ResNet (FRN). Inspired by the effectiveness of skip connections
in ResNet [48], we take view pooling as a shortcut in addition to Fuseption
as shown in Figure 1(a). As opposed to the view pooling branch which is in
charge of extracting the strongest responses across views [31], the Fuseption
branch is responsible for learning the underlying residual mapping. Both engaged
branches reinforce each other in term of accuracy and convergence rate. On
the one hand, the residual branch, Fuseption, guarantees no worse accuracy
compared to just using view pooling. This is because if view pooling is optimal,
the residual can be easily pulled to zeros during training. On the other hand,
the shortcut branch, view pooling, greatly accelerates the convergence of learning
MVDesc as illustrated in Figure 2(a). Intuitively, since the view pooling branch
has extracted the essential strongest responses across views, it is easier for the
Fuseption branch to just learn the residual mapping.

3.2 Learning MVDesc

Network. The network for learning MVDesc is built by putting the proposed
FRN above multiple parallel feature networks. We use the feature network from
MatchNet [45] as the basis, in which the bottleneck layer and the metric network
are removed. The feature networks of multiple views share the same parameters
of corresponding convolutional layers. The channel number of Conv6 is set to
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Fig. 2: (a) Test error of our MVDesc network with or without the view pooling branch.
Using view pooling as a shortcut connection contributes to much faster convergence
of learning. (b) Test error and forward time per iteration of MVDesc network with
respect to the number of fused views. Three views are chosen as a good trade-off
between accuracy and efficiency. (c) The sample multi-view patches produced by the
collected SfM database for training

be the same as that of feature maps output by a feature network. The ReLU
activation [52] follows each convolutional layer except the last Conv7. A layer
of L2 normalization is appended after Conv7 whose channel number can be
set flexibly to adjust the dimension of descriptors. The parameters of the full
network are detailed in the supplemental material.

Loss. The two-tower Siamese architecture [17, 53] is adopted here for training.
The formulation of the double-margin contrastive loss is used [54], i.e.,

L(xa,xb) = ymax(||da − db||2 − τ1, 0) + (1− y)max(τ2 − ||da − db||2, 0), (1)

where y = 1 for positive pairs and 0 otherwise. da and db are L2-normalized
MVDesc descriptors of the two sets of multi-view patches xa and xb, output by
the two towers. We set the margins τ1 = 0.3, τ2 = 0.6 in experiments.

View number. Unlike [31–33] using 12 or 20 views for objects, we adopt only
3 views in our MVDesc network for the description of local keypoints, which is
a good tradeoff between accuracy and efficiency as shown in Figure 2(b).

Data preparation. Current available patch datasets generally lack sufficient
multi-view patches for training. For example, one of the largest training sets
Brown [55, 56] only possesses less than 25k 3D points with at least 6 views.
Therefore, we prepare the training data similar to [20] based on the self-collected
Structure-from-Motion (SfM) database. The database consists of 31 outdoor
scenes of urban and rural areas captured by UAV and well reconstructed by a
standard 3D reconstruction pipeline [1, 2, 57–61]. Each scene contains averagely
about 900 images and 250k tracks with at least 6 projections. The multi-view
patches of size 64×64 are cropped from the projections of each track according
to SIFT scales and orientations [20], as displayed in Figure 2(c). A positive
training pair is formed by two independent sets of triple-view patches from the
same track, while a negative pair from different tracks. A total number of 10
million pairs with equal ratio of positives and negatives are evenly sampled from
all the 31 scenes. We turn the patches into grayscale, subtract the intensities by
128 and divide them by 160 [45].
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Fig. 3: (a) c1∼4 are four pairs of point matches. (b) The graph is defined to model the
neighboring relationship between c1∼4. The solid/dashed lines link between compat-
ible/incompatible neighbors. (c) 4,721 pairs of putative point matches. (d) 109 true
match pairs refined by our RMBP

Training. We train the network from scratch using SGD with a momentum of
0.9, a weight decay of 0.0005 and a batch size of 256. The learning rate drops
by 30% after every epoch with a base of 0.0001 using exponential decay. The
training is generally done within 10 epochs.

4 Robust Matching Using Belief Propagation (RMBP)

In this section, we are devoted to enhancing the accuracy and robustness of
3D point matching. Firstly, a graphical model is defined to describe the spatial
organizations of point matches. Secondly, each match pair is verified by the
inference from the graphical model via belief propagation. Notably, the proposed
method is complementary to the existing matching algorithms [13–15, 62].

