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Abstract. In this paper, we consider the task: given an arbitrary audio
speech and one lip image of arbitrary target identity, generate synthe-
sized lip movements of the target identity saying the speech. To perform
well, a model needs to not only consider the retention of target identity,
photo-realistic of synthesized images, consistency and smoothness of lip
images in a sequence, but more importantly, learn the correlations be-
tween audio speech and lip movements. To solve the collective problems,
we devise a network to synthesize lip movements and propose a novel
correlation loss to synchronize lip changes and speech changes. Our full
model utilizes four losses for a comprehensive consideration; it is trained
end-to-end and is robust to lip shapes, view angles and different facial
characteristics. Thoughtful experiments on three datasets ranging from
lab-recorded to lips in-the-wild show that our model significantly out-
performs other state-of-the-art methods extended to this task.
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1 Introduction

Cross-modality generation has become an important and emerging topic of
computer vision and its broader AI communities, where examples are beyond
the most prominent image/video-to-text [10,19] and can be found in video-to-
sound [23], text-to-image [25], and even sound-to-image [4]. This paper considers
a task: given an arbitrary audio speech and one lip image of arbitrary target iden-
tity, generate synthesized lip movements of the target identity saying the speech.
Notice that the speech does not have to be spoken by the target identity, and
neither the speech nor the image of target identity is required to be appeared in
the training set (see Fig. 1). Solving this task is crucial to many applications, e.g.,
enhancing speech comprehension while preserving privacy or assistive devices for
hearing impaired people.

Lip movements generation has been traditionally solved as a sub-problem in
synthesizing a talking face from speech audio of a target identity [12,13,3,29].
For example, Bo et al. [12] restitch the lower half of the face via a bi-directional
LSTM to re-dub a target video from a different audio source. Their model selects
a target mouth region from a dictionary of saved target frames. More recently,

⋆ Equal contribution.
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Fig. 1: The model takes an audio speech of the women and one lip image of the target
identity, a male celebrity in this case, and synthesizes a video of the man’s lip saying
the same speech. The synthesized lip movements need to correspond to the speech
audio and also maintain the target identity, video smoothness and sharpness

Suwajanakorn et al. [29] generate synthesized taking face of President Obama
with accurate lip synchronization, given his speech audio. They first use an
LSTM model trained on many hours of his weekly address footage to generate
mouth landmarks, then retrieve mapped texture and apply complicated post-
processing to sharpen the generated video. However, one common problem for
these many methods is that they retrieve rather than generating images and
thus, require a sizable amount of video frames of the target identity to choose
from, whereas our method generates lip movements from a single image of the
target identity, i.e., at a glance.

The only work we are aware of that addresses the same task as ours is Chung
et al. [6]. They propose an image generator network with skip-connections, and
optimize the reconstruction loss between synthesized images and real images.
Each time, their model generates one image from 0.35-second audio. Although
their video generated image-by-image and enhanced by post-processing looks
fine, they have essentially bypassed the harder questions concerning the consis-
tency and smoothness of images in a sequence, as well as the temporal correla-
tions of audio speech and lip movements in a video.

To overcome the above limitations, we propose a novel method that takes
speech audio and a lip image of the target identity as input, and generates multi-
ple lip images (16 frames) in a video depicting the corresponding lip movements
(see Fig. 1). Observing that speech is highly correlated with lip movements even
across identities, a concept grounds lip reading [1,7], the core of our paper is
to explore the best modeling of such correlations in building and training a lip
movement generator network. To achieve this goal, we devise a method to fuse
time-series audio embedding and identity image embedding in generating multi-
ple lip images, and propose a novel audio-visual correlation loss to synchronize
lip changes and speech changes in a video. Our final model utilizes a combina-
tion of four losses including the proposed audio-visual correlation loss, a novel
three-stream adversarial learning loss to guide a discriminator to judge both
image quality and motion quality, a feature-space loss to minimize perceptual-
level differences, and a reconstruction loss to minimize pixel-level differences,
for a comprehensive consideration of lip movements generation. The whole sys-
tem is trained in an end-to-end fashion and is robust to lip shapes, view angles,
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and different facial characteristics (e.g., beard v.s. no beard). Our code is avail-
able at https://github.com/lelechen63/3d_gan. Check out more results at
https://youtu.be/7IX_sIL5v0c.

