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Abstract. In this paper, we present a framework for reconstructing a
point-based 3D model of an object from a single-view image. We found
distance metrics, like Chamfer distance, were used in previous work to
measure the difference of two point sets and serve as the loss function
in point-based reconstruction. However, such point-point loss does not
constrain the 3D model from a global perspective. We propose adding
geometric adversarial loss (GAL). It is composed of two terms where
the geometric loss ensures consistent shape of reconstructed 3D models
close to ground-truth from different viewpoints, and the conditional
adversarial loss generates a semantically-meaningful point cloud. GAL
benefits predicting the obscured part of objects and maintaining geometric
structure of the predicted 3D model. Both the qualitative results and
quantitative analysis manifest the generality and suitability of our method.

Keywords: 3D reconstruction · adversarial loss · geometric consistency
· point cloud · 3D neural network

1 Introduction

Single-view 3D object reconstruction is a fundamental task in computer vision
with various applications in robotics, CAD, virtual reality and augmented reality.
Recently, data-driven 3D object reconstruction attracts much attention [3, 4,
7] with the availability of large-scale ShapeNet dataset [2] and advent of deep
convolutional neural networks.

Previous approaches [3, 4, 7, 21] adopted two types of representations for 3D
objects. The first is voxel-based representation that requires the network to
directly predict the occupancy of each voxel [3, 7, 21]. Albeit easy to integrate
into deep neural networks, voxel-based representation suffers from efficiency
and memory issues, especially in high-resolution prediction. To address these
issues, Fan et al. [4] proposed point-based representation, in which the object
is composed of discrete points. In this paper, we design our system based on
point-based representation considering its scalability and flexibility.

Along the line of forming point-based representation, researchers focused on
designing loss functions to measure the distance between prediction point set
and ground-truth set. Chamfer distance and Earth Mover distance were used
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(a) Image (b) [4]-view 1 (c) Ours-view 1 (d) [4]-view 2 (e) Ours-view 2

Fig. 1. Illustration of predictions. (a) Original image including the objects to be
reconstructed. (b)&(d) Results of [4] when viewed in two different angles. (c)&(f) Our
prediction results from corresponding views. Color represents the relative distance to
the camera in (b)-(e).

in [4] to train the model. These functions penalize prediction deviating from
the ground-truth location. The limitation is that there is no guarantee that the
predicted points follow the geometric shape of objects. It is possible that the
result does not lie in the manifold of the real 3D objects.

We address this problem in this paper and propose a new complementary loss
function – geometric adversarial loss (GAL). It regularizes prediction globally by
enforcing the prediction to be consistent with the ground-truth among different
2D views and following the 3D semantics of point cloud.

GAL is composed of two important components, namely, geometric loss
and conditional adversarial loss. Geometric loss lets the prediction in different
views consistent with the ground truth. Regarding conditional adversarial loss,
the conditional discriminator network combines a 2D CNN, to extract image
semantic features, with PointNet [16], which extracts global features of the
predicted/ground-truth point cloud. Features from the 2D CNN serve as a
condition to enforce predicted 3D point cloud with respect to the semantic class
of the input. In this regard, GAL regularizes predictions in a global perspective
and thus can work in complement with previous CD [4] loss for better object
reconstruction from a single image.

Fig. 1 preliminarily illustrates the reconstruction quality. When measured
using chamfer distance, predictions by previous method [4] are similar to ours
with just 0.5% difference. However, when viewed from different viewpoints,
there come many noisy points as shown in Fig. 1(b)&(d) in the predicted point
cloud produced by previous work. This is because the global 3D geometry is
not respected, and only local point-to-point loss is adopted. With geometric
adversarial loss (GAL) to regularize prediction globally, our method produces
geometrically more reasonable results as shown in Fig. 1(c)&(e). Our main
contribution is threefold.

– We propose a loss function, namely GAL, to geometrically regularize predic-
tion from a global perspective.
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– We extensively analyze contribution of different loss functions in generating
3D objects.

– Our method achieves better results both quantitatively and qualitatively in
ShapeNet dataset.