4.1 Matching Model

It can be readily observed that inlier point correspondences generally hold spatial

proximity. We illustrate it in Figure 3(a) where c1 = (p1,q1), c2 = (p2,q2) and
c4 = (p4,q4) are three pairs of inlier correspondences. For any two pairs of inlier
matches, their points in each point cloud are either spatially close to each other
like 〈p1,p2〉 and 〈q1,q2〉 or far away from each other like 〈p2,p4〉 and 〈q2,q4〉
at the same time. On the contrary, outlier correspondences tend to show spatial
disorders. This observation implies the probabilistic dependence between neigh-
boring point correspondences which can be modeled by a probabilistic graph.

Formally, we first define the neighborhood of point correspondences as fol-
lows. Two pairs of point correspondences ci = (pi,qi) and cj = (pj ,qj) are
considered as neighbors if either pi and pj , or qi and qj , are mutually k-nearest
neighbors, i.e.,

max(rank(pi,pj), rank(pj ,pi)) < k, (2)

or max(rank(qi,qj), rank(qj ,qi)) < k, (3)

where rank(x,y) denotes the rank of distance of point y with respect to point x.
Then, the neighboring relationship between ci and cj can be further divided into
two categories: if Condition 2 and 3 are satisfied simultaneously, ci and cj are
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called compatible neighbors. They are very likely to co-exist as inlier matches.
But if only one of Condition 2 or 3 is satisfied by one point pair but another
pair of points in the other point cloud locate far apart from each other, e.g.,

min(rank(pi,pj), rank(pj ,pi)) > l, (4)

or min(rank(qi,qj), rank(qj ,qi)) > l, (5)

ci and cj are called incompatible neighbors, as it is impossible for two match
pairs breaching spatial proximity to be inliers simultaneously. The threshold
parameter k in Condition 2 and 3 is set to a relatively small value, while the
parameter l in Condition 4 and 5 is set to be larger than k by a considerable
margin. These settings are intended to ensure sufficiently strict conditions on
identifying compatible or incompatible neighbors for robustness.

Based on the spatial property of point matches stated above, an underlying
graphical model is built to model the pairwise interactions between neighboring
match pairs, as shown in Figure 3(a) and (b). The nodes in graphical model
are first defined as a set of binary variables X = {xi} each associated with
a pair of point correspondence. xi ∈ {0, 1} indicates the latent state of being
an outlier or inlier, respectively. Then the undirected edges between nodes are
formed based on the compatible and incompatible neighboring relationship de-
fined above. With the purpose of rejecting outliers, the objective here is to com-
pute the marginal of being an inlier for each point correspondence by performing
inference on the defined model.

4.2 Inference by Belief Propagation

The task of computing marginals on nodes of a cyclic network is known to be NP-
hard [63]. As a disciplined inference algorithm, loopy belief propagation (LBP)
provides approximate yet compelling inference on arbitrary networks [64].

In the case of our graphical network with binary variables and pairwise in-
teractions, the probabilistic distributions of all node variables are first initialized
as [0.5, 0.5]T with no prior imposed. Then the iterative message update step of
a standard LBP algorithm at iteration t can be written as

mt+1
ij =

1

Z
Fijmi

∏

k∈∂i\j

mt
ki. (6)

Here, ∂i denotes the set of neighbors of node xi and Z is the L1 norm of the
incoming message for normalization. The message mij passed from node xi to xj

is a two-dimensional vector, which represents the belief of xj ’s probability distri-
bution inferred by xi. So is the constant message mi passed from the observation
of node xi, which indicates the likelihood distribution of xi given its observation
measurements like descriptor similarity. The first and second components of the
messages are the probabilities of being an outlier and an inlier, respectively. The
product of messages is component-wise. The 2×2 matrix Fij is the compatibility
matrix of node xi and xj . Based on the neighboring relationship analyzed above,
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the compatibility matrix is supposed to favor the possibility that both nodes are
inliers if they are compatible neighbors and the reverse if they are incompatible
neighbors. In order to explicitly specify the bias, the compatibility matrices take
two forms in the two different cases, respectively:

F+ =

[

1 1
1 λ

]

or F− =

[

λ λ

λ 1

]