We evaluate our model along with its variants on three datasets: The GRID
audiovisual sentence corpus (GRID) [8], Linguistic Data Consortium (LDC) [26]
and Lip Reading in the Wild (LRW) [7]. To measure the quantitative accuracy
of lip movements, we propose a novel metric that evaluates the detected land-
mark distance of synthesized lips to ground-truth lips. In addition, we use a
cohort of three metrics, Peak Signal to Noise Ratio (PSNR), Structure Simi-
larity Index Measure (SSIM) [32], and perceptual-based no-reference objective
image sharpness metric (CPBD) [21], to measure the quality of synthesized lip
images, e.g., image sharpness. We compare our model with Chung et al. [6] and
an extended version of the state-of-the-art video Generative Adversarial Net-
work (GAN) model [30] to our task. Experimental results show that our model
outperforms them significantly on all three datasets (see ”Full model” in Tab. 3).
Furthermore, we also show real-world novel examples of synthesized lip move-
ments of celebrities, who are not in our dataset.

Our paper marks three contributions. First, to the best of our knowledge,
we are the first to consider the correlations among speech and lip movements in
generating multiple lip images at a glance. Second, we explore various models
and loss functions in building and training a lip movement generator network.
Third, we quantify the evaluation metrics and our final model achieves signifi-
cant improvement over state-of-the-art methods extended to this task on three
datasets ranging from lab-recorded to lips in-the-wild.

2 Related Work

We have briefly surveyed work in lip movement generation in the Introduction
section. Here, we discuss related work of each techniques used in our model.

A related but different task to ours is lip reading, where it also tackles the
cross-modality generation problem. [1,7] use the correlation between lip move-
ment and the sentences/words to interpret the audio information from the visual
information. Rasiwasia et al. [24] use Canonical Correlation Analysis (CCA) [16]
subspace learning to learn two intermediate feature spaces for two modalities
where they do correlation on the projected features. Cutler and Davis [9] use
Time Delay Neural Network [31] (TDNN) to extract temporal invariant audio
features and visual features. These works have inspired us to model correlations
between speech audio and lip movements in generating videos.

Audio variations and lip movements are not always synchronized in the pro-
duction of human speech; lips often move before the audio signal is produced [2].
Such delay between audio and visual needs to be considered when designing a
model. Suwajanakorn et al. [29] apply a time-delayed RNN without outputting
value in the first few RNN cells. Therefore, the output is shifted accordingly to
the delayed steps. However, such delay is empirically fixed by hand and thus, it
is hard to determine the amount of delay for videos in-the-wild. We follow [31]

https://github.com/lelechen63/3d_gan
https://youtu.be/7IX_sIL5v0c
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Fig. 2: Full model illustration. Audio encoder and identity encoder extracts and fuses
audio and visual embeddings. Audio-Identity fusion network fuses features from two
modalities. Decoder expands fused feature to synthesized video. Correlation Networks
are in charge of strengthening the audio-visual mapping. Three-Stream discriminator
is responsible for distinguishing generated video and real video

to extract features with a large receptive field along temporal dimension, but
use a convolutional network instead of TDNN that leads to a simpler design.

Adversarial training [14] is recently introduced as a novel and effective way to
train generative models. Researchers find that by conditioning the model on addi-
tional information, it is possible to direct the data generation process [20,5,22].
Furthermore, GAN has shown its ability to bridge the gap between different
modalities and produce useful joint representations. We also use GAN loss in
our training but we show that combining it with other losses leads to better
results.

