
Encoder-Decoder with Atrous Separable

Convolution for Semantic Image Segmentation

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam

Google Inc.
{lcchen, yukun, gpapan, fschroff, hadam}@google.com

Abstract. Spatial pyramid pooling module or encode-decoder structure
are used in deep neural networks for semantic segmentation task. The
former networks are able to encode multi-scale contextual information by
probing the incoming features with filters or pooling operations at mul-
tiple rates and multiple effective fields-of-view, while the latter networks
can capture sharper object boundaries by gradually recovering the spatial
information. In this work, we propose to combine the advantages from
both methods. Specifically, our proposed model, DeepLabv3+, extends
DeepLabv3 by adding a simple yet effective decoder module to refine the
segmentation results especially along object boundaries. We further ex-
plore the Xception model and apply the depthwise separable convolution
to both Atrous Spatial Pyramid Pooling and decoder modules, resulting
in a faster and stronger encoder-decoder network. We demonstrate the ef-
fectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes
datasets, achieving the test set performance of 89% and 82.1% without
any post-processing. Our paper is accompanied with a publicly available
reference implementation of the proposed models in Tensorflow at https:
//github.com/tensorflow/models/tree/master/research/deeplab.

Keywords: Semantic image segmentation, spatial pyramid pooling, encoder-
decoder, and depthwise separable convolution.

1 Introduction

Semantic segmentation with the goal to assign semantic labels to every pixel in an
image [1,2,3,4,5] is one of the fundamental topics in computer vision. Deep con-
volutional neural networks [6,7,8,9,10] based on the Fully Convolutional Neural
Network [8,11] show striking improvement over systems relying on hand-crafted
features [12,13,14,15,16,17] on benchmark tasks. In this work, we consider two
types of neural networks that use spatial pyramid pooling module [18,19,20] or
encoder-decoder structure [21,22] for semantic segmentation, where the former
one captures rich contextual information by pooling features at different resolu-
tion while the latter one is able to obtain sharp object boundaries.

In order to capture the contextual information at multiple scales, DeepLabv3
[23] applies several parallel atrous convolution with different rates (called Atrous

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab

2 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

Image

Spatial Pyramid Pooling

0.5x

0.5x

0.5x

Prediction

8x

Image

2x

0.5x

0.5x

0.5x

0.5x

0.5x 2x

2x

2x

2x

Prediction Image

Spatial Pyramid Pooling

0.5x

0.5x

0.5x

0.5x

4x

Prediction

4x

(a) Spatial Pyramid Pooling (b) Encoder-Decoder (c) Encoder-Decoder with Atrous Conv

Fig. 1.We improve DeepLabv3, which employs the spatial pyramid pooling module (a),
with the encoder-decoder structure (b). The proposed model, DeepLabv3+, contains
rich semantic information from the encoder module, while the detailed object bound-
aries are recovered by the simple yet effective decoder module. The encoder module
allows us to extract features at an arbitrary resolution by applying atrous convolution.

Spatial Pyramid Pooling, or ASPP), while PSPNet [24] performs pooling opera-
tions at different grid scales. Even though rich semantic information is encoded in
the last feature map, detailed information related to object boundaries is missing
due to the pooling or convolutions with striding operations within the network
backbone. This could be alleviated by applying the atrous convolution to extract
denser feature maps. However, given the design of state-of-art neural networks
[7,9,10,25,26] and limited GPU memory, it is computationally prohibitive to ex-
tract output feature maps that are 8, or even 4 times smaller than the input
resolution. Taking ResNet-101 [25] for example, when applying atrous convolu-
tion to extract output features that are 16 times smaller than input resolution,
features within the last 3 residual blocks (9 layers) have to be dilated. Even
worse, 26 residual blocks (78 layers!) will be affected if output features that are
8 times smaller than input are desired. Thus, it is computationally intensive if
denser output features are extracted for this type of models. On the other hand,
encoder-decoder models [21,22] lend themselves to faster computation (since no
features are dilated) in the encoder path and gradually recover sharp object
boundaries in the decoder path. Attempting to combine the advantages from
both methods, we propose to enrich the encoder module in the encoder-decoder
networks by incorporating the multi-scale contextual information.

In particular, our proposed model, called DeepLabv3+, extends DeepLabv3
[23] by adding a simple yet effective decoder module to recover the object bound-
aries, as illustrated in Fig. 1. The rich semantic information is encoded in the
output of DeepLabv3, with atrous convolution allowing one to control the den-
sity of the encoder features, depending on the budget of computation resources.
Furthermore, the decoder module allows detailed object boundary recovery.

Motivated by the recent success of depthwise separable convolution [27,28,26,29,30],
we also explore this operation and show improvement in terms of both speed and
accuracy by adapting the Xception model [26], similar to [31], for the task of

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 3

semantic segmentation, and applying the atrous separable convolution to both
the ASPP and decoder modules. Finally, we demonstrate the effectiveness of the
proposed model on PASCAL VOC 2012 and Cityscapes datasts and attain the
test set performance of 89.0% and 82.1% without any post-processing, setting a
new state-of-the-art.