. (7)

The parameter λ takes a biased value greater than 1. To guarantee the con-
vergence of LBP, Simon’s condition [65] is enforced and the value of λ is thus
constrained by

max
xi∈X

|∂i| · log λ < 2, (8)

in which way λ is set adaptively according to the boundary condition. The proof
of the convergence’s condition is detailed in the supplemental material. After
convergence, the marginal distribution of node xi is derived by

bi =
1

Z
mi

∏

k∈∂i

mki, (9)

which unifies implication from individual observations and beliefs from struc-
tured local neighborhood. After the inference, point matches with low marginals
(e.g. < 0.5) are discarded as outliers. It greatly contributes to the matching
accuracy as shown in Figure 3(d) where 109 true match pairs are refined from
4,721 noisy putative match pairs.

Complexity analysis. The complexity of LBP is known to be linear to the
number of edges in the graph [66]. And the Condition 2 and 3 bound the degree
of each node to be less than 2k, so that the upper bound of RMBP’s complexity
is linear with the number of nodes.

5 Experiments

In this section, we first individually evaluate the proposed MVDesc and RMBP
in Section 5.1 and 5.2 respectively. Then the two approaches are validated on
the tasks of geometric registration in Section 5.3.

All the experiments, including the training and testing of neural networks,
are done on a machine with a 8-core Intel i7-4770K, a 32GB memory and a
NVIDIA GTX980 graphics card. In the experiments below, when we say putative
matching, we mean finding the correspondences of points whose descriptors are
mutually closest to each other in Euclidean space between two point sets. The
matching is implemented based on OpenBLAS [67]. The traditional geometric
descriptors [6–9] are produced based on PCL [68].

5.1 Evaluation of MVDesc

The target here is to compare the description ability of the proposed MVDesc
against the state-of-the-art patch descriptors [13, 17, 18] and geometric descrip-
tors [6–11].
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Table 1: The mAPs of descriptors in the three tasks of HPatches benchmark [69]. Our
MVDesc holds the top place in all the three tasks

SIFT [13] DeepDesc [17] L2-Net [18] View pooling [31] MVDesc

Patch verification 0.646 0.716 0.792 0.883 0.921

Image matching 0.111 0.172 0.309 0.312 0.325

Patch retrieval 0.269 0.357 0.414 0.456 0.530

5.1.1 Comparisons with patch descriptors

Setup. We choose HPatches [69], one of the largest local patch benchmarks,
for evaluation. It consists of 59 cases and 96,315 6-view patch sets. First, we
partition each patch set into two subsets by splitting the 6-views into halves.
Then, the 3-view patches are taken as input to generate descriptors. We set up
the three benchmark tasks in [69] by reorganizing the 3-view patches and use the
mean average precision (mAP) as measurement. For the patch verification task,
we collect all the 96,315 positive pairs of 3-view patches and 100,000 random
negatives. For the image matching task, we apply putative matching across the
two half sets of each case after mixing 6,000 unrelated distractors into every
half. For the patch retrieval task, we use the full 96,315 6-view patch sets each
of which corresponds to a 3-view patch set as a query and the other 3-view set
in the database. Besides, we mix 100,000 3-view patch sets from an independent
image set into the database for distraction.

We make comparisons with the baseline SIFT [13] and the state-of-the-art
DeepDesc [17] and L2-Net [18], for which we randomly choose a single view from
the 3-view patches. To verify the advantage of our FRN over the widely-used
view pooling [31–33] in multi-view fusion, we remove the Fuseption branch from
our MVDesc network and train with the same data and configuration. All the
descriptors have the dimensionality of 128.

Results. The statistics in Table 1 show that our MVDesc achieves the highest
mAPs in all the three tasks. First, it demonstrates the advantage of our FRN
over view pooling [31–33, 70, 40] in terms of multi-view fusion. Second, the im-
provement of MVDesc over DeepDesc [17] and L2-Net [18] suggests the benefits
of leveraging more image views than a single one. Additionally, we illustrate
in Figure 4(a) the trade-off between the mAP of the image matching task and
the dimension of our MVDesc. The mAP rises but gradually saturates with the
increase of dimension.

