
Collaborative Deep Reinforcement Learning for

Multi-Object Tracking

Liangliang Ren1, Jiwen Lu1⋆, Zifeng Wang1, Qi Tian2,3,Jie Zhou1

1Tsinghua University, Beijing China; 2Huawei Noah‘S Ark Lab; 3 UNiversity of Texas
at San Antonio

renll16@mails.tsinghua.edu.cn, lujiwen@tsinghua.edu.cn,

wangzf14@mails.tsinghua.edu.cn, qi.tian@utsa.edu jzhou@tsinghua.edu.cn

Abstract. In this paper, we propose a collaborative deep reinforcement
learning (C-DRL) method for multi-object tracking. Most existing multi-
object tracking methods employ the tracking-by-detection strategy which
first detects objects in each frame and then associates them across dif-
ferent frames. However, the performance of these methods rely heavily
on the detection results, which are usually unsatisfied in many real ap-
plications, especially in crowded scenes. To address this, we develop a
deep prediction-decision network in our C-DRL, which simultaneously
detects and predicts objects under a unified network via deep reinforce-
ment learning. Specifically, we consider each object as an agent and track
it via the prediction network, and seek the optimal tracked results by
exploiting the collaborative interactions of different agents and environ-
ments via the decision network.Experimental results on the challenging
MOT15 and MOT16 benchmarks are presented to show the effectiveness
of our approach.

Keywords: Object tracking, multi-object, deep reinforcement learning

1 Introduction

Multi-object tracking (MOT) has attracted increasing interests in computer vi-
sion over the past few years, which has various practical applications in surveil-
lance, human computer interface, robotics and advanced driving assistant sys-
tems. The goal of MOT is to estimate the trajectories of different objects and
track those objects across the video. While a variety of MOT methods have been
proposed in recent years [7,8,14,27,34,36,40,45–47,52], it remains a challenging
problem to track multiple objects in many unconstrained environments, espe-
cially in crowded scenes. This is because occlusions between different objects
and large intra-class variations usually occur in such scenarios.

Existing MOT approaches can be mainly divided into two categories, 1) of-
fline (batch or semi-batch) [7,27,40,45,46,52] and 2) online [8,14,34,36,47]. The
key idea of offline methods is to group detections into short trajectory segments

⋆ Corresponding author.

2 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

Q-Net

Q-Net

Environment

Action

Select

Action

Select

Q-Net

Q-Net

Action

Select

Action

Select

P
e

rs
o

n
 1

P
e

rs
o

n
 2

t t+1

Predictions & Detections Tracking result Frame t+1

Tracking result Frame t

Fig. 1: The key idea of our proposed C-DRL method for multi-object tracking.
Given a video and the detection results of different objects for the tth frame,
we model each object as an agent and predict the location of each object for
the following frames, where we seek the optimal tracked results by considering
the interactions of different agents and environment via a collaborative deep
reinforcement learning method. Lastly, we take actions to update agents at frame
t+ 1 according to the outputs of the decision network

or tracklets, and then use more reliable features to connect those tracklets to full
trajectories. Representative off-line methods use min-cost network flow [5, 54],
energy minimization [28] or generalized minimum clique graphs [52] to address
the data association problem. Online MOT methods estimate the object trajec-
tories with the detections of the current and past frames, which can be applied
to real-time applications such as advanced driving assistant systems or robotic-
s. Conventional online methods usually employ Kalman filtering [19], Particle
filtering [32] or Markov decisions [47]. However, the tracking accuracy of these
methods is sensitive to the occlusions and noisy detection results, such as missing
detections, false detections and the non-accurate bounding boxes, which make
these methods difficult to be applied for videos of crowded scenes.