2 Related Work

2.1 3D Reconstruction from Single Images

Traditional 3D reconstruction methods [10, 1, 13, 11, 8, 5] require multiple view
correspondence. Recently, data-driven 3D reconstruction from single images [4, 3,
7, 21, 19] has gained more attention. Reconstructing 3D shapes from single images
is ill-posed but desirable in real-world applications. Moreover, human actually
have the ability to infer 3D shapes of objects given only a single view of it by
using prior knowledge and visual experience of the 3D world. Previous work in
this setting can be coarsely cast into two categories.

Voxel-based Reconstruction One stream of research focuses on voxel-based rep-
resentation [3, 7, 21]. Choy et al. [3] proposed applying 2D convolutional neural
networks to encode prior knowledge about the shape into a vector representation
and then 3D convolutional neural network was used to decode the latent rep-
resentation into 3D object shapes. Follow-up work [7] proposed the adversarial
constraint to regularize predictions in the real manifold with a large amount of
unlabeled realistic 3D shapes. Tulsiani et al. [20] adopted an unsupervised solution
for 3D object reconstruction by jointly learning a pose estimation network and
3D object voxel prediction network with the multi-view consistency constraint.

Point Cloud Reconstruction Voxel-based representation may suffer from memory
and computation issues when scaled to high resolutions. To address this issue,
point cloud based representation for 3D reconstruction was introduced by Fan et
al. [4]. Unordered point cloud is directly derived from a single image, which can
encode more details of 3D shape. The end-to-end framework directly regresses
point location. Chamfer distance is adopted to measure the difference between
predicted point cloud and ground truth. We follow this line of research. Yet
we make our contribution on a new differentiable multi-view geometric loss to
measure results from different viewpoints, which is complementary to chamfer
distance. We also use conditional adversarial loss as a manifold regularizer to
make the predicted point cloud more reasonable and realistic.

2.2 Point Cloud Feature Extraction

Point cloud feature extraction is a challenging problem since points lie in a
non-regular space and cannot be processed easily with common CNNs. Qi et
al. [16] proposed PointNet to extract unordered point representation by using
multilayer perceptron and global pooling. Transformer network is incorporated
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to learn robust transformation invariant features. PointNet is a simple and yet
elegant framework to extract point features. As a follow-up work, PointNet++
was proposed in [17] to integrate global and local representations with much
increased computation cost. In our work, we adopt pointNet as our feature
extractor for predicted and ground truth point clouds.

2.3 Generative Adversarial Networks

There is a large body of work for generative adversarial networks [6, 22, 12, 14,
9] to create 2D images by regularizing prediction in the manifold of the target
space. Generative adversarial networks were used in reconstructing 3D models
from single-view images in [7, 21]. Gwak et al. [7] better utilized unlabeled data
for 3D voxel based reconstruction. Yang et al. [21] reconstructed 3D object voxels
from single depth images. They show promising results in a simpler setting since
one view of the 3D model is given with accurate 3D position. Different from
these approaches, we design a conditional adversarial network for 3D point cloud
based reconstruction to enforce prediction in the same semantic space under the
condition of using single-view images.
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Fig. 2. Overview of our framework. The whole network consists of two parts: a generator
network taking a single image as input and producing a point cloud modeling the
3D object, and a discriminator for judging the ground-truth and generated model
conditioned on the input image. Our proposed geometric adversarial loss (GAL) is
composed of conditional adversarial loss (a) and multi-view geometric loss (b).
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3 Method Overview

Our approach produces 3D point cloud from a single-view image. The network
architecture is shown in Fig. 2.

In the following, Iin denotes the input RGB image, and Pgt denotes the
ground-truth point cloud. As illustrated in Fig. 2, the framework consists of
two networks, i.e., generator network (G) and conditional discriminator network
(D). G is the same as the one used in [4] composed of several encoder-decoder
hourglass [15] modules and a fully connected branch to produce point locations.
It is responsible for producing point locations that map input image Iin to its
corresponding point cloud Ppred. Since it is not our major contribution, we refer
readers to the supplementary material for more details.

