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Abstract. This paper presents a network to detect shadows by explor-
ing and combining global context in deep layers and local context in
shallow layers of a deep convolutional neural network (CNN). There are
two technical contributions in our network design. First, we formulate the
recurrent attention residual (RAR) module to combine the contexts in
two adjacent CNN layers and learn an attention map to select a residual
and then refine the context features. Second, we develop a bidirectional
feature pyramid network (BFPN) to aggregate shadow contexts spanned
across different CNN layers by deploying two series of RAR modules in
the network to iteratively combine and refine context features: one se-
ries to refine context features from deep to shallow layers, and another
series from shallow to deep layers. Hence, we can better suppress false
detections and enhance shadow details at the same time. We evaluate
our network on two common shadow detection benchmark datasets: S-
BU and UCF. Experimental results show that our network outperforms
the best existing method with 34.88% reduction on SBU and 34.57%
reduction on UCF for the balance error rate.

1 Introduction

Shadows are regions that receive less illumination than the surroundings, due to
lights occluded by associated objects in the scene. To detect shadows in images,
early works develop physical models with heuristic priors [1, 2] or take a machine
learning approach based on hand-crafted features. However, image priors and
hand-crafted features are not effective for extracting high-level semantics.

More recently, methods based on the convolutional neural network (CNN) [3–
7] show distinct performance on various shadow detection benchmarks, e.g., [4,
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8]. A key factor for the successes is that CNN is able to learn the global spatial
contexts in shadow images, as demonstrated in very recent works [5–7].

To further explore the spatial contexts and improve the shadow detection
performance, it requires an understanding of the global contexts about the objects
and illumination conditions in the scene, the local contexts about the details in
the shadow shapes, as well as an integration of various contexts extracted in
different scales. This drives us to explore shadow contexts over different CNN
layers, where the shallow layers help reveal local contexts and the deep layers
help reveal the global contexts due to a large receptive field.

In this work, we design a bidirectional feature pyramid network (BFPN),
which extends over the feature pyramid network architecture [9]. Particularly,
we aim to leverage the spatial contexts across deep and shallow layers, as well as
iteratively integrate the contexts for maximized shadow detection performance.
In detail, we have the following technical contributions in this work:

– First, we develop the recurrent attention residual module, or RAR module for
short, to combine and process spatial contexts in two adjacent CNN layers.
Inside the module, an attention map is learnt and predicted by the network
to select a residual and to refine the context features.

– Second, we design our bidirectional feature pyramid network (BFPN) by tak-
ing the RAR modules as building blocks. Inside the BFPN, we first apply the
convolutional neural network (CNN) to generate a set of feature maps (i.e.,
spatial contexts) in different resolutions, and then use two series of RAR
modules to iteratively integrate spatial contexts over the CNN layers: one
series of RAR modules from deep to shallow layers and another series from
shallow to deep layers. Lastly, the prediction results from the two directions
are further integrated by means of an attention mechanism.

To demonstrate the performance of our network, we evaluate it on two com-
mon benchmarks, i.e., SBU [4] and UCF [8], and compare its performance against
several state-of-the-art methods designed for shadow detection, shadow removal,
saliency detection and semantic segmentation. Results show that our model
clearly outperforms the best existing method with over 34.88% reduction on SBU
and 34.57% reduction on UCF in terms of the balance error rate. The code and
models of our method are available at https://github.com/zijundeng/BDRAR.

2 Related Work

Shadows in natural images have been employed as hints in various computer
vision problems for extracting the scene geometry [10, 11], light direction [12],
and camera location and parameters [13]. On the other hand, shadows are al-
so beneficial to a variety of high-level image understanding tasks, e.g., image
segmentation [14], object detection [15], and object tracking [16].

In the literature, a number of single-image shadow detection methods have
been proposed. Early works [1, 2, 17] focused on illumination models and color
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information to detect shadows from inputs, but just worked well for wide dy-
namic range images [5, 18]. Data-driving statistical learning is another popular
strategy for shadow detection by learning shadow properties from images with
annotated ground truths. These methods usually began by first designing some
hand-crafted features [8, 18–21] and then employing some classifiers [8, 18–21] for
shadow detection. While showing the performance improvement on the shadow
detection, they often failed in complex cases, due to the limited discriminative
capability of the hand-crafted features.