In this paper, we propose a collaborative deep reinforcement learning (C-
DRL) method for multi-object tracking. Fig. 1 illustrates the basic idea of our
proposed approach. Given a video and the detection results of different objects
for the tth frame, we model each object as an agent and predict the locations
of objects of the following frames by using the history trajectories and the ap-
pearance information of the (t+ 1)th image frame. We exploit the collaborative
interaction of each agent between the neighboring agents and the environment,
and make decisions for each agent to update, track or delete the target object
via a decision network, where the influence of occlusions between objects and
noisy detection results can be well alleviated by maximizing their shared utility.
Experimental results on the challenging MOT15 and MOT16 benchmarks are
presented to demonstrate the efficiency of our approach.

2 Related Work

Multi-Object Tracking: Most existing MOT methods can be categorized into
two classes: 1) offline [7, 27, 40, 45, 46, 52] and 2) online [8, 14, 34, 36, 47]. Meth-

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 3

ods in the first class group all detection results into short trajectory segments
or tracklets, and connect those tracklets into full trajectories. For example, Za-
mir et al. [52] associated all detection results which incorporate both the appear-
ance and motion information in a global manner by using generalized minimum
clique graphs. Tang et al. [40] introduced a graph-based method that links and
clusters objects hypotheses over time by solving a subgraph multicut problem.
Maksai et al. [27] proposed an approach to track multiple objects with non-
Markovian behavioral constraints. Methods in the second class estimate object
trajectories with the detection results of the current and past frames. For ex-
ample, Yang et al. [48, 49] introduced an online learned CRF model by solving
an energy minimization problem with nonlinear motion patterns and robust ap-
pearance constraints for multi-object tracking. Xiang et al. [47] formulated MOT
as a decision-making problem via a Markov decision process. Choi et al. [7] p-
resented an aggregated local flow descriptor to accurately measure the affinity
between different detection results. Hong et al. [14] proposed a data-association
method to exploit structural motion constraints in the presence of large camera
motion. Sadeghian et al. [34] encoded dependencies across multiple cues over a
temporal window and learned multi-cue representation to compute the similari-
ty scores in a tracking framework. To overcome the influence of noisy detection,
several methods have also been proposed. For example, Shu et al. [36] introduced
a part-based representation under the tracking-by-detection framework to han-
dle partial occlusions. Chu et al. [8] focused on learning a robust appearance
model for each target by using a single object tracker. To address the occlusion
and noisy detection problem, our approach uses a prediction-decision network
to make decisions for online multi-object tracking.

Deep Reinforcement Learning: Deep reinforcement learning has gained
significant successes in various vision applications in recent years, such as ob-
ject detection [25], face recognition [33], image super-resolution [6] and object
search [20]. Current deep reinforcement learning methods can be divided into
two classes: deep Q learning [12, 29, 30, 42] and policy gradient [1, 37, 50]. For
the first class, Q-values are fitted to capture the expected return for taking a
particular action at a particular state. For example, Cao et al. [6] proposed an
attention-aware face hallucination framework with deep reinforcement learning
to sequentially discover attended patches and perform facial part enhancemen-
t by fully exploiting the global interdependency of the image. Rao et al. [33]
proposed a attention-aware deep reinforcement learning method to select key
frames for video face recognition. Kong et al. [20] presented a collaborative deep
reinforcement learning method to localize objects jointly in a few iterations. For
the second class, the distribution of policies is represented explicitly and the
policy is increased by updating the parameters in the gradient direction. Liu et

al. [26] applied a policy gradient method to optimize a variety of captioning
metrics. Yu et al. [50] proposed a sequence generative adversarial nets with pol-
icy gradient. More recently, deep reinforcement learning [15, 16, 39, 51, 53] has
also been employed in visual tracking. For example, Yun et al. [51] proposed
an action-decision network to generate actions to seek the locations and sizes