The other component – conditional discriminator (D) (Fig. 2) – contains a
PointNet [16] to extract features of the generated and ground-truth point clouds,
and a CNN takes Iin as input to extract semantic features of the object. The
extracted features are combined together as the final representation. The goal is
to distinguish between the generated 3D prediction and the real 3D object.

Built upon the above network architecture, our loss function GAL regularizes
the prediction globally to enforce it to follow the 3D geometry. GAL is composed
of two components as shown in Fig. 2, i.e., multi-view geometric loss detailed in
Section 4.1 and conditional adversarial loss detailed in Section 4.2. They work in
synergy with the point-to-point chamfer-distance-based loss function [4] for both
global and local regularization.

4 GAL: Geometric Adversarial Loss

4.1 Multi-view Geometric Loss

Human can naturally figure out the shape of an object even if only one view is
available. It is because of prior knowledge and knowing the overall shape of the
objects. In this section, we add multi-view geometric constraints to inject such
prior in neural networks. Multi-view geometric loss shown in Fig. 2 measures
the inconsistency of geometric shapes between the predicted points Ppred and
ground-truth Pgt in different views.

We first normalize the point clouds to be centered at the origin of the world
coordinate. The numbers of points in Pgt and Ppred are respectively denoted as
ngt and np. np is pre-assigned to 1024 following [4]. ngt is generally much larger
than np.

To measure multi-view geometric inconsistency between Pgt and Ppred, we
synthesize an image for each view given the point set and view parameters, and
then compare each pair of images synthesized from Pgt and Ppred. Two examples
are shown in Fig. 3(b1)-(e1).

To project the 3D point cloud to an image, we first transform point pw with
3D world coordinate pw = (xw, yw, zw) to camera coordinates pc = (xc, yc, zc)
as Eq. (1). R and d represent the rotation and translation parameters of the
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(a) Image (b1) pred-view1 (c1) gt-view1 (d1) pred-view2 (e1) gt-view2

���ௗ
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(f) Point cloud (b2) pred-view1 (c2) gt-view1 (d2) pred-view2 (e2) gt-view2

Fig. 3. (a) is the original image. (b1)&(d1) show the high resolution 2D projection
of predicted point cloud in two different views. (c1)&(e1) show the high resolution
2D projection of the ground-truth point cloud. (b2)-(e2) show the corresponding low
resolution results. (f) shows the ground-truth and predicted point cloud.

camera regarding the world coordinate. The rotation angles over {x, y, z}-axis
are randomly sampled from [0, 2π). Finally, point pw is projected to the camera
plane with function f as

pc = Rpw + d, f(pw|K) = Kpc, (1)

where K is the camera intrinsic matrix.
We set the intrinsic parameters of our view camera as Eq. (2) to guarantee

that the object is completely included in the image plane and the projected
region occupies the image as much as possible.

u0 = 0.5h, v0 = 0.5w, fu = fv =
0.5min({zc})min(h,w)

max({xc}
⋃

{yc})
(2)

where h and w are the height and width of the projected image.
Then, the projected images of ground-truth and predicted point cloud with

size (h,w) could be respectively formulated as

I
h,w
gt (p) =

{

1, if p ∈ f(Pgt)

0, otherwise
, I

h,w
pred(p) =

{

1, if p ∈ f(Ppred)

0, otherwise
(3)

where p indexes over all the pixels of the projected image.
The synthesized views (Fig. 3) are with different densities in high resolutions.

The projection images from ground-truth shown in Fig. 3(c1)&(e1) is much
denser than our corresponding prediction shown in Fig. 3(b1)&(d1). To resolve
the above discrepancy, multi-view geometric consistency loss is added in multiple
resolutions detailed in the following.