In summary, our contributions are:

– We propose a novel encoder-decoder structure which employs DeepLabv3 as
a powerful encoder module and a simple yet effective decoder module.

– In our structure, one can arbitrarily control the resolution of extracted en-
coder features by atrous convolution to trade-off precision and runtime,
which is not possible with existing encoder-decoder models.

– We adapt the Xception model for the segmentation task and apply depthwise
separable convolution to both ASPP module and decoder module, resulting
in a faster and stronger encoder-decoder network.

– Our proposed model attains a new state-of-art performance on PASCAL
VOC 2012 and Cityscapes datasets. We also provide detailed analysis of
design choices and model variants.

– We make our Tensorflow-based implementation of the proposed model pub-
licly available at https://github.com/tensorflow/models/tree/master/
research/deeplab.

2 Related Work

Models based on Fully Convolutional Networks (FCNs) [8,11] have demonstrated
significant improvement on several segmentation benchmarks [1,2,3,4,5]. There
are several model variants proposed to exploit the contextual information for
segmentation [12,13,14,15,16,17,32,33], including those that employ multi-scale
inputs (i.e., image pyramid) [34,35,36,37,38,39] or those that adopt probabilistic
graphical models (such as DenseCRF [40] with efficient inference algorithm [41])
[42,43,44,37,45,46,47,48,49,50,51,39]. In this work, we mainly discuss about the
models that use spatial pyramid pooling and encoder-decoder structure.

Spatial pyramid pooling:Models, such as PSPNet [24] or DeepLab [39,23],
perform spatial pyramid pooling [18,19] at several grid scales (including image-
level pooling [52]) or apply several parallel atrous convolution with different
rates (called Atrous Spatial Pyramid Pooling, or ASPP). These models have
shown promising results on several segmentation benchmarks by exploiting the
multi-scale information.

Encoder-decoder: The encoder-decoder networks have been successfully
applied to many computer vision tasks, including human pose estimation [53], ob-
ject detection [54,55,56], and semantic segmentation [11,57,21,22,58,59,60,61,62,63,64].
Typically, the encoder-decoder networks contain (1) an encoder module that
gradually reduces the feature maps and captures higher semantic information,
and (2) a decoder module that gradually recovers the spatial information. Build-
ing on top of this idea, we propose to use DeepLabv3 [23] as the encoder module
and add a simple yet effective decoder module to obtain sharper segmentations.

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab

4 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

1x1 Conv

3x3 Conv
rate 6

3x3 Conv
rate 12

3x3 Conv
rate 18

Image
Pooling

1x1 Conv

1x1 Conv

Low-Level
Features

Upsample
by 4

Concat 3x3 Conv

Encoder

Decoder

Atrous Conv

DCNNImage

Prediction

Upsample
by 4

Fig. 2. Our proposed DeepLabv3+ extends DeepLabv3 by employing a encoder-
decoder structure. The encoder module encodes multi-scale contextual information by
applying atrous convolution at multiple scales, while the simple yet effective decoder
module refines the segmentation results along object boundaries.

Depthwise separable convolution:Depthwise separable convolution [27,28]
or group convolution [7,65], a powerful operation to reduce the computation cost
and number of parameters while maintaining similar (or slightly better) perfor-
mance. This operation has been adopted in many recent neural network designs
[66,67,26,29,30,31,68]. In particular, we explore the Xception model [26], similar
to [31] for their COCO 2017 detection challenge submission, and show improve-
ment in terms of both accuracy and speed for the task of semantic segmentation.

3 Methods

In this section, we briefly introduce atrous convolution [69,70,8,71,42] and depth-
wise separable convolution [27,28,67,26,29]. We then review DeepLabv3 [23]
which is used as our encoder module before discussing the proposed decoder
module appended to the encoder output. We also present a modified Xception
model [26,31] which further improves the performance with faster computation.

3.1 Encoder-Decoder with Atrous Convolution

Atrous convolution: Atrous convolution, a powerful tool that allows us to ex-
plicitly control the resolution of features computed by deep convolutional neural
networks and adjust filter’s field-of-view in order to capture multi-scale informa-
tion, generalizes standard convolution operation. In the case of two-dimensional
signals, for each location i on the output feature map y and a convolution filter
w, atrous convolution is applied over the input feature map x as follows:

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 5

(a) Depthwise conv. (b) Pointwise conv. (c) Atrous depthwise conv.

Fig. 3. 3×3 Depthwise separable convolution decomposes a standard convolution into
(a) a depthwise convolution (applying a single filter for each input channel) and (b) a
pointwise convolution (combining the outputs from depthwise convolution across chan-
nels). In this work, we explore atrous separable convolution where atrous convolution
is adopted in the depthwise convolution, as shown in (c) with rate = 2.

y[i] =
∑

k

x[i+ r · k]w[k] (1)

where the atrous rate r determines the stride with which we sample the input
signal. We refer interested readers to [39] for more details. Note that standard
convolution is a special case in which rate r = 1. The filter’s field-of-view is
adaptively modified by changing the rate value.