Compared with traditional methods based on hand-crafted features, deep
convolutional neural network (CNN) based methods have refreshed many com-
puter vision tasks [6, 7, 9, 22, 23], including shadow detection. For instance, Khan
et al. [3] was the first one to use deep learning to automatically learn features
for shadow detection with a significant improvement. They trained one CNN to
detect shadow regions and another CNN to detect shadow boundaries, and then
fed the prediction results to a conditional random field (CRF) for classifying im-
age pixels as shadows/non-shadows. Later, a stacked CNN [4] was presented to
detect shadows by considering the global prediction of an image and the shadow
predictions of image patches. They first trained a fully convolutional network
to obtain an image-level shadow prior, which was combined with local image
patches to train a patch-based CNN for the final shadow map prediction.

Recently, a fast deep shadow detection network [24] was introduced by obtain-
ing a shadow prior map produced from hand-crafted features and then applying
a patch level CNN to compute the improved shadow probability map of the in-
put image. And a generative adversarial network based shadow detector, called
scGAN [5], was developed by formulating a conditional generator on input RGB
images and learning to predict the corresponding shadow maps. When detecting
shadows for a given image, they combined the predicted shadow masks for a
large quantity of multi-scale crops for the final shadow mask prediction. The
most recent work by Hu et al. [6, 7] presented a deep network with direction-
aware spatial context modules to analyze the global semantics.

The deep models in state-of-the-art works [5–7] mainly emphasized the im-
portance of inferring global contexts for shadow detection. Compared to these
methods, we suggest to develop a network by fully leveraging the global and
local contexts in different layers of the CNN to detect shadows. Results show
that our method clearly outperforms [5–7] in terms of the BER values on two
widely-used benchmark datasets.

3 Methodology

Fig. 1 presents the workflow of the overall shadow detection network that em-
ploys two series of RAR modules (see Fig. 2 (d)) to fully exploit the global
contexts and the local contexts at two adjacent layers of the convolutional neu-
ral network. Our network takes a single image as input and outputs the shadow
detection result in an end-to-end manner. First, it leverages a convolutional neu-
ral network (CNN) to extract the feature maps with different resolutions. The
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Fig. 1: The schematic illustration of the overall shadow detection network. Best
viewed in color.

feature maps in shallow layers discover the fine shadow detail information in
the local regions while the feature maps in deep layers capture shadow semantic
information of the whole image [25]. Then, we develop RAR modules to progres-
sively refine features at each layer of the CNN by taking two adjacent feature
maps as inputs to learn an attention map and to select a residual for the refine-
ment of context features. We embed multiple RAR modules into a bidirectional
feature pyramid network (BFPN), which uses two directional pathways to har-
vest the context information at different layers: one pathway is from shallow
layers to deep layers, while another pathway is in the opposite direction. Lastly,
we predict the score maps from the features at the last layers of two direction-
al pathways, and then fuse those two score maps in an attentional manner to
generate the final shadow detection result.

In the following subsections, we firstly elaborate how the RAR module refine
the feature maps at each layer of the CNN, then present the details on how we
embed our RAR modules into the shadow detection network (called bidirectional
feature pyramid network (BFPN) with RAR modules, BDRAR for short), and
finally introduce the training and testing strategies of our network.

3.1 Recurrent Attention Residual Module

One of the main issues in our method is to refine the context features at each layer
for shadow detection by combining the context features at two adjacent layers
of the CNN. A common way is to use an element-wise addition (see Fig. 2 (a))
like the original FPN [9] to merge these two adjacent features. It up-samples the
low-resolution feature maps and then adds it with the high-resolution feature
maps. However, the element-wise addition on the two input context features
simply merges the features at different layers, suffering from a limited ability to
suppress non-shadow details in the high-resolution feature maps and introducing
the non-shadow regions into the results. To alleviate this problem, we introduce
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Fig. 2: The schematic illustration of different modules to merge features (Fi and

Fj) at two layers for the feature refinement (output refined feature: F̂i).

the residual learning technique [26, 27] to improve the feature refinement by
learning the residual of input features. As shown in Fig. 2 (b), it begins by
taking the concatenation of two input feature maps as the inputs and learning
to produce the residual maps to refine original features by the element-wise
addition. Learning the residual counterpart (see Fig. 2 (b)) instead of adding the
feature maps directly (see Fig. 2 (a)) makes the feature refinement task easier,
since it only needs to learn the complementary information from the features at
different layers and can preserve the original features.