High Resolution Mode In high resolution mode, we set h and w to large values
denoted by h1 and w1 respectively. Images projected in this mode could contain
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details of the object as shown in Fig. 3(b1)-(e1). However, with the large difference
between point amounts in Pgt and Ppred, the image projected from Ppred has
less non-zero pixels than image projected from Pgt. Thus, calculating the L2
distance of the two images directly is not feasible. We define the high-resolution
consistency loss for a single view v as

Lhigh
v =

∑

p

✶(Ih1,w1

pred (p) > 0)‖Ih1,w1

pred (p)− max
q∈N(p)

I
h1,w1

gt (q)‖22, (4)

where p indexes pixel coordinates, N(p) is the n × n block centered at p, and
✶(.) is an indicator function set to 1 when the condition is satisfied. Since the
predicted point cloud is sparser than the ground-truth, we only use the non-zero
pixels in the predicted image to measure the inconsistency. For each non-zero
pixel in Ipred, we find the corresponding position in Igt and search its neighbors
for non-zero pixels to reduce the influence of projection errors.

Low Resolution Mode In the high-resolution mode, we only check whether
the non-zero pixels in Ipred appear in Igt. Note that the constraint needs to be
bidirectional. We make Ipred the same density as Igt by setting h and w to small
values h2 and w2. Low-resolution projection images are shown in Fig. 3(b2)-(e2).
Although details are lost in the low resolution, rough shape is still visible and can
be used to check the consistency. Thus, we define the low-resolution consistency
loss for a single view v as

Llow
v =

∑

p

‖Ih2,w2

pred (p)− I
h2,w2

gt (p)‖22, (5)

Where I
h2,w2

pred and I
h2,w2

gt represent the low resolution projection images and h2

and w2 are the corresponding height and width. The low-resolution loss constrains
that the shapes of ground-truth and predicted objects are similar, while the
high-resolution loss ensures the details.

Total Multi-view Geometric Loss We denote v as the view index. The total
multi-view geometric loss is defined as

Lmv =
∑

v

(Lhigh
v + Llow

v ). (6)

The objective regularizes the geometric shape of predicted point cloud from
different viewpoints.

4.2 Point-based Conditional Adversarial Loss

To generate a more plausible point cloud, we propose using a conditional adver-
sarial loss to regularize the predicted 3D object points. The generated 3D model
should be consistent with the semantic information provided by the image. We
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adopt PointNet [16] to extract the global feature of the predicted point cloud.
Also, with the 2D semantic feature provided by the original image, the discrimi-
nator could better distinguish between the real 3D model and the generated fake
one. Thus, the RGB image of the object is also fed into the discriminator. Ppred

along with the corresponding Iin serve as a negative sample, while Pgt and Iin
become positive when training the discriminator. During the course of training
the generator, the conditional adversarial loss forces the generated point cloud
to respect the semantics of the input image.

The CNN part of the discriminator is a pre-trained classification network to
extract 2D semantic features, which are then concatenated with feature produced
by PointNet [16] for identifying real and fake samples. We note that the point
cloud from our prediction is sparser than ground-truth. Hence, we uniformly
sample np points from ground-truth with a total of ngt points.

Different from traditional GAN, which may be unstable and has low conver-
gence rate, we apply LSGAN as our adversarial loss. LSGAN replaces logarithmic
loss function with least-squared loss, which makes it easier for the generated data
distribution to converge to the decision boundary. The conditional adversarial
loss function is defined as

LLSGAN (D) =
1

2
[EPgt∼p(Pgt)(D(Pgt|Iin)− 1)2 + EIin∼p(Iin)(D(G(Iin)|Iin)− 0)2]

LLSGAN (G) =
1

2
[EIin∼p(Iin)(D(G(Iin)|Iin)− 1)2]

(7)
During the training process, G and D are optimized alternately. G minimizes

LLSGAN (G), which aims to generate a point cloud similar to the real model,
while D minimizes LLSGAN (D) to discriminate between real and predicted point
sets. In the testing process, only the well-trained generator needs to be used to
reconstruct a point cloud model from a single-view image.