Depthwise separable convolution: Depthwise separable convolution, fac-
torizing a standard convolution into a depthwise convolution followed by a point-

wise convolution (i.e., 1× 1 convolution), drastically reduces computation com-
plexity. Specifically, the depthwise convolution performs a spatial convolution
independently for each input channel, while the pointwise convolution is em-
ployed to combine the output from the depthwise convolution. In the TensorFlow
[72] implementation of depthwise separable convolution, atrous convolution has
been supported in the depthwise convolution (i.e., the spatial convolution), as
illustrated in Fig. 3. In this work, we refer the resulting convolution as atrous

separable convolution, and found that atrous separable convolution significantly
reduces the computation complexity of proposed model while maintaining simi-
lar (or better) performance.

DeepLabv3 as encoder:DeepLabv3 [23] employs atrous convolution [69,70,8,71]
to extract the features computed by deep convolutional neural networks at an
arbitrary resolution. Here, we denote output stride as the ratio of input image
spatial resolution to the final output resolution (before global pooling or fully-
connected layer). For the task of image classification, the spatial resolution of the
final feature maps is usually 32 times smaller than the input image resolution and
thus output stride = 32. For the task of semantic segmentation, one can adopt
output stride = 16 (or 8) for denser feature extraction by removing the striding
in the last one (or two) block(s) and applying the atrous convolution correspond-
ingly (e.g ., we apply rate = 2 and rate = 4 to the last two blocks respectively
for output stride = 8). Additionally, DeepLabv3 augments the Atrous Spatial
Pyramid Pooling module, which probes convolutional features at multiple scales
by applying atrous convolution with different rates, with the image-level fea-

6 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

tures [52]. We use the last feature map before logits in the original DeepLabv3
as the encoder output in our proposed encoder-decoder structure. Note the en-
coder output feature map contains 256 channels and rich semantic information.
Besides, one could extract features at an arbitrary resolution by applying the
atrous convolution, depending on the computation budget.

Proposed decoder: The encoder features from DeepLabv3 are usually com-
puted with output stride = 16. In the work of [23], the features are bilinearly
upsampled by a factor of 16, which could be considered a naive decoder module.
However, this naive decoder module may not successfully recover object seg-
mentation details. We thus propose a simple yet effective decoder module, as
illustrated in Fig. 2. The encoder features are first bilinearly upsampled by a
factor of 4 and then concatenated with the corresponding low-level features [73]
from the network backbone that have the same spatial resolution (e.g ., Conv2
before striding in ResNet-101 [25]). We apply another 1× 1 convolution on the
low-level features to reduce the number of channels, since the corresponding low-
level features usually contain a large number of channels (e.g ., 256 or 512) which
may outweigh the importance of the rich encoder features (only 256 channels in
our model) and make the training harder. After the concatenation, we apply a
few 3× 3 convolutions to refine the features followed by another simple bilinear
upsampling by a factor of 4. We show in Sec. 4 that using output stride = 16
for the encoder module strikes the best trade-off between speed and accuracy.
The performance is marginally improved when using output stride = 8 for the
encoder module at the cost of extra computation complexity.

3.2 Modified Aligned Xception

The Xception model [26] has shown promising image classification results on Im-
ageNet [74] with fast computation. More recently, the MSRA team [31] modifies
the Xception model (called Aligned Xception) and further pushes the perfor-
mance in the task of object detection. Motivated by these findings, we work in
the same direction to adapt the Xception model for the task of semantic image
segmentation. In particular, we make a few more changes on top of MSRA’s
modifications, namely (1) deeper Xception same as in [31] except that we do
not modify the entry flow network structure for fast computation and memory
efficiency, (2) all max pooling operations are replaced by depthwise separable
convolution with striding, which enables us to apply atrous separable convolu-

tion to extract feature maps at an arbitrary resolution (another option is to
extend the atrous algorithm to max pooling operations), and (3) extra batch
normalization [75] and ReLU activation are added after each 3 × 3 depthwise
convolution, similar to MobileNet design [29]. See Fig. 4 for details.

4 Experimental Evaluation

We employ ImageNet-1k [74] pretrained ResNet-101 [25] or modified aligned
Xception [26,31] to extract dense feature maps by atrous convolution. Our im-
plementation is built on TensorFlow [72] and is made publicly available.

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 7

Conv 32, 3x3, stride 2

Conv 64, 3x3

Sep Conv 128, 3x3

Sep Conv 128, 3x3

Sep Conv 128, 3x3, stride 2

Conv 128, 1x1
Stride 2

+

Sep Conv 256, 3x3

Sep Conv 256, 3x3

Sep Conv 256, 3x3, stride 2

Conv 256, 1x1
Stride 2

+

Sep Conv 728, 3x3

Sep Conv 728, 3x3

Sep Conv 728, 3x3, stride 2

Conv 728, 1x1
Stride 2

+

Images
Entry flow

Sep Conv 728, 3x3

Sep Conv 728, 3x3

Sep Conv 728, 3x3

+

Middle flow

Repeat 16 times

Sep Conv 728, 3x3

Sep Conv 1024, 3x3

Sep Conv 1024, 3x3, stride 2

Conv 1024, 1x1
Stride 2

+

Sep Conv 1536, 3x3

Sep Conv 1536, 3x3

Sep Conv 2048, 3x3

Exit flow

Fig. 4. We modify the Xception as follows: (1) more layers (same as MSRA’s modifica-
tion except the changes in Entry flow), (2) all the max pooling operations are replaced
by depthwise separable convolutions with striding, and (3) extra batch normalization
and ReLU are added after each 3× 3 depthwise convolution, similar to MobileNet.