3 Lip-Movement Generator Network

The overall data flow of our lip-movement generator network is depicted in Fig. 2.
In this paper, we omit channel dimension of all tensors for simple illus-

tration. Recall that the input to our network are a speech audio and one single
image of the target identity, and the output of our network are synthesized lip
images of the target identity saying that audio. The synthesized lip movements
need to correspond to the speech audio, maintain the target identity, ensure the
video smoothness, and be photo-realistic.

3.1 Audio-Identity Fusion and Generation

First, we encode the two-stream input information. For audio stream, the raw
audio waveform, denoted as Sraw, is first transformed into log-mel spectrogram
(see detail in Sec. 5.1), denoted as Slms, then encoded by an audio encoder
network into audio features fs ∈ R

T×F , where T and F denote the number of
time frames and frequency channels. For visual stream, an input identity image,
denoted as pr, is encoded by an identity encoder network. The network outputs
image features fp ∈ R

H×W , where H and W denote the height, width of the
output image features.
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We fuse audio features fs and visual features fp together, whose output,
the synthesized video feature fv, will be expanded by several residual blocks
and 3D deconvolution operations to generate synthesized video v̂. In order to
make sure the synthesized clip is based on the target person and also cap-
tures the time-variation of speech, we investigate an effective way to fuse fs
and fp to get fv for generating a video. Here, the challenge is that the fea-
ture maps exist in different modalities, e.g., audio, visual, and audio-visual, and
reside in different feature spaces, e.g., time-frequency, space, and space-time.

+

Duplicate

Duplicate

Fig. 3: Audio-Identity fusion. Transfer au-
dio time-frequency features and image spa-
tial features to video spatial-temporal fea-
tures

Our fusion method is based on du-
plication and concatenation. This pro-
cess is depicted in Fig. 3. For each au-
dio feature, we duplicate that feature
along frequency dimension in each
time step, i.e., from the size of T × F

to the size of T×F×F . Image feature,
which can be viewed as a template
for video representation, is copied T
times, i.e., from H ×W to a new size
T × H × W . We set H = W = F in
this method. Then, two kinds of dupli-
cated features are concatenated along
channel dimension.

3.2 Audio-Visual Derivative Correlation Loss

We believe that the acoustic information of audio speech is correlated with lip
movements even across identities because of their shared high-level represen-
tation. Besides, we also regard that variation along temporal axis between two
modalities are more likely to be correlated. In other words, compared with acous-
tic feature and visual feature of lip shape themselves, the variation of audio
feature (e.g. the voice raising to a higher pitch) and variation of visual feature
(e.g. mouth opening) have a higher likelihood to be correlated. Therefore, we
propose a method to optimize the correlations of the two modalities in their
feature spaces. We use f ′

s in size of (T − 1)× F , the derivative of audio feature
fs (with size of T × F ) between consecutive frames in temporal dimension, to
represent the changes in speech. It goes through an audio derivative encoder
network φs, and thus, we have audio derivative feature φs(f

′

s). Similarly, we use
F(v) to represent optical flows of each consecutive frames in a video v, where F
is an optical flow estimation algorithm. It goes through an optical flow encoder
network φv, and thus, we have φv(F(v)) to depict the visual variations of lip
movements in the feature space. We use cosine similarity loss to maximize the
correlation between audio derivative feature and visual derivative feature:

ℓcorr = 1−
φs(f

′

s) · φv(F(v))

‖φs(f ′

s)‖2 · ‖φv(F(v))‖2
. (1)
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(a) (b)

Fig. 4: (a): Correlation coefficients with different offsets of four example videos. (b):
Number of videos of different offsets with which the video has the maximum correlation
coefficient. X-axes of both (a) and (b) stands for time steps of flow field shifted forward

Here, the optical flow algorithm applied to the synthesized frames needs to be
differentiable for back-propagation [27]. In our implementation, we add a small
number (ǫ = 10−8) to the denominator to avoid division by zero. In order to
avoid trivial solution when φs and φv are learned to predict constant outputs
φs(f