To further improve the performance of feature refinement, we develop a re-
current attention residual (RAR) module (see Fig. 2 (d)), which recurrently
applies an attention residual (AR) module (see Fig. 2 (c)) to compute the re-

fined context features. Let F̂res denote the refined output features produced by
using the residual learning based module of Fig. 2 (b). Our AR module improves
the feature enhancement performance by recurrently learning an attention map
to select the useful information of F̂res as the residual, which is added by the
original F̂res as the output refined features. Specifically, the AR module starts
by concatenating the input two adjacent context features, and then utilizes an
attention module (see Fig. 3 (a)) to produce a weight (or an attention) map
from the concatenated features. The attention map works as a feature selector
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Fig. 3: (a) The schematic illustration of the attention module in RAR; (b) The
details of attentional fusion for the final shadow detection map; see Sec. 3.2.

to enhance good features and suppress noise in F̂res. Then, the output refined
feature of AR module is obtained by multiplying the learned attention map with
the F̂res, and then adding it with F̂res using an element-wise addition, as shown
in Fig. 3 (c). Hence, our RAR module computes the refined context features by
recurrently employing the AR modules, where the output refined features at the
previous recurrent step are used as the input of subsequent AR modules, and the
parameters of different AR modules are shared to reduce the risk of overfitting.

Mathematically, our RAR computes the refinement features (denoted as
Fu+1

i ) at the layer i as:

Fu+1

i =

(
1 +A

(
Cat(Fu

i , Fj)
))

∗

[
Φ
(
Cat(Fu

i , Fj)
)
+ Fj

]
, (1)

where u=1,2,. . ., U; U is the number of recurrent steps; Fu
i is the refined features

after u recurrent steps, F 1
i = Fi, which is the context features at layer i of

the CNN; Fj is the context features at layer j of the CNN; Cat denotes the
concatenation operation on Fi and Fj ; A(Cat(Fi, Fj)) is the learned weight map
using the attention mechanism (see the paragraph below for the details); and Φ

represents the residual function.

Attention module in the RAR. Motivated by the attention mechanism used for
image classification [23], we develop an attention module (see Fig. 3 (a)) to learn
a weight map from the concatenated features (Cat(Fu

i , Fj) of Eq. (1)). It starts
with three residual blocks, where each block has a 1*1 convolution layer, a 3*3
dilated convolution layer, and a 1*1 convolutional layer. After that, we compute

the weight (attention) map
(
A
(
Cat(Fu

i , Fj)
))

by using a sigmoid function on

the feature maps (denoted as H) learned from three residual blocks:

a(p, q, c) =
1

1 + exp
(
−H(p, q, c)

) , (2)

where a(p, q, c) is the weight at the spatial position (p, q) of the c-th channel of

the learned weight map
(
A
(
Cat(Fu

i , Fj)
))

, while H(p, q, c) is the feature value

at the spatial position (p, q) of the c-th channel of H.
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3.2 Our Network

Note that the original FPN [9] iteratively merges features in a top-down pathway
until reaching the last layer with the largest resolution. We argue that such sin-
gle top-down pathway is not enough to capture the shadow context information
spanned in different layers of the CNN. To alleviate this problem, we design a
bidirection mechanism to integrate context information of different layers: one
(top-down) pathway is to integrate features from low-resolution layers to high-
resolution layers, while another (bottom-up) pathway is from high-resolution
layers to low-resolution layers, and we use our RAR module (see Sec. 3.1) to
refine features at each layer by merging two adjacent features. After that, we,
following [28], use an attention mechanism (see Fig. 3 (b)) to generate the fi-
nal shadow detection map by fusing the shadow predictions from the refined
features (denoted as FH) at the last layer in the top-down direction and the
features (denoted as FL) at the last layer in the bottom-up direction. As shown
in Fig. 3 (b), we first generate two shadow detection maps from the refined fea-
tures (FH and FL) by using a 1 × 1 convolutional layer. Then, we perform two
convolution layers (3×3 and 1×1) on the concatenation of FH and FL, and use
a sigmoid function to generate attention maps, which are multiplied with the
shadow detection maps to produce the final shadow detection result.

The designed bidirection feature pyramid network (BFPN) can effectively use
the complementary information of features in two directional pathways for shad-
ow detection. Please refer to the Ablation study in Sec. 4.4 for the comparisons
between the original FPN and our BFRN on two shadow detection benchmark
datasets.

3.3 Training and Testing Strategies

We implement our network using PyTorch, and adopt ResNeXt101 [29] as the
basic convolutional neural network for feature extraction.