5.1.2 Comparisons with geometric descriptors

Setup. Here, we perform evaluations on matching tasks of the RGB-D dataset
TUM [28]. Following [11], we collect up to 3,000 pairs of overlapping point cloud
fragments from 10 scenes of TUM. Each fragment is recovered from independent
RGB-D sequences of 50 frames. We detect keypoints from the fragments by
SIFT3D [71] and then generate geometric descriptors, including PFH [6], FPFH
[7], SHOT [8], USC [9], 3DMatch [10] and CGF [11]. Our MVDesc is derived from
the projected patches of keypoints in three randomly-selected camera views. For
easier comparison, two dimensions, 32 and 128, of MVDesc (MVDesc-32 and



10 L. Zhou, S. Zhu, Z. Luo et al.

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4

P
re
c
is
io
n

Distance (m)

MVDesc-128

MVDesc-32

CGF

USC

SHOT

3DMatch

PFH

FPFH
0.16

0.2

0.24

0.28

0.32

0.36

32 64 128 256 512

m
A
P

Dimension

(a) (b)

Fig. 4: (a) The trade-off of mAP versus dimension of our MVDesc on the HPatches
benchmark [69]; (b) The change of matching precisions w.r.t. the varying threshold of
point distances on the TUM dataset [28]. The 128- and 32-dimensional MVDesc rank
first and second at any threshold

Table 2: Precisions and recalls of matching on the TUM dataset [28] when the threshold
of points’ distances equals to 0.1 meters. The average time taken to encode 1,000
descriptors is also compared. Our MVDesc hits the best in terms of precision, recall
and efficiency

CGF [11] FPFH [7] PFH [6] SHOT [8] 3DMatch [10] USC [9] MVDesc

Dim. 32 33 125 352 512 1980 32 128

Precision 0.447 0.194 0.244 0.322 0.278 0.342 0.664 0.695

Recall 0.215 0.229 0.265 0.093 0.114 0.026 0.523 0.580

Time (s) 7.60 1.49 14.40 0.29 2.60 0.73 0.22 0.23

MVDesc-128) are adopted. Putative matching is applied to all the fragment
pairs to obtain correspondences. Following [11], we measure the performance of
descriptors by the fraction of correspondences whose ground-truth distances lie
below the given threshold.

Results. The precision of point matches w.r.t. the threshold of point distances
is depicted in Figure 4(b). The MVDesc-128 and MVDesc-32 rank first and
second in precision at any threshold, outperforming the state-of-the-art works
by a considerable margin. We report in Table 2 the precisions and recalls when
setting the threshold to 0.1 meters and the average time of producing 1,000
descriptors. Producing geometric descriptors in general is slower than MVDesc
due to the cost of computing local histograms, although the computation has
been accelerated by multi-thread parallelism.

5.2 Evaluation of RMBP

Setup. To evaluate the performance of outlier rejection, we compare RMBP
with RANSAC and two state-of-the-art works - Sparse Matching Game (SMG)
[42] and Locality Preserving Matching (LPM) [43]. All the parameters of meth-
ods have been tuned to give the best results. We match 100 pairs of same-scale
point clouds from 20 diverse indoor and outdoor scenes of TUM [27], ScanNet
[65] and EPFL [38] datasets. We keep a constant number of inlier correspon-
dences and continuously add outlier correspondences for distraction. The evalu-
ation uses the metrics: the mean precisions and recalls of outlier rejection and
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RMBP performs well in all metrics and at all inlier ratios while RANSAC, SMG [42]
and LPM [43] fail to give valid registrations when the inlier ratio drops below 1

8
, 1

8
and

1

64
, respectively

inlier selection. Formally, we write OP = #true rejections
#rejections

, OR = #true rejections
#outliers

,

IP = #kept inliers
#kept matches

, IR = #kept inliers
#inliers

. We also estimate the transformations
from kept matches using RANSAC and collect the median point distance after
registration.

Results. The measurements with respect to the inlier ratio are shown in Fig. 5.
First, RMBP is the only method achieving high performance in all metrics and at
all inlier ratios. Second, RANSAC, SMG and LPM fail to give valid registrations
when the inlier ratio drops below 1

8 ,
1
8 and 1

64 , respectively. They obtain high
OP and OR but low IP or IR when the inlier ratio is smaller than 1

16 , because
they tend to reject almost all the matches.