′

x) and φv(F(v)) which are perfectly correlated and the ℓcorr will go to 0,
we combine other losses during the training process (see Eq. 2).
Correlation Networks. The audio and visual information are not perfectly
aligned in time. Usually, lip shape forms earlier than sound. For instance, when
we say word ‘bed’, upper and lower lips meet before speaking the word [2].
If such delay problem exists, aforementioned correlation loss, assuming audio-
visual information are perfectly aligned, may not work. We verify the delayed
correspondence problem between audio and visual information by designing a
case study on 3260 videos randomly sampled from the GRID dataset. The so-
lution for the delayed correspondence problem is given in the next paragraph.
In the case study, for each 75-frame video v, we calculate the mean values of
each 74 derivatives of audio slms and mean values of each 74 optical flow fields
φv(Fv). With respect to each video, we shift mean values of optical flows forward
along time at different offsets (0 to 7 in our case study) and calculate Pearson
correlation coefficients of those two parts. Results of four videos, calculated by
aforementioned procedures, are shown in Fig.4(a). Finally, we count the number
of videos in different offsets at which the video has the largest correlation coeffi-
cient, as shown in Fig. 4(b). Figure 4 shows that different videos prefer different
offsets to output the maximum correlation coefficient, which indicates that fix-
ing a constant offset of all audio-visual inputs would not solve the problem of
correlation with inconsistent delays among all videos in a dataset.

To mitigate such delayed correlation problem, we design correlation networks
(as shown in Fig. 2) containing an audio derivative encoder φs and an optical
flow encoder φv to extract features used for calculating the correlation loss in
Eq. 1. These networks reduce the feature size but retain the temporal length
simultaneously. The sizes of the two outputs are matched for calculating the
correlation loss. We use 3D CNNs to implement these networks, which are also
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helpful to mitigate the fixed offset problem happens in previous works [29].
Both φs and φv output features with large receptive fields (9 for φs(f

′

s) and
13 for φv(Fv)), which consider the audio-visual correlation in large temporal
dimension. Compared with time-delayed RNN proposed in [29], CNN can learn
delay from the dataset rather than set it as a hyper-parameter. Besides, CNN
architecture benefits from its weight sharing property leading to a simpler and
smaller design than TDNN [31].

4 Full Model and Training

Without loss of generality, we use pairs of lip movement video and speech audio
{(vj , sj)} in the training stage, where vj represents the jth video in our dataset
and sj represents the corresponding speech audio. We omit the superscript j

when it is not necessary for the discussion of one sample. We use pr to denote one
lip image of the target speaker, which can provide the initial texture information.
During training, we train over (v, s) in the training set and sample pr to be one
frame randomly selected from the raw video where vj is sampled from to ensure
that v and pr contain the same identity. Therefore, the system is robust to the
lip shape of the identity pr. The objective of training is to generate a realistic
video v̂ that resembles v. For testing, the speech s and identity image pr can
be any speech and any lip image (even out of the dataset we used in training).
Next, we present the full model in the context of training.

Our full model (see Fig. 2) is end-to-end trainable and is optimized according
to the following objective function:

L = ℓcorr + λ1ℓpix + λ2ℓperc + λ3ℓgen , (2)

where λ1, λ2 and λ3 are coefficients of different loss terms. We set them as 0.5,
1.0, 1.0 respectively in this paper. The intuitions behind the four losses are as
follows:

– ℓcorr: Correlation loss, illustrated in Sec. 3.2, is introduced to ensure the
correlation between audio and visual information.

– ℓpix: Pixel-level reconstruction loss, defined as ℓpix(v̂, v) = ‖v − v̂‖, which
aims to make the model sensitive to speaker’s appearance, i.e., retain the
identity texture. However, we find that using it alone will reduce the sharp-
ness of the synthesized video frames.