5 Total Objective

To better generate a 3D point cloud model from a single-view image, we combine
the conditional adversarial loss and the geometric consistency loss as GAL for
global regularization. We also follow the distance metric in [4] to use Chamfer
distance to measure the point-to-point similarity of two point sets as a local
constraint. Chamfer distance loss is defined as

Lcd(Iin, Pgt|G) =
1

ngt

∑

p∈Pgt

min
q∈G(Iin)

‖p− q‖22 +
1

np

∑

p∈G(Iin)

min
q∈Pgt

‖p− q‖22. (8)

With global GAL and point-to-point distance constraint, the total objective
becomes

G∗ = argmin
G

[LLSGAN (G) + λ1Lmv + λ2Lcd]

D∗ = argmin
D

LLSGAN (D)
(9)
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where λ1 and λ2 control the ratio of different losses.
The generator is responsible for fooling the discriminator, and reconstructing

a 3D point set approximating the ground-truth. The adversarial part ensures the
reconstructed 3D object to be reasonable with respect to the semantics of the
original image. Multi-view geometric consistency loss makes the predicted point
cloud a valid prediction when viewed in different directions.

6 Experiments

We perform our experiments on the ShapeNet dataset [2], which has a large
collection of textured CAD models. Our detailed network architecture and
implementation strategies are the following.

Generator Architecture Our generator G is built upon the network structure
in [4], which takes a 192 × 256 image as input and consists of a convolution
branch producing 768 points and a fully connected branch producing 256 points,
resulting in total 1024 points.

Discriminator Architecture Our discriminator D contains a CNN part to
extract semantic features from the input image and a PointNet part to extract
features from point cloud as shown in Fig. 2. The backbone of the CNN part is
VGG16 [18]. A fully connected layer is added after the fc8 layer to reduce the
feature dimension to 40.

The major building block in PointNet is multi-layer perceptron (MLP) and
global pooling as in [16]. The MLP utilized on points contains 5 hidden layers
with layer sizes (64, 64, 64, 128, 1024). The MLP after max pooling layer consists
of 3 layers with sizes (512, 256, 40). The features from CNN and PointNet are
concatenated together for final discrimination.

Implementation Details The whole network is trained in an end-to-end
fashion using ADAM optimizer with batch size 32. The view number for multi-
view geometric loss is set to 7, which is determined by experimenting with
different view numbers and selecting the one that gives the best performance. h1,
w1, h2, and w2 are set to 192, 256, 48, and 64 respectively. The block size for
neighborhood searching in high resolution mode is set to 3× 3.

6.1 Ablation Studies

Evaluation Metric We evaluate the predicted point clouds of different methods
using three metrics: point cloud based Chamfer Distance (CD), voxel based
Intersection over Union (IoU) and 2D projection IoU. CD measures the distance
between ground-truth point set and predicted one. The definition of CD is in
Section 5. The lower CD value represents the better reconstructed results.



10 Li Jiang, Shaoshuai Shi, Xiaojuan Qi, Jiaya Jia

To compute IoU of two point sets, each point set will be voxelized by dis-
tributing points into 32 × 32 × 32 grids. We treat each point as a 1 × 1 × 1
grid centered at this point, namely point grid. For each voxel, we consider the
maximum intersecting volume ratio of each point grid and this voxel as the
occupancy probability. It is then translated into two-value form by a threshold t.
The calculation formula of IoU is

IoU =

∑

i ✶[Vgt(i)Vp(i) > 0]
∑

i ✶[Vgt(i) + Vp(i) > 0]
, (10)

where i indexes all voxels, ✶ is an indicator function, Vgt and Vp are respectively
the voxel-based ground-truth and voxel-based prediction. The higher IoU value
indicates more precise point cloud prediction.

Image GT P-G [4] P-Geo P-Gan GAL

Fig. 4. Qualitative results of single image 3D reconstruction from different methods.
For the same object, all the point clouds are visualized from the same viewpoint.

To better evaluate our generated point cloud, we propose a new projected view
evaluation metric, i.e. 2D projection IoU, where we project the point clouds into
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images from different views, and then compute 2D intersection over union (IoU)
between the ground-truth projected images and the reconstruction projected
images. Here we use three views, namely top view, front view and left view,
to evaluate the shape of generated point cloud comprehensively. And three
resolutions are adopted, which are 192× 256, 96× 128, 48× 64 respectively.