Loss function. As shown in Fig. 1, our network utilizes the deep supervision
mechanism [30] to impose supervision signals to the features at each layer of two
bidirectional pathways to promote useful information propagation to the shadow
regions. During the training process, binary cross-entropy loss is used for each
output of the network, and the total loss is the summation of the losses of all
the output score maps.

Training parameters. To accelerate the training procedure and reduce the over-
fitting risk, we initialize the parameters of the basic convolutional neural network
by ResNeXt [29], which has been well-trained for the image classification task
on the ImageNet. Other parameters are initialized by random noise. Stochastic
gradient descent (SGD) equipped with momentum of 0.9 and weight decay of
0.0005 is used to optimize the whole network for 3000 iterations. We adjust the
learning rate by the poly strategy [31] with the basic learning rate of 0.005 and
the power of 0.9. We train our network on the SBU training set, which contains
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Table 1: Comparing our method (BDRAR) with state-of-the-arts for shadow
detection (DSC [6, 7], scGAN [5], stacked-CNN [4], patched-CNN [24] and Unary-
Pairwise [19]), for shadow removal (DeshadowNet [33]), for saliency detection
(SRM [34] and Amulet [35]), and for semantic segmentation (PSPNet [36]).

SBU [4] UCF [8]

method BER BER

BDRAR (ours) 3.64 5.30

DSC [6, 7] 5.59 8.10
scGAN [5] 9.10 11.50

stacked-CNN [4] 11.00 13.00
patched-CNN [24] 11.56 -
Unary-Pairwise [19] 25.03 -

DeshadowNet [33] 6.96 8.92

SRM [34] 7.25 9.81
Amulet [35] 15.13 15.17

PSPNet [36] 8.57 11.75

4089 images. Moreover, we augment the training set by random horizontal flip-
ping. We resize all the images to the same resolution (416× 416). Our network
is trained on a single GTX 1080Ti GPU with a mini-batch size of eight, and the
whole training process only takes about 40 minutes.

Inference. During testing, we first resize the input images to the same resolution
as we used in the training stage. Then, we take the output of the attentional
fusion module (see Fig. 3 (b)) as the final output of the whole network for
shadow detection. Finally, we use the fully connected conditional random field
(CRF) [32] to further enhance the detection results by optimizing the spatial
coherence of each pixel on the output of our network.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

Benchmark datasets. We evaluate the effectiveness of the proposed network
on two widely-used shadow benchmark datasets: SBU [4] and UCF [8]. Each
image in both two benchmark datasets has its corresponding annotated binary
shadow mark. The SBU dataset is the largest publicly available annotated shad-
ow dataset with 4089 training images and 638 testing images, while the UCF
dataset consists of 145 training images and 76 testing images. In our experiment,
we train our shadow detection network using SBU training set, and evaluate our
method and competitors on the testing sets of the SBU and UCF. Our network
takes 0.056 s to process an image of 416× 416 resolution.

Evaluation metrics We employ a commonly-used metric, which is balance
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Fig. 4: Visual comparison of shadow maps produced by our method and others
(4th-10th columns) against ground truths shown in 2nd column. Note that “stC-
NN” and “paCNN” stand for “stacked-CNN” and “patched-CNN”, respectively.

error rate (BER), to quantitatively evaluate the shadow detection performance;
please refer to this work [6] for the definition of the BER. Note that better
performance is indicated by a lower BER value.

4.2 Comparison with the State-of-the-art Shadow Detectors

We compare our method with five recent shadow detectors: DSC [6, 7], sc-
GAN [5], stacked-CNN [4], patched-CNN [24] and Unary-Pairwise [19]. To make
a fair comparison, we obtain other shadow detectors’ results either directly from
the authors or by using the public implementations provided by the authors with
recommended parameter settings.

Table 1 reports the quantitative results of different methods. From the results,
we can find that the deep learning based methods [4, 6, 7, 24] usually have better
shadow detection results than hand-crafted detectors [19], since they can learn
more powerful features for shadow detection from the annotated training set.
DSC [6, 7] achieves a superior performance than other existing deep learning
models [4, 5, 24] by analyzing the directional contexts to understand the global
image semantics to infer shadows. Compared to DSC, our method has 34.88%
reduction on SBU and 34.57% reduction on UCF in terms of BER, demonstrating
that our method (BDRAR) outperforms the others on both benchmark datasets.
Although our shadow detection network is trained on the SBU training set [4],
it still has a superior performance over the others on the UCF dataset, which
demonstrates the generalization capability of our network.
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Fig. 5: Visual comparison of shadow maps produced by our method and others
(4th-10th columns) against ground truths shown in 2nd column. Note that “stC-
NN” and “paCNN” stand for “stacked-CNN” and “patched-CNN”, respectively.