5.3 Geometric Registration

In this section, we verify the practical usage of the proposed MVDesc and RMBP
by the tasks of geometric registration. We operate on point cloud data obtained
from two different sources: the point clouds scanned by RGB-D sensors and those
reconstructed by multi-view stereo (MVS) algorithms [72].

5.3.1 Registration of scanning data

Setup. We use the task of loop closure as in [10, 11] based on the dataset Scan-
Net [73], where we check whether two overlapping sub-maps of an indoor scene
can be effectively detected and registered. Similar to [10, 11], we build up inde-
pendent fragments of 50 sequential RGB-D frames from 6 different indoor scenes
of ScanNet [73]. For each scene, we collect more than 500 fragment pairs with
labeled overlap obtained from the ground truth for registration.

The commonly-used registration algorithm, putative matching plus RANSAC,
is adopted in combination with various descriptors [6–11]. The proposed RMBP
serves as an optional step before RANSAC. We use the same metric as [10, 11],
i.e., the precision and recall of registration of fragment pairs. Following [10], a
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Fig. 6: Challenging cases of loop closures from the ScanNet dataset [73]. The images in
the top row indicate very limited overlap shared by the fragment pairs. Our MVDesc-
32+RMBP succeeds in the registration of these cases while the top-performing geo-
metric descriptor CGF-32 [11] fails no matter whether RMBP is employed

Table 3: The quantitative comparisons of 3D descriptors on registration of the ScanNet
dataset [73]. The superscript * means the proposed RMBP is applied. The RMBP
generally lifts the precisions and recalls of registration for almost all the descriptors. Our
MVDesc well surpasses the state-of-the-art works in recall with comparable precision
and run-time of registration

CGF [11] FPFH [7] PFH [6] SHOT [8] 3DMatch [10] USC [9] MVDesc

Dim. 32 33 125 352 512 1980 32 128

Precision 0.914 0.825 0.866 0.875 0.890 0.790 0.865 0.910

Precision* 0.927 0.856 0.864 0.928 0.934 0.795 0.892 0.906

Recall 0.350 0.119 0.147 0.178 0.185 0.124 0.421 0.490

Recall* 0.419 0.272 0.338 0.198 0.145 0.157 0.482 0.513

Time (s) 0.5 0.5 0.7 1.8 2.4 8.4 0.5 0.7

registration is viewed as true positive if the estimated Euclidean transformation
yields more than 30% overlap between registered fragments and transformation
error less then 0.2m. We see a registration as positive if there exist more than
20 pairs of point correspondences after RANSAC.

Results. The precisions, recalls and the average time of registration per pair
are reported in Table 3. Our MVDesc-32 and MVDesc-128 both surpass the
counterparts by a significant margin in recall while with comparable precision
and efficiency. Our versatile RMBP well improves the precisions for 6 out of 8
descriptors and lifts the recalls for 7 out of 8 descriptors. The sample registration
results of overlap-deficient fragments are visualized in Figure 6.

Indoor reconstruction. The practical usage of MVDesc is additionally eval-
uated by indoor reconstruction of the ScanNet dataset [73]. We first build up
reliable local fragments through RGB-D odometry following [74, 75] and then
globally register the fragments based on [15]. The RMBP is applied for out-
lier filtering. The FPFH [7] used in [15] is replaced by SIFT [13], CGF-32 [11]
or MVDesc-32 to establish correspondences. We also test the collaboration of
CGF-32 and MVDesc-32 by combining their correspondences. Our MVDesc-32
contributes to visually compelling reconstruction as shown in Figure 7(a). And
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Fig. 7: (a) A complete reconstruction of an apartment from ScanNet [73] using our
MVDesc-32. (b) The reconstructions using SIFT [13], CGF-32 [11] and MVDesc-32.
The collaboration of MVDesc-32 and CGF-32 yields the best reconstruction as shown
in the last cell of (b)

we find that MVDesc-32 functions as a solid complement to CGF-32 as shown
in Figure 7(b), especially for the scenarios with rich textures.

5.3.2 Registration of Multi-View Stereo (MVS) data

Setup. Aside from the scanning data, we run registration on the four scenes of
the MVS benchmark EPFL [39]. First, we split the cameras of each scene into
two clusters in space highlighting the difference between camera views, as shown
in Figure 8. Then, the ground-truth camera poses of each cluster are utilized to
independently reconstruct the dense point clouds by the MVS algorithm [72].
Next, we detect keypoints by SIFT3D [71] and generate descriptors [6–11] for
each point cloud. The triple-view patches required by MVDesc-32 are obtained
by projecting keypoints into 3 visible image views randomly with occlusion test
by ray racing [76]. After, the correspondences between the two point clouds of
each scene are obtained by putative matching and then RMBP filtering. Finally,
we register the two point clouds of each scene based on FGR [15] using estimated
correspondences.