Comparison among Different Methods To thoroughly investigate our pro-
posed GAL loss, we consider the following settings for ablation studies.

– PointSetGeneration(P-G) [4], which is a point-form single image 3D object
reconstruction method. We directly use the model trained by the author-
released code as our baseline.

– PointGeo(P-Geo), which combines the geometric loss proposed in Section 4.1
with our baseline to evaluate the effectiveness of geometric loss.

– PointGan(P-Gan), which combines the point-based conditional adversarial
loss with our baseline to evaluate the effectiveness of adversarial loss.

– PointGAL(GAL), which is the complete framework as shown in Fig. 2 to
evaluate the effectiveness of our proposed GAL loss.

Table 1. Ablative results over different loss functions.

CD×10−4 (lower is better) IoU% (higher is better)
P-G P-Geo P-Gan GAL P-G P-Geo P-Gan GAL

couch 39.15 37.59 37.88 34.35 71.71 72.08 72.37 73.87

cabinet 22.94 23.08 22.27 22.72 77.61 77.33 77.79 77.22
bench 30.77 29.55 29.06 27.24 67.90 68.65 69.44 70.85

chair 37.54 36.72 36.51 33.59 66.81 67.81 68.35 70.02

monitor 14.65 15.06 13.76 14.93 78.99 79.40 79.92 80.39

firearm 44.23 44.16 41.66 42.33 66.76 68.62 69.86 71.50

speaker 44.10 43.08 47.24 41.99 67.68 68.20 68.44 69.81

lamp 39.19 39.18 42.39 38.25 66.48 67.50 68.56 69.98

cellphone 31.81 32.04 33.30 28.29 75.72 75.98 75.86 77.30

plane 80.20 77.01 78.10 76.34 65.20 66.86 66.85 68.53

table 32.67 31.00 30.10 28.30 67.93 69.08 69.85 71.38

car 40.51 38.61 39.10 36.06 72.05 72.81 72.51 73.68

watercraft 34.33 34.63 34.29 33.01 66.08 66.03 66.57 67.50

mean 40.90 39.62 39.79 37.26 68.07 69.10 69.64 71.16

Table 1 shows quantitative results regarding CD and IoU for 13 major
categories following the setting of [4]. The statistics show that our PointGeo
and PointGan models outperform the baseline method [4] in terms of both
CD and IoU metrics. The final GAL model can further boost the performance
and outperforms the baseline by a large margin. As shown in Table 2, GAL
consistently improves 2D projection IoU in all viewpoints, which demonstrates
the effectiveness of constraining geometric shape across different viewpoints.
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Table 2. 2D projection IoU comparison. The images are projected with three resolutions
for three different view points.

Resolution 192x256 Resolution 96x128 Resolution 48x64
P-G P-Geo P-Gan GAL P-G P-Geo P-Gan GAL P-G P-Geo P-Gan GAL

Front view 0.328 0.333 0.334 0.340 0.601 0.611 0.613 0.622 0.773 0.780 0.782 0.792

Left view 0.325 0.330 0.330 0.337 0.586 0.594 0.594 0.606 0.750 0.757 0.758 0.770

Top view 0.343 0.346 0.349 0.355 0.652 0.657 0.663 0.673 0.823 0.829 0.832 0.839

Mean-IoU 0.332 0.337 0.338 0.344 0.613 0.621 0.623 0.634 0.782 0.789 0.791 0.801

(a) Image (b) GT-v1 (c) P-G-v1 (d) P-Geo-v1 (e) GT-v2 (f) P-G-v2 (g) P-Geo-v2

Fig. 5. Visualization of point clouds predicted by the baseline model (P-G) and our
network with geometric loss (P-Geo) from two representative viewpoints. (b)-(d) are
visualized from the viewpoint of the input image (v1), while (e)-(g) are synthesized
from another view (v2).