The proposed models are evaluated on the PASCAL VOC 2012 semantic
segmentation benchmark [1] which contains 20 foreground object classes and one
background class. The original dataset contains 1, 464 (train), 1, 449 (val), and
1, 456 (test) pixel-level annotated images. We augment the dataset by the extra
annotations provided by [76], resulting in 10, 582 (trainaug) training images.
The performance is measured in terms of pixel intersection-over-union averaged
across the 21 classes (mIOU).

We follow the same training protocol as in [23] and refer the interested readers
to [23] for details. In short, we employ the same learning rate schedule (i.e.,
“poly” policy [52] and same initial learning rate 0.007), crop size 513 × 513,
fine-tuning batch normalization parameters [75] when output stride = 16, and
random scale data augmentation during training. Note that we also include batch
normalization parameters in the proposed decoder module. Our proposed model
is trained end-to-end without piecewise pretraining of each component.

8 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

4.1 Decoder Design Choices

We define “DeepLabv3 feature map” as the last feature map computed by
DeepLabv3 (i.e., the features containing ASPP features and image-level fea-
tures), and [k × k, f] as a convolution operation with kernel k × k and f filters.

When employing output stride = 16, ResNet-101 based DeepLabv3 [23] bi-
linearly upsamples the logits by 16 during both training and evaluation. This
simple bilinear upsampling could be considered as a naive decoder design, attain-
ing the performance of 77.21% [23] on PASCAL VOC 2012 val set and is 1.2%
better than not using this naive decoder during training (i.e., downsampling
groundtruth during training). To improve over this naive baseline, our proposed
model “DeepLabv3+” adds the decoder module on top of the encoder output, as
shown in Fig. 2. In the decoder module, we consider three places for different de-
sign choices, namely (1) the 1×1 convolution used to reduce the channels of the
low-level feature map from the encoder module, (2) the 3 × 3 convolution used
to obtain sharper segmentation results, and (3) what encoder low-level features
should be used.

To evaluate the effect of the 1 × 1 convolution in the decoder module, we
employ [3× 3, 256] and the Conv2 features from ResNet-101 network backbone,
i.e., the last feature map in res2x residual block (to be concrete, we use the
feature map before striding). As shown in Tab. 1, reducing the channels of the
low-level feature map from the encoder module to either 48 or 32 leads to better
performance. We thus adopt [1× 1, 48] for channel reduction.

We then design the 3× 3 convolution structure for the decoder module and
report the findings in Tab. 2. We find that after concatenating the Conv2 feature
map (before striding) with DeepLabv3 feature map, it is more effective to employ
two 3×3 convolution with 256 filters than using simply one or three convolutions.
Changing the number of filters from 256 to 128 or the kernel size from 3× 3 to
1×1 degrades performance. We also experiment with the case where both Conv2
and Conv3 feature maps are exploited in the decoder module. In this case, the
decoder feature map are gradually upsampled by 2, concatenated with Conv3
first and then Conv2, and each will be refined by the [3× 3, 256] operation. The
whole decoding procedure is then similar to the U-Net/SegNet design [21,22].
However, we have not observed significant improvement. Thus, in the end, we
adopt the very simple yet effective decoder module: the concatenation of the
DeepLabv3 feature map and the channel-reduced Conv2 feature map are refined
by two [3 × 3, 256] operations. Note that our proposed DeepLabv3+ model has
output stride = 4. We do not pursue further denser output feature map (i.e.,
output stride < 4) given the limited GPU resources.

4.2 ResNet-101 as Network Backbone

To compare the model variants in terms of both accuracy and speed, we report
mIOU and Multiply-Adds in Tab. 3 when using ResNet-101 [25] as network
backbone in the proposed DeepLabv3+ model. Thanks to atrous convolution, we

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 9

Channels 8 16 32 48 64

mIOU 77.61% 77.92% 78.16% 78.21% 77.94%

Table 1. PASCAL VOC 2012 val set. Effect of decoder 1 × 1 convolution used to
reduce the channels of low-level feature map from the encoder module. We fix the
other components in the decoder structure as using [3× 3, 256] and Conv2.

Features 3× 3 Conv
mIOU

Conv2 Conv3 Structure

X [3× 3, 256] 78.21%
X [3× 3, 256]× 2 78.85%

X [3× 3, 256]× 3 78.02%
X [3× 3, 128] 77.25%
X [1× 1, 256] 78.07%
X X [3× 3, 256] 78.61%

Table 2. Effect of decoder structure when fixing [1 × 1, 48] to reduce the encoder
feature channels. We found that it is most effective to use the Conv2 (before striding)
feature map and two extra [3× 3, 256] operations. Performance on VOC 2012 val set.