In Figs. 4 and 5, we provide visual comparison results on different input
images. From the results, we can find that our method (3rd column of Figs. 4
and 5) can effectively locate shadows under various backgrounds and avoid false
positives, and thus has the best performance among all the shadow detectors.
Moreover, for high-contrast objects in a large shadow region, our method still
recognizes them as shadows; see the last two rows of Fig. 5.

4.3 Comparison with Methods of Shadow Removal, Saliency

Detection and Semantic Segmentation

Note that deep networks designed for shadow removal, saliency detection and
semantic image segmentation can be re-trained for shadow detection by using
annotated shadow datasets. To further evaluate the effectiveness of our method,
another experiment is conducted by comparing our method with a recent shadow
removal model, i.e., DeshadowNet [33], two recent deep saliency detection mod-
els, i.e., SRM [34] and Amulet [35], and a recent semantic segmentation model,
i.e., PSPNet [36].

Since we cannot obtain the original code of DeshadowNet [33], we carefully
follow the published paper of DeshadowNet to implement it with our best ef-
forts and train the model for shadow detection on the SBU training set. For the
other three methods, we obtain the code of these methods from their project
web-pages, and re-train their models on the SBU training set. For a fair com-
parison, we try our best to tune their training parameters and select the best
shadow detection results. The last four rows in Table 1 report the BER values
of these methods. Even though they have better BER values than some existing
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Table 2: Ablation analysis. We train all the networks using the SBU training set
and test them using the SBU testing set [4], and UCF testing set [8].

SBU [4] UCF [8]

network BER BER

FPN 5.78 7.70
BD 5.37 7.11
RAR 4.33 6.09

BDR 4.23 6.71
BDAR 3.74 6.19

BDRAR (ours) 3.64 5.30

BDRAR w/o sw 3.89 5.66

(a) inputs (b) GT (c) ours (d) RAR (e) BD (f) FPN

Fig. 6: Comparing the shadow maps produced by our method (c) and by the
other three models (d)-(f) against the ground truths (denoted as “GT”) in (b).

shadow detectors, our method still demonstrates a superior shadow detection
performance over them on both benchmark datasets. On the other hand, the
last three columns in Figs. 4 and 5 present the predicted shadow maps, showing
that our network can consistently produce better shadow detection maps than
the other methods.

4.4 Ablation Analysis

We perform experiments to evaluate the bidirectional feature integration in the
FPN and the effectiveness of the RAR module design. The basic model is the
original “FPN [9],” which only uses the top-down direction to integrate features
and removes all the RAR modules shown in Fig. 1. The second model (denoted
as “BD”) is similar to the “FPN,” but it uses our bidirectional pathway to merge
features at different layers of the CNN. The third model (denoted as “RAR”) is
the “FPN” with the RAR modules only. The fourth model (denoted as “BDR”)
replaces all the RAR modules of our network with residual learning based mod-
ules (see Fig. 2 (b)), while the fifth model (denoted as “BDAR”) replaces all
our RAR modules with the attention residual learning modules (see Fig. 2 (c)),
which means that this model is constructed by removing the recurrent mecha-
nism from our RAR modules. The last model (denoted as “BDRAR w/o sw”)
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Table 3: RAR module with different recurrent steps.
SBU [4] UCF [8]

number of recurrent steps BER improvement BER improvement

1 (BDRA) 3.74 - 6.19 -
2 3.64 2.67% 5.30 14.38%

3 3.89 -6.87% 5.66 -6.79%

has a similar structure with our BDRAR, but it uses independent weights at
each recurrent step in our RAR modules.

Table 2 summaries the compared BER values on both benchmark datasets.
From the results, we can see that both “replacing the single top-down pathway
of the FPN with the bidirectional pathways” and “adopting the RAR modules”
lead to an obvious improvement. Compared to results of our network with the
residual learning based module (see Fig. 2 (b)) and attention residual module
(see Fig. 2 (c)), our RAR modules (see Fig. 2 (d)) have better performance on
shadow detection, since it can recurrently learn a set of attention weights to se-
lect good residual features to refine the integrated features, as shown in Table 2.
Moreover, we provide visual analysis to evaluate how RAR and bidirectional
feature integration contribute by conducting an experiment by comparing our
method with three models: “FPN”, “BD”, and “RAR.” Fig. 6 shows the compar-
isons on two input images, showing that RAR and BD can detect more shadow
regions, as shown in Fig. 6(d-f). More importantly, our method with both RAR
and bidirectional integration produces the best performance, and our predicted
shadow maps are more similar to the ground truths (GT). Lastly, our method
also outperforms “BDRAR w/o sw”, showing that sharing weights in the RAR
modules can reduce the learning parameters of the network, and thus leads to
better shadow detection results.