– ℓperc: Perceptual loss, which is originally proposed by [17] as a method used
in image style transfer and super-resolution. It utilizes high-level features
to compare generated images and ground-truth images, resulting in better
sharpness of the synthesized image. We adapt this perceptual loss and detail
it in Sec. 4.1.

– ℓgen: Adversarial loss allows our model to generate overall realistic looking
images and is defined as: ℓgen = − logD([sj , v̂j ]), where D is a discrimina-
tor network. We describe the detail of our proposed stream-stream GAN
discriminator in Sec. 4.2.
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4.1 Autoencoder and Perceptual Loss

In order to avoid over-smoothed phenomenon of synthesized video frames v̂, we
adapt perceptual loss proposed by Johnson et al. [17], which reflects perceptual-
level similarity of images. The perceptual loss is defined as:

ℓperc(v̂, v) = ‖ϕ(v)− ϕ(v̂)‖
2
2 , (3)

where ϕ is a feature extraction network. We train an autoencoder to reconstruct
video clips. To let the network be more sensitive to structure features, we apply
six residual blocks after the convolution layers. We train the autoencoder from
scratch, then fix the weights and use its encoder part as ϕ to calculate perceptual
loss for training the full model.

4.2 Three-Stream GAN Discriminator
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Fig. 5: Three-stream GAN discriminator il-
lustration

The GAN discriminator in [30] for
synthesizing video considers the mo-
tion changes implicitly by 3D con-
volution. In order to generate sharp
and smooth changing video frames,
we propose a three-stream discrimi-
nator network (see fig. 5) to distin-
guish the synthesized video (v̂j) from
real video (vj) that not only considers
motion explicitly and but also condi-
tions on the input speech signal. The
input to the discriminator is a video
clip with the corresponding audio. We
have the following three streams. For
audio stream (also used in our gen-
erator), we first convert the raw audio to log-mel spectrogram, then use four
convolutional layers followed by a fully-connected layer to get a 1D vector. We
duplicate it to match features from other streams. For video stream, we use four
3D CNN layers to extract video features. In addition, we include an optical flow
stream that attends to motion changes explicitly. We fine-tune the FlowNet [11],
which is pre-trained on FlyingChairs dataset, to extract optical flows, then apply
four 3D CNN layers to extract features.

Finally, we concatenate the three-stream features in channel dimension and
let them go through two convolutional layers to output the discriminator prob-
ability. We adapt mismatch strategy [25] to make sure that our discriminator
is also sensitive to mismatched audio and visual information. Therefore, the
discriminator loss is defined as:

ℓdis =− logD([sj , vj ])

− λp log (1−D([sj , v̂]))

− λu log (1−D([sj , vk])), k 6= j , (4)
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Table 1: Dataset information. Validation set: known speakers but unseen sentences.
Testing set: unseen speakers and unseen sentences

Dataset GRID LRW LDC

Train 211k (37.5h) 841k (159.8h) 36k (6.4h)

Val. 23 (4.2h) N/A 4k (0.7h)

Test 7k (1.3h) 40k (7.8h) 6.6k (1.2h)

where vk represents a mismatch real video. We set both λp and λu 0.5 in our
experiment. The performance of the optical flow stream is discussed in Sec. 5.3.

5 Experiments

In this section, we first introduce datasets and experimental settings, and our
adapted evaluation metrics. Then, we show ablation study and comparison to
the state of the art. Finally, we demonstrate real-world novel examples.