Encoder
Decoder MS Flip mIOU Multiply-Adds

train OS eval OS

16 16 77.21% 81.02B
16 8 78.51% 276.18B
16 8 X 79.45% 2435.37B
16 8 X X 79.77% 4870.59B

16 16 X 78.85% 101.28B
16 16 X X 80.09% 898.69B
16 16 X X X 80.22% 1797.23B
16 8 X 79.35% 297.92B
16 8 X X 80.43% 2623.61B
16 8 X X X 80.57% 5247.07B

32 32 75.43% 52.43B
32 32 X 77.37% 74.20B
32 16 X 77.80% 101.28B
32 8 X 77.92% 297.92B

Table 3. Inference strategy on the PASCAL VOC 2012 val set using ResNet-101.
train OS: The output stride used during training. eval OS: The output stride used
during evaluation. Decoder: Employing the proposed decoder structure. MS: Multi-
scale inputs during evaluation. Flip: Adding left-right flipped inputs.

are able to obtain features at different resolutions during training and evaluation
using a single model.

10 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

Model Top-1 Error Top-5 Error

Reproduced ResNet-101 22.40% 6.02%
Modified Xception 20.19% 5.17%

Table 4. Single-model error rates on ImageNet-1K validation set.

Baseline: The first row block in Tab. 3 contains the results from [23] showing
that extracting denser feature maps during evaluation (i.e., eval output stride =
8) and adopting multi-scale inputs increases performance. Besides, adding left-
right flipped inputs doubles the computation complexity with only marginal
performance improvement.

Adding decoder: The second row block in Tab. 3 contains the results when
adopting the proposed decoder structure. The performance is improved from
77.21% to 78.85% or 78.51% to 79.35% when using eval output stride = 16 or 8,
respectively, at the cost of about 20B extra computation overhead. The perfor-
mance is further improved when using multi-scale and left-right flipped inputs.

Coarser feature maps: We also experiment with the case when using
train output stride = 32 (i.e., no atrous convolution at all during training) for
fast computation. As shown in the third row block in Tab. 3, adding the decoder
brings about 2% improvement while only 74.20B Multiply-Adds are required.
However, the performance is always about 1% to 1.5% below the case in which
we employ train output stride = 16 and different eval output stride values. We
thus prefer using output stride = 16 or 8 during training or evaluation depending
on the complexity budget.

4.3 Xception as Network Backbone

We further employ the more powerful Xception [26] as network backbone. Fol-
lowing [31], we make a few more changes, as described in Sec. 3.2.

ImageNet pretraining: The proposed Xception network is pretrained on
ImageNet-1k dataset [74] with similar training protocol in [26]. Specifically, we
adopt Nesterov momentum optimizer with momentum = 0.9, initial learning
rate = 0.05, rate decay = 0.94 every 2 epochs, and weight decay 4e − 5. We
use asynchronous training with 50 GPUs and each GPU has batch size 32 with
image size 299×299. We did not tune the hyper-parameters very hard as the goal
is to pretrain the model on ImageNet for semantic segmentation. We report the
single-model error rates on the validation set in Tab. 4 along with the baseline
reproduced ResNet-101 [25] under the same training protocol. We have observed
0.75% and 0.29% performance degradation for Top1 and Top5 accuracy when
not adding the extra batch normalization and ReLU after each 3× 3 depthwise
convolution in the modified Xception.

The results of using the proposed Xception as network backbone for semantic
segmentation are reported in Tab. 5.

Baseline: We first report the results without using the proposed decoder in
the first row block in Tab. 5, which shows that employing Xception as network

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 11

backbone improves the performance by about 2% when train output stride =
eval output stride = 16 over the case where ResNet-101 is used. Further im-
provement can also be obtained by using eval output stride = 8, multi-scale
inputs during inference and adding left-right flipped inputs. Note that we do not
employ the multi-grid method [77,78,23], which we found does not improve the
performance.

Adding decoder: As shown in the second row block in Tab. 5, adding
decoder brings about 0.8% improvement when using eval output stride = 16 for
all the different inference strategies. The improvement becomes less when using
eval output stride = 8.

Using depthwise separable convolution: Motivated by the efficient com-
putation of depthwise separable convolution, we further adopt it in the ASPP
and the decoder modules. As shown in the third row block in Tab. 5, the com-
putation complexity in terms of Multiply-Adds is significantly reduced by 33%
to 41%, while similar mIOU performance is obtained.

Pretraining on COCO: For comparison with other state-of-art models, we
further pretrain our proposed DeepLabv3+ model on MS-COCO dataset [79],
which yields about extra 2% improvement for all different inference strategies.

Pretraining on JFT: Similar to [23], we also employ the proposed Xception
model that has been pretrained on both ImageNet-1k [74] and JFT-300M dataset
[80,26,81], which brings extra 0.8% to 1% improvement.