Results. Our MVDesc-32 and RMBP help to achieve valid registrations for all
the four scenes, whilst none of the geometric descriptors including CGF [11],
3DMatch [10], FPFH [7], PFH [6], SHOT [8] and USC [9] do, as shown in Figure
8. It is found that the failure is mainly caused by the geometrically symmetric
patterns of the four scenes. We show the correspondences between CGF-32 fea-
tures [11] in Figure 9 as an example. The putative matching has resulted in a
large number of ambiguous correspondences between keypoints located at the
symmetric positions. And in essence, our RMBP is incapable of resolving the
ambiguity in such cases though, because the correspondences in a symmetric
structure still adhere to the geometric consistency. Ultimately, the ambiguous
matches lead to the horizontally-flipped registration results as shown in Figure
8. At least in the EPFL benchmark [39], the proposed MVDesc descriptor shows
superior ability of description to the geometric ones.
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Fig. 8: Registrations of models of EPFL benchmark [39]. Given the same keypoints,
our MVDesc-32+RMBP accomplishes correct registrations while CGF-32 [11]+RMBP
fails due to the symmetric ambiguity of the geometry
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Fig. 9: Spurious correspondences of CGF features [11] before and after RMBP filtering.
The two point clouds of [39] (colored in yellow and red) have been overlaid together by
the ground truth transformation for visualization. Although our RMBP has eliminated
most of the unorganized false matches, it is incapable of rejecting those ambiguous
outliers arising from the ambiguity of the symmetric geometry

6 Conclusion

In this paper, we address the correspondence problem for the registration of point
clouds. First, a multi-view descriptor, named MVDesc, has been proposed for the
encoding of 3D keypoints, which strengthens the representation by applying the
fusion of image views [31–33] to patch descriptor learning [17–21]. Second, a ro-
bust matching method, abbreviated as RMBP, has been developed to resolve the
rejection of outlier matches by means of efficient inference through belief propa-
gation [64] on the defined graphical matching model. Both approaches have been
validated to be conductive to forming point correspondences of better quality
for registration, as demonstrated by the intensive comparative evaluations and
registration experiments [6–11, 15, 17, 18, 62].
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24. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-
time globally consistent 3d reconstruction using on-the-fly surface reintegration.
TO 36(3) (2017) 24

25. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-d mapping with an
rgb-d camera. IEEE Transactions on Robotics 30(1) (2014) 177–187

26. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3D: Learning from RGB-D data in indoor
environments. In: 3DV. (2017)

27. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D
visual odometry, 3D reconstruction and SLAM. In: ICRA. (2014)

28. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: IROS. (2012)

29. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections
in 3d. In: SIGGRAPH. (2006)

30. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representa-
tion for detection, viewpoint classification and synthesis of object categories. In:
ICCV. (2009)

31. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional
neural networks for 3d shape recognition. In: ICCV. (2015)

32. Wang, C., Pelillo, M., Siddiqi, K.: Dominant set clustering and pooling for multi-
view 3d object recognition. In: BMVC. (2017)

33. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and
multi-view cnns for object classification on 3d data. In: CVPR. (2016)

34. Besl, P.J., McKay, N.D., et al.: A method for registration of 3-d shapes. PAMI
14(2) (1992) 239–256

35. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on
real-world data sets. Autonomous Robots 34(3) (2013)

36. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM.
(2001)

37. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-icp: a globally optimal solution to 3d
icp point-set registration. PAMI 38(11) (2016) 2241–2254

38. Briales, J., Gonzalez-Jimenez, J.: Convex global 3d registration with lagrangian
duality. In: CVPR. (2017)

39. Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On bench-
marking camera calibration and multi-view stereo for high resolution imagery. In:
CVPR. (2008)

40. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. arXiv preprint (2016)

41. Albarelli, A., Bulo, S.R., Torsello, A., Pelillo, M.: Matching as a non-cooperative
game. In: ICCV. (2009)
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