5.1 Datasets and Settings

We present our experiments on GRID [8], LRW [7] and LDC [26] datasets (see
Tab.1). There are 33 different speakers in GRID. Each speaker has 1000 short
videos. The LRW dataset consists of 500 different words spoken by hundreds
of different speakers. There are 14 speakers in the LDC dataset in which each
speaker reads 238 different words and 166 different sentences. Videos in GRID
and LDC are lab-recorded while videos in LRW are collected from news. Our
data is composed by two parts: audio and image frames. The network can out-
put different numbers of frames. In this work, we only consider generating 16
frames of mouth region. As the videos are sampled at 25 fps, the time span of
the synthesized image frames is 0.64 seconds. We use sliding window approach
(window size: 16 frames, overlap: 8 frames) to obtain training and testing video
samples over raw videos.
Audio: We extract audio from the video file with a sampling rate of 41.1
kHz. Each input audio is 0.64 seconds long (0.04 × 16). To encode audio, we first
transform the raw audio waveform into the time-frequency domain by calculating
the Log-amplitude Mel-frequency Spectrum (LMS). When we calculate the LMS,
the number of samples between successive frames, the length of the FFT window,
and the number of Mel bands are 512, 1024 and 128, respectively. This operation
will convert a 0.64-sec raw audio to a 64 × 128 time-frequency representation.
Images: First, we extract all image frames from videos. Then, we extract lip
landmarks [18] and crop the image around the lip. Landmarks are only used for
cropping and evaluation. We resize all of the cropped images to 64 × 64. So,
each 0.64-sec audio corresponds to a 16 × 3 × 64 × 64 RGB image sequence.

We adopt Adam optimizer during training and fixed learning rates of 2×10-4

with weight decay of 4 × 10-4, and coefficients β1 and β2 are 0.5 and 0.999.
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respectively. We initialize all network layers according to the method described
in [15]. All models are trained and tested on a single NVIDIA GTX 1080Ti.
During testing, generating one single frame costs 0.015 seconds.

5.2 Evaluation Metrics

To evaluate the quality of the synthesized video frames, we compute Peak Signal
to Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) [32]. To
evaluate the sharpness of the generated image frames, we compute the perceptual-
based no-reference objective image sharpness metric (CPBD) [21].

As far as we know, no quantitative metric has been used to evaluate the
accuracy of generated lip movements video. Therefore, to evaluate whether the
synthesized video v̂ corresponds to accurate lip movements based on the input
audio, a new metric is proposed by calculating the Landmark Distance (LMD).
We use Dlib [18], a HOG-based facial landmarks detector, which is also widely
used in lip-movement generation task and other related works[29,28], to detect lip
landmarks on v̂ and v, and mark them as LF and LR, respectively. To eliminate
the geometric difference, we calibrate the two mean points of lip landmarks in LF

and LR. Then, we calculate the Euclidean distance between each corresponding
pairs of landmarks on LF and LR, and finally normalized them with temporal
length and number of landmark points. LMD is defined as:

LMD =
1

T
×

1

P

T∑

t=1

P∑

p=1

‖LRt,p − LFt,p‖2 , (5)

where T denotes the temporal length of video and P denotes the total number
of landmark points on each image (20 points).

5.3 Ablation Study

We conduct ablation experiments to study the contributions of the three compo-
nents in our full model separately: correlation loss, three-stream GAN discrim-
inator and perceptual loss. The ablation study is conducted on GRID dataset.
Results are shown in Tab. 2. Different implementations are discussed in below as
well. The following ablation studies are trained and tested on the GRID dataset.
Perceptual Loss and Reconstruction Loss. Generally, we find that per-
ceptual loss can help our model generate more accurate lip movements with
higher image quality, and improve image sharpness at the same time (see method
(c) v.s. method (e) in Tab.2). If we compare method (b) with method (e), we
can find that pixel-wise reconstruction loss can improve the LMD, SSIM and
PSNR while decreasing the CPBD.
Correlation Models. When correlation loss is removed from final objective
function Eq. 2, results are worse than final objective in LMD, SSIM and PSNR,
demonstrating the importance of correlation loss in generating more accurate lip
movement (see method (d) v.s. method (e) or method (g) v.s. method (h)).
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Table 2: Ablation results on GRID dataset. The full model (method (e)) uses all four
losses as described in Sec.4. For LMD, the lower the better. SSIM, PSNR and CPBD,
the higher the better. We bold top-2 leading scores for each metric

Methods (a) (b) (c) (d) (e) (f) (g) (h) (i)