Test set results: Since the computation complexity is not considered in the
benchmark evaluation, we thus opt for the best performance model and train it
with output stride = 8 and frozen batch normalization parameters. In the end,
our ‘DeepLabv3+’ achieves the performance of 87.8% and 89.0% without and
with JFT dataset pretraining.

Qualitative results: We provide visual results of our best model in Fig. 6.
As shown in the figure, our model is able to segment objects very well without
any post-processing.

Failure mode: As shown in the last row of Fig. 6, our model has difficulty
in segmenting (a) sofa vs. chair, (b) heavily occluded objects, and (c) objects
with rare view.

4.4 Improvement along Object Boundaries

In this subsection, we evaluate the segmentation accuracy with the trimap exper-
iment [14,40,39] to quantify the accuracy of the proposed decoder module near
object boundaries. Specifically, we apply the morphological dilation on ‘void’ la-
bel annotations on val set, which typically occurs around object boundaries. We
then compute the mean IOU for those pixels that are within the dilated band
(called trimap) of ‘void’ labels. As shown in Fig. 5 (a), employing the proposed
decoder for both ResNet-101 [25] and Xception [26] network backbones improves
the performance compared to the naive bilinear upsampling. The improvement
is more significant when the dilated band is narrow. We have observed 4.8%
and 5.4% mIOU improvement for ResNet-101 and Xception respectively at the

12 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

Encoder
Decoder MS Flip SC COCO JFT mIOU Multiply-Adds

train OS eval OS

16 16 79.17% 68.00B
16 16 X 80.57% 601.74B
16 16 X X 80.79% 1203.34B
16 8 79.64% 240.85B
16 8 X 81.15% 2149.91B
16 8 X X 81.34% 4299.68B

16 16 X 79.93% 89.76B
16 16 X X 81.38% 790.12B
16 16 X X X 81.44% 1580.10B
16 8 X 80.22% 262.59B
16 8 X X 81.60% 2338.15B
16 8 X X X 81.63% 4676.16B

16 16 X X 79.79% 54.17B
16 16 X X X X 81.21% 928.81B
16 8 X X 80.02% 177.10B
16 8 X X X X 81.39% 3055.35B

16 16 X X X 82.20% 54.17B
16 16 X X X X X 83.34% 928.81B
16 8 X X X 82.45% 177.10B
16 8 X X X X X 83.58% 3055.35B

16 16 X X X X 83.03% 54.17B
16 16 X X X X X X 84.22% 928.81B
16 8 X X X X 83.39% 177.10B
16 8 X X X X X X 84.56% 3055.35B

Table 5. Inference strategy on the PASCAL VOC 2012 val set when using mod-
ified Xception. train OS: The output stride used during training. eval OS: The
output stride used during evaluation.Decoder: Employing the proposed decoder struc-
ture. MS: Multi-scale inputs during evaluation. Flip: Adding left-right flipped inputs.
SC: Adopting depthwise separable convolution for both ASPP and decoder modules.
COCO: Models pretrained on MS-COCO. JFT: Models pretrained on JFT.

smallest trimap width as shown in the figure. We also visualize the effect of
employing the proposed decoder in Fig. 5 (b).

4.5 Experimental Results on Cityscapes

In this section, we experiment DeepLabv3+ on the Cityscapes dataset [3], a
large-scale dataset containing high quality pixel-level annotations of 5000 images
(2975, 500, and 1525 for the training, validation, and test sets respectively) and
about 20000 coarsely annotated images.

As shown in Tab. 7 (a), employing the proposed Xception model as network
backbone (denoted as X-65) on top of DeepLabv3 [23], which includes the ASPP

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 13

Method mIOU

Deep Layer Cascade (LC) [82] 82.7
TuSimple [77] 83.1
Large Kernel Matters [60] 83.6
Multipath-RefineNet [58] 84.2
ResNet-38 MS COCO [83] 84.9
PSPNet [24] 85.4
IDW-CNN [84] 86.3
CASIA IVA SDN [63] 86.6
DIS [85] 86.8

DeepLabv3 [23] 85.7
DeepLabv3-JFT [23] 86.9

DeepLabv3+ (Xception) 87.8
DeepLabv3+ (Xception-JFT) 89.0

Table 6. PASCAL VOC 2012 test set results with top-performing models.

0 10 20 30 40
50

60

70

80

m
e
a
n
 I
O

U
 (

%
)

Trimap Width (pixels)

Xception w/ Decoder

ResNet−101 w/ Decoder

Xception w/ BU

ResNet−101 w/ BU

Image w/ BU w/ Decoder

(a) mIOU vs. Trimap width (b) Decoder effect

Fig. 5. (a) mIOU as a function of trimap band width around the object boundaries
when employing train output stride = eval output stride = 16. BU: Bilinear upsam-
pling. (b) Qualitative effect of employing the proposed decoder module compared with
the naive bilinear upsampling (denoted as BU). In the examples, we adopt Xception
as feature extractor and train output stride = eval output stride = 16.

module and image-level features [52], attains the performance of 77.33% on the
validation set. Adding the proposed decoder module significantly improves the
performance to 78.79% (1.46% improvement). We notice that removing the aug-
mented image-level feature improves the performance to 79.14%, showing that
in DeepLab model, the image-level features are more effective on the PASCAL
VOC 2012 dataset. We also discover that on the Cityscapes dataset, it is effec-
tive to increase more layers in the entry flow in the Xception [26], the same as
what [31] did for the object detection task. The resulting model building on top
of the deeper network backbone (denoted as X-71 in the table), attains the best
performance of 79.55% on the validation set.