Note that our RAR module (see Fig. 2 (d)) recurrently employs the AR
module (see Fig. 2 (c)) to refine features at each layer by merging two adja-
cent features. Hence, a basic question of configuring our network is how many
recurrent steps we use in our RAR modules. We adopt the network with the
RAR modules as the baseline (BDAR), which has only one recurrent step (see
Table 2); We conduct an experiment for comparisons by modifying our network
with different rounds of recurrent steps (the round of AR modules; see Fig. 2
(c) in our RAR), and Table 3 reports the results. As shown in Table 3, we can
find that having two recurrent steps in the RAR module achieves the best per-
formance on shadow detection. Compared to only one AR module, the network
with two rounds of AR models can enhance the quality of the refined features
at each layer by further integrating the adjacent features. However, when there
are three rounds of AR modules in our RAR, it largely increases the complexity
of our network, thus making the network training more difficult.



Bidirectional FPN with Recurrent Attention Residual Modules 13

(d)(c)

(a) (b)

Fig. 7: More results produced from our network.

input images ground truths our results

Fig. 8: Failure cases of our network.

4.5 More Shadow Detection Results

In Fig. 7, we show more shadow detection results: (a) low-contrast shadow
boundary; (b) unconnected shadows with a black background; (c) multiple hu-
man objects; and (d) tiny and irregular shadows. From the results, we can see
that our method can still detect these shadows fairly well. Note that our method
also has its limitations, and tends to fail in some extreme cases, such as the soft
shadows (see Fig. 8 (top)), and shadows with tiny details (see Fig. 8 (bottom)).

4.6 Saliency Detection

Our deep model has the potential to handle other vision tasks. Here, we take
the saliency detection as an example. To evaluate the saliency detection per-
formance of our deep model, we first re-trained our model on “MSRA10k,”
which is a widely-used dataset for saliency object detection, and then tested
the trained model on four widely-used benchmark datasets, including ECSSD,
HKU-IS, PASCAL-S, and DUT-OMRON; please refer to [37, 38] for the details
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Table 4: Comparison with the state-of-the-art methods on saliency detection.

Method
ECSSD HKU-IS PASCAL-S DUT-OMRON
Fβ MAE Fβ MAE Fβ MAE Fβ MAE

NLDF [39] 0.905 0.063 0.902 0.048 0.831 0.099 0.753 0.080

UCF [40] 0.910 0.078 0.886 0.073 0.821 0.120 0.735 0.131

DSS [37] 0.916 0.053 0.911 0.040 0.829 0.102 0.771 0.066

Amulet [35] 0.913 0.059 0.887 0.053 0.828 0.095 0.737 0.083

SRM [34] 0.917 0.056 0.906 0.046 0.844 0.087 0.769 0.069

RADF [38] 0.924 0.049 0.914 0.039 0.832 0.102 0.789 0.060

BDRAR (ours) 0.935 0.045 0.916 0.038 0.846 0.109 0.808 0.058

of these datasets. Moreover, we used two common metrics (Fβ and MAE; see [37]
for their definitions) for the quantitative comparisons among different saliency
detectors. Table 4 shows the quantitative comparisons between our model and
several state-of-the-art saliency detectors. From the table, we can see that our
model produces the best performance on almost all the four benchmarks in terms
of Fβ and MAE, showing that our model predicts more accurate saliency maps.

5 Conclusion

This paper presents a novel network for single-image shadow detection. Two
new techniques, recurrent attention residual (RAR) module and bidirectional
feature pyramid network (BFPN), are presented to fully explore the global and
local context information encoded in different layers of the convolutional neural
network (CNN). The RAR module presents a novel feature refinement strategy
for the context features at adjacent layers by learning the attention weights to
select a residual in a recurrent manner, while the BFPN aggregates the shadow
context features at different layers in two directions, and it can enhance the
shadow boundaries as well as suppress the non-shadow regions. In the end, our
network achieves the state-of-the-art performance on two benchmark datasets
and outperforms other methods by a significant margin.
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