ℓpix X X X X X X X X

ℓperc X X X X X X X X

ℓcorr X X X X X X

ℓcorr(Non-Derivative Corr.) X

ℓgen (Three-Stream) X X X X X

ℓgen (Two-Stream) X X

ℓgen (Three-Str. Frame-Diff.) X

Metrics

LMD 1.24 1.31 1.38 1.31 1.18 1.96 1.39 1.42 1.40
SSIM 0.77 0.71 0.72 0.70 0.73 0.52 0.68 0.59 0.66
PSNR 29.3629.7929.6629.8029.98 28.6 29.5929.4629.51
CPBD 0.01 0.18 0.17 0.21 0.18 0.22 0.19 0.18 0.21

Besides, we investigate a model variant, Non-Derivative Correlation (see
method (f) in Tab. 2), for analyzing the necessity of applying derivative fea-
tures to φs and φv. Instead of using the derivative of audio features and the
optical flow, this variant just uses audio features fs and video frames v directly
as inputs. Neither the derivative nor the optical flow is calculated here. Other
settings (e.g., network structure and loss functions) are identical with the full
model (denoted as method (e) in Tab. 2). The comparison between method
(e) and method (f) in Tab. 2 shows that derivative correlation model outper-
forms the Non-Derivative Correlation model in metrics such as SSIM, PSNR and
LMD. With respect to Non-Derivative Correlation model, landmark distance is
even worse than model without correlation loss (method (d)). The experimental
result proves our assumption that it is the derivatives of audio and visual infor-
mation rather than the direct features that are correlated. Furthermore, since
Non-Derivative Correlation model fails to learn the derivative feature implicitly
(i.e. convolutional layers fails to transform feature to their derivatives), using
the derivatives of audio and visual features to do correlation as a strong expert
prior knowledge is necessary.

GAN Discriminator. We find that ℓgen improves the CPBD result a lot (see
method (a) and method (e) in Tab. 2), demonstrating that discriminator can im-
prove the frame sharpness. Furthermore, we use two model variants to study the
effectiveness of proposed three-stream GAN discriminator. ℓgen (Two-Stream)
only contains audio stream and video stream. ℓgen (Three-Str. Frame-Diff.) re-
places the optical flow with frame-wise difference, i.e., L1 distance between ad-
jacent frames, as the third stream to capture motion changes. First, compared
with the two-stream variant, our full model with proposed three-stream discrim-
inator gives better result (see method (e) v.s. method (g)), which indicates the
effectiveness of explicitly modeling motion changes among the frames. Second,
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Full model

Chung et al.

Vondrick et al.

GRID dataset LDC dataset LRW dataset

Ground Truth

Fig. 6: Generated videos of our model on three testing datasets compared with state-
of-the-art methods. In the testing set, none of the speakers were in the training set

Table 3: Results on three datasets. Models mentioned in this table are trained from
scratch (no pre-training included) and be tested on each dataset a time. We bold each
leading score

Method GRID LDC LRW

LMD SSIM PSNR CPBD LMD SSIM PSNR CPBD LMD SSIM PSNR CPBD

G. T. 0 N/A N/A 0.141 0 N/A N/A 0.211 0 N/A N/A 0.068

Vondrick[30] 2.38 0.60 28.45 0.129 2.34 0.75 27.96 0.160 3.28 0.34 28.03 0.082

Chung [6] 1.35 0.74 29.36 0.016 2.13 0.50 28.22 0.010 2.25 0.46 28.06 0.083

Full model 1.18 0.73 29.89 0.175 1.82 0.57 28.87 0.172 1.92 0.53 28.65 0.075

compared with the three-stream frame-difference variant, the full model gener-
ates more realistic (higher CPBD) and accurate lip movements (lower LMD) (see
method (e) and (i)), which indicates that optical flow is a better representation
than frame-wise difference for modeling motion changes.