After finding the best model variant on val set, we then further fine-tune
the model on the coarse annotations in order to compete with other state-of-art

http://host.robots.ox.ac.uk:8080/anonymous/NU9OS6.html
http://host.robots.ox.ac.uk:8080/anonymous/AF0NVP.html

14 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

Fig. 6. Visualization results on val set. The last row shows a failure mode.

Backbone Decoder ASPP Image-Level mIOU

X-65 X X 77.33
X-65 X X X 78.79
X-65 X X 79.14
X-71 X X 79.55

Method Coarse mIOU

ResNet-38 [83] X 80.6
PSPNet [24] X 81.2
Mapillary [86] X 82.0

DeepLabv3 X 81.3

DeepLabv3+ X 82.1

(a) val set results (b) test set results
Table 7. (a) DeepLabv3+ on the Cityscapes val set when trained with train fine set.
(b) DeepLabv3+ on Cityscapes test set. Coarse: Use train extra set (coarse annota-
tions) as well. Only a few top models are listed in this table.

models. As shown in Tab. 7 (b), our proposed DeepLabv3+ attains a performance
of 82.1% on the test set, setting a new state-of-art performance on Cityscapes.

5 Conclusion

Our proposed model “DeepLabv3+” employs the encoder-decoder structure where
DeepLabv3 is used to encode the rich contextual information and a simple yet
effective decoder module is adopted to recover the object boundaries. One could
also apply the atrous convolution to extract the encoder features at an arbitrary
resolution, depending on the available computation resources. We also explore
the Xception model and atrous separable convolution to make the proposed
model faster and stronger. Finally, our experimental results show that the pro-
posed model sets a new state-of-the-art performance on PASCAL VOC 2012 and
Cityscapes datasets.

Acknowledgments We would like to acknowledge the valuable discussions
with Haozhi Qi and Jifeng Dai about Aligned Xception, the feedback from Chen
Sun, and the support from Google Mobile Vision team.

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 15

References

1. Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge a retrospective. IJCV (2014)

2. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R.,
Yuille, A.: The role of context for object detection and semantic segmentation in
the wild. In: CVPR. (2014)

3. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR. (2016)

4. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR. (2017)

5. Caesar, H., Uijlings, J., Ferrari, V.: COCO-Stuff: Thing and stuff classes in context.
In: CVPR. (2018)

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proc. IEEE. (1998)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS. (2012)

8. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks. In:
ICLR. (2014)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR. (2015)

10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR. (2015)

11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. (2015)

12. He, X., Zemel, R.S., Carreira-Perpindn, M.: Multiscale conditional random fields
for image labeling. In: CVPR. (2004)

13. Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understand-
ing: Multi-class object recognition and segmentation by jointly modeling texture,
layout, and context. IJCV (2009)

14. Kohli, P., Torr, P.H., et al.: Robust higher order potentials for enforcing label
consistency. IJCV 82(3) (2009) 302–324

15. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Associative hierarchical crfs for
object class image segmentation. In: ICCV. (2009)

16. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and seman-
tically consistent regions. In: ICCV. (2009)

17. Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object
detection, scene classification and semantic segmentation. In: CVPR. (2012)

18. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification
with sets of image features. In: ICCV. (2005)

19. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In: CVPR. (2006)

20. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: ECCV. (2014)

21. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI. (2015)

22. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. PAMI (2017)

16 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

23. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv:1706.05587 (2017)

24. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR. (2017)

25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. (2016)

26. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
CVPR. (2017)

27. Sifre, L.: Rigid-motion scattering for image classification. PhD thesis (2014)
28. Vanhoucke, V.: Learning visual representations at scale. ICLR invited talk (2014)
29. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861 (2017)

30. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: CVPR. (2018)

31. Qi, H., Zhang, Z., Xiao, B., Hu, H., Cheng, B., Wei, Y., Dai, J.: Deformable
convolutional networks – coco detection and segmentation challenge 2017 entry.
ICCV COCO Challenge Workshop (2017)

32. Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic seg-
mentation with zoom-out features. In: CVPR. (2015)

33. Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff
segmentation. In: CVPR. (2015)

34. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. PAMI (2013)

35. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV. (2015)

36. Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene
labeling. In: ICML. (2014)

37. Lin, G., Shen, C., van den Hengel, A., Reid, I.: Efficient piecewise training of deep
structured models for semantic segmentation. In: CVPR. (2016)

38. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: Scale-
aware semantic image segmentation. In: CVPR. (2016)

39. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. TPAMI (2017)

40. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian
edge potentials. In: NIPS. (2011)

41. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the per-
mutohedral lattice. In: Eurographics. (2010)

42. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets and fully connected crfs. In:
ICLR. (2015)

43. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with
the materials in context database. In: CVPR. (2015)

44. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,
C., Torr, P.: Conditional random fields as recurrent neural networks. In: ICCV.
(2015)

45. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via
deep parsing network. In: ICCV. (2015)

46. Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly- and semi-
supervised learning of a dcnn for semantic image segmentation. In: ICCV. (2015)

DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution 17

47. Schwing, A.G., Urtasun, R.: Fully connected deep structured networks.
arXiv:1503.02351 (2015)

48. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters:
Image filtering, dense crfs and bilateral neural networks. In: CVPR. (2016)

49. Vemulapalli, R., Tuzel, O., Liu, M.Y., Chellappa, R.: Gaussian conditional random
field network for semantic segmentation. In: CVPR. (2016)

50. Chandra, S., Kokkinos, I.: Fast, exact and multi-scale inference for semantic image
segmentation with deep Gaussian CRFs. In: ECCV. (2016)

51. Chandra, S., Usunier, N., Kokkinos, I.: Dense and low-rank gaussian crfs using
deep embeddings. In: ICCV. (2017)

52. Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: Looking wider to see better.
arXiv:1506.04579 (2015)

53. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: ECCV. (2016)

54. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR. (2017)

55. Shrivastava, A., Sukthankar, R., Malik, J., Gupta, A.: Beyond skip connections:
Top-down modulation for object detection. arXiv:1612.06851 (2016)

56. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: Deconvolutional single
shot detector. arXiv:1701.06659 (2017)

57. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: ICCV. (2015)

58. Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement networks
with identity mappings for high-resolution semantic segmentation. In: CVPR.
(2017)

59. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks
for semantic segmentation in street scenes. In: CVPR. (2017)

60. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters–improve
semantic segmentation by global convolutional network. In: CVPR. (2017)

61. Islam, M.A., Rochan, M., Bruce, N.D., Wang, Y.: Gated feedback refinement
network for dense image labeling. In: CVPR. (2017)

62. Wojna, Z., Ferrari, V., Guadarrama, S., Silberman, N., Chen, L.C., Fathi, A.,
Uijlings, J.: The devil is in the decoder. In: BMVC. (2017)

63. Fu, J., Liu, J., Wang, Y., Lu, H.: Stacked deconvolutional network for semantic
segmentation. arXiv:1708.04943 (2017)

64. Zhang, Z., Zhang, X., Peng, C., Cheng, D., Sun, J.: Exfuse: Enhancing feature
fusion for semantic segmentation. arXiv:1804.03821 (2018)

65. Xie, S., Girshick, R., Dollr, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR. (2017)

66. Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for
feedforward acceleration. arXiv:1412.5474 (2014)

67. Wang, M., Liu, B., Foroosh, H.: Design of efficient convolutional layers using sin-
gle intra-channel convolution, topological subdivisioning and spatial ”bottleneck”
structure. arXiv:1608.04337 (2016)

68. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR. (2018)

69. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time
algorithm for signal analysis with the help of the wavelet transform. In: Wavelets:
Time-Frequency Methods and Phase Space. (1989) 289–297

70. Giusti, A., Ciresan, D., Masci, J., Gambardella, L., Schmidhuber, J.: Fast image
scanning with deep max-pooling convolutional neural networks. In: ICIP. (2013)

18 L.-C Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam

71. Papandreou, G., Kokkinos, I., Savalle, P.A.: Modeling local and global deforma-
tions in deep learning: Epitomic convolution, multiple instance learning, and sliding
window detection. In: CVPR. (2015)

72. Abadi, M., Agarwal, A., et al.: Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. arXiv:1603.04467 (2016)

73. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object
segmentation and fine-grained localization. In: CVPR. (2015)

74. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. IJCV (2015)

75. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. (2015)

76. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: ICCV. (2011)

77. Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G.: Under-
standing convolution for semantic segmentation. arXiv:1702.08502 (2017)

78. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: ICCV. (2017)

79. Lin, T.Y., et al.: Microsoft COCO: Common objects in context. In: ECCV. (2014)
80. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.

In: NIPS. (2014)
81. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness

of data in deep learning era. In: ICCV. (2017)
82. Li, X., Liu, Z., Luo, P., Loy, C.C., Tang, X.: Not all pixels are equal: Difficulty-

aware semantic segmentation via deep layer cascade. In: CVPR. (2017)
83. Wu, Z., Shen, C., van den Hengel, A.: Wider or deeper: Revisiting the resnet model

for visual recognition. arXiv:1611.10080 (2016)
84. Wang, G., Luo, P., Lin, L., Wang, X.: Learning object interactions and descriptions

for semantic image segmentation. In: CVPR. (2017)
85. Luo, P., Wang, G., Lin, L., Wang, X.: Deep dual learning for semantic image

segmentation. In: ICCV. (2017)
86. Bulò, S.R., Porzi, L., Kontschieder, P.: In-place activated batchnorm for memory-

optimized training of dnns. In: CVPR. (2018)