Qualitative comparison is shown in Fig. 4. P-G [4] predicts less accurate
structure where shape distortion arises (see the leg of furnitures and the connection
between two objects). On the contrary, our method can handle these challenges
and produce better results, since GAL penalizes inaccurate points from different
views and regularizes prediction with semantic information from 2D input images.

Analysis of Multi-view Geometric Loss We analyze the importance of our
multi-view geometric loss by checking the shape of the 3D models from different
views. Fig. 5 shows two different views of the 3D model produced by the baseline
model (P-G) and the baseline model with multi-view consistency loss (P-Geo).

P-G result seems to be comparable (Fig. 5(c)) with ours shown in Fig. 5(d)
when observed from the input image view angle. However, when the viewpoint
changes, the generated 3D model of P-G (Fig. 5(f)) may not fit the geometry of
the object. The predicted shape is much different from the real shape (Fig. 5(b)).
In contrast, our reconstructed point cloud in Fig. 5(e) is still consistent with
the ground-truth. When trained with multi-view geometric loss, the network
penalizes incorrect geometric appearance from different views.

Analysis of Different Resolution Modes We have conducted the ablation
study to analyze the effectiveness of different resolution modes. With only the
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(a) Image (b) GT (c) P-Geo-High (d) P-Geo-Low (e) P-Geo

Fig. 6. Visualization of point clouds predicted in different resolution modes. P-Geo-High:
P-Geo without low-resolution loss. P-Geo-Low: P-Geo without high-resolution loss.

(a)Image (b)GT-v1 (c)P-G-v1 (d)P-GAN-v1 (e)GT-v2 (f)P-G-v2 (g)P-GAN-v2

Fig. 7. P-G denotes our baseline model, P-GAN denotes the baseline model with
conditional adversarial loss. Two different views are denoted by “v1” and “v2”.

high-resolution geometric loss, the predicted points may lie inside the geometric
shape of the object and do not cover the whole object as shown in Fig. 6(c).
However, with only the low-resolution geometric loss, points may cover the whole
object; but noisy points appear out of the shape as shown in Fig. 6(d). Combining
the high and low-resolution loss, our trained model produces the best results as
shown in Fig. 6(e).

Analysis of Point-based Conditional Adversarial Loss Our point-based
conditional adversarial loss helps produce better semantically meaningful 3D
object models.

Fig. 7 shows the pairwise comparison between the baseline model (P-G) and
baseline model with conditional adversarial loss (P-GAN) from two different
views. Without exploring the semantic information, the generated point clouds
from P-G (Fig. 7(c)&(f)) seem contrived, while our results (Fig. 7(d)&(g)) look
more natural from different views. For example, the chair generated by P-G
cannot be recognized as a chair when observing from the side view (Fig. 7(f)),
while our results have much better appearance seen from different directions.
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(a) Image (b) P-G -view1 (c) GAL-view1 (d) P-G -view1 (e) GAL-view2

Fig. 8. Illustration of the real-world cases. (a) is the input image. (b) and (d) show
results of P-G [4] from two different view angles. (c) and (f) show our prediction results
from corresponding views.

6.2 Results on Real-world Objects

We also test the baseline and our GAL model on the real-world images. The
images are manually annotated to get the mask of objects. The final results are
shown in Fig. 8. Compared with the baseline method, the point clouds generated
by our model capture more details. And in most cases, the geometric shape of
our predicted point cloud seems to be more accurate in various views.

7 Conclusion

We have presented the geometric adversarial loss (GAL) to regularize single-
view 3D object reconstruction from a global perspective. GAL includes two
components, i.e. multi-view geometric loss and conditional adversarial loss. Multi-
view geometric loss enforces the network to learn to reconstruct multiple-view
valid 3D models. Conditional adversarial loss stimulates the system to reconstruct
3D object regarding semantic information in the original image. Results and
analysis in the experiment section show that the model trained by our GAL
achieves better performance on ShapeNet dataset than others. It can also generate
precise point cloud from the real-world images. In the future, we plan to extend
GAL to large-scale general reconstruction tasks.
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