5.4 Comparison to State-of-the-Art

In this section, we compare our full model with two state-of-the-art meth-
ods [30,6]. We extend [30] to a conditional GAN structure, which receives the
same target image information and audio information as our models. There are
a few changes made for ensuring a fair comparison with [6]: we did not pretrain
the identity encoder; we changed two convolution layers to fit the image size
(64 × 64); we omitted the De-blurring post-processing as we aim to compare
directly the generative models themselves.

The quantitative results are shown in Tab. 3. We test our models on three
different datasets. The results show that our proposed models outperform state-
of-the-art models in most of the metrics. In terms of LMD and PSNR, our full
model shows better performance than methods that use discriminator [30] or
reconstruction loss [6]. Model proposed by Chung et al., based on reconstruction
loss, generates blurred images, which makes them look unrealistic. We can see
this phenomenon in the CPBD column. The LRW dataset consists of people
talking in the wild so resolution is much smaller in terms of lip region. We need
to scale up the ground truth to 64 × 64, which leads to a lower resolution and
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Ground truth 

Synthesized frames

Ground truth 

Synthesized frames

Ground truth 

Synthesized frames

Ground truth 

Synthesized frames

Fig. 7: Randomly selected outputs of the full model on the LRW testing set. The lip
shape in videos not only synchronize well with the ground truth, but maintain identity
information, such as (beard v.s. no beard)

CPBD. We suspect this is the reason why we achieve a better CPBD than ground
truth in LRW dataset.

The qualitative results compared with other methods are shown in Fig. 6.
Our model generates sharper video frames on all three datasets, which has also
been supported by the CPBD results, even if input identity images are in low
resolution. We show additional results of our method in Fig. 7. Our model can
generate realistic lip movement videos that are robust to view angles, lip shapes
and facial characteristics in most of the times. However, sometimes our model
fails to preserve the skin color (see the last two examples in Fig. 7), which, we
suspect, is due to the imbalanced data distribution in LRW dataset. Further-
more, the model has difficulties in capturing the amount of lip deformations of
each person, which is an intrinsic problem when learning from a single image.

5.5 Real-World Novel Examples

For generating videos given unpaired identity image and audio in the real-world,
i.e., source identity of provided audio is different from the target identity and
out of the datasets, our model can still perform well. Results are shown in Fig. 8,
in which three identity images of celebrities are selected outside of the datasets
the model trained on and the input audio is selected in GRID dataset. For our
model trained on LRW, both identity images and audio are unseen. For our
model trained on GRID, we leave the source identity out of the training.

The videos generated by our model show promising qualitative performance.
Both lip regions of Musk and Sandburg are rotated by some degrees. We can see
that the rotation phenomenon in the generated video frames as well. Besides,
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Ground

 Truth

LRW

GRID

LRW

GRID

LRW

GRID

Fig. 8: The figure shows the generated images based on three identity images outside
of dataset, which is also not paired with the input audio from GRID dataset. Two full
models trained on GRID and LRW datasets are used here for a comparison

our model can also retain beards in our generated clip when identity (target
person) has beards as well. However, we observe that model trained on GRID
dataset fails to reserve the identity information. Because of the fact that LRW
dataset has much more identities than GRID dataset (hundreds v.s. 33), the
model trained on LRW has better generalization ability.

6 Conclusion and Future Work

In this paper, we study the task: given an arbitrary audio speech and one lip im-
age of arbitrary target identity, generate synthesized lip movements of the target
identity saying the speech. To perform well in this task, it requires a model to
not only consider the retention of the target identity, photo-realistic of synthe-
sized images, consistency and smoothness of images in a video, but also learn
the correlations between the speech audio and lip movements. We achieve this
by proposing a new generator network, a novel audio-visual correlation loss and
a full model that considers four complementary losses. We show significant im-
provements on three datasets compared to two state-of-the-art methods. There
are several future directions. First, non-fixed length lip movements generation is
needed for a more practical purpose. Second, it is valuable to extend our method
to one generating full face in an end-to-end paradigm.
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