4 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

Agent 2

Agent 3

Agent 1
Shift

Network

Shift

Network

Shift

Network

Q-Net

Q-Net

Q-Net

block

Update

Ignore

Environment Agent 4

Prediction

frame t+1
Detection

frame t+1

Tracking result

frame t+1

Tracking result

frame t

Agent 2

Agent 3

Agent 1

Decision Network

Prediction Network
Initialize

Fig. 2: The framework of the proposed C-DRL for multi-object tracking. In this
figure, there are three objects at frame t. We first predict the locations of these
three objects at frame t + 1. Then we use a decision network to combine the
prediction and detection results and make decisions for each agent to maximize
their shared utility. For example, Agent 2 is blocked by its neighborhood (Agent
1). Agent 1 updates itself by using the nearest detection result, and Agent 3
ignores the noisy detection. We initialize Agent 4 by using the remaining detec-
tion result in the environment. Lastly we use the locations of each agent as the
tracking results at frame t+ 1

of the objects in a new coming frame. Supancic et al. [39] proposed a decision
policy tracker by using reinforcement learning to decide where to look in the
upcoming frames, and when to re-initialize and update its appearance model for
the tracked object. However, these methods can not be applied to multi-object
tracking directly since they ignore the communication between different objects.
In this work, we propose a collaborative deep reinforcement learning method to
exploit the interactions of different objects for multi-object tracking.

3 Approach

Fig. 2 shows the framework of the proposed C-DRL method for multi-object
tracking, which contains two parts, 1) a prediction network and 2) a decision
network. Given a video and the detection results of different objects at frame
t, we model each object as an agent and predict the locations of objects for
the following frames, and seek the optimal tracked results by considering the
interactions of different agents and environment via the decision network. Lastly,
we take actions to update, delete or initialize agents at frame t+1 according to
decisions. In the following subsections, we will detail the prediction network and
the decision network, respectively.

3.1 Learning of The Prediction Network

Given initial locations of objects, the prediction network aims to learn the move-
ment of objects to predict the locations of the target object. As shown in Fig. 3,

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 5

107*107*3

51*51*96

11*11*256

3*3*512
512 40

552*100
100*4

input

conv1

conv2
conv3

fc4

fc5

fc6

Fig. 3: The framework of the prediction network. The prediction network learns
the movement of the target object given an initial location of the object, which
contains three convolutional layers and three fully connected layers

the inputs to the prediction network are the raw image cropped by the initial
bounding box of the next frame and history trajectories. We randomly sample
bounding boxes b ∈ Bi,t around the location of the object b∗i,t in each frame
in the training videos as the training set to learn the prediction network. The
prediction network takes the (t+1)th frame cropped by the initial location b and
the history trajectories H of the last K frames for position prediction, where
K is set as 10 in our work. We formulate location prediction as the following
regression problem:

argmax
φ

J(φ) =
∑

i,t

∑

b∈Bi,t

g(b∗i,t+1, b+ φ(It, b,Ht)), (1)

where J is the optimization objective function at the top layer of the prediction
network, φ is the parameter set of the network, b∗i,t+1 is the ground truth of the
object pi at frame t + 1, and g(·) denotes the intersection-over-union (IoU) of
two bounding boxes.

g(bi, bj) =
bi ∩ bj

bi ∪ bj
. (2)

3.2 Collaborative Deep Reinforcement Learning

As shown in Fig. 2, the decision network is a collaborative system which con-
tains multiple agents and the environment. Each agent takes actions with the
information from itself, the neighborhoods and the environment, where the inter-
actions between agents and the environment are exploited by maximizing their
shared utility. To make better use of such contextual information, we formulate
multi-object tracking as a collaborative optimization problem.

We consider each object as an agent. Each agent p contains the trajectory
{(x0, y0), (x1, y1), · · · , (xt, yt)}, the appearance feature f , and the current lo-
cation {x, y, w, h}. Hence, the distance between two objects pi and pj can be
computed as follows:

d(pi, pj) = α(1− g(pi, pj)) + (1−
fT
i fj

‖fi‖2‖fj‖2
), (3)

6 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

where g(pi, pj) is the IoU of two bounding boxes, and α ≥ 0.
The environment contains the object detection results: P∗

t = {p∗1, p
∗

2, · · · , p
∗

Nt
}.

The distance between the object pi and the detection results can be computed
as follows:

d(pi, p
∗

j) = α(1− g(pi, p
∗

j)) + (1−
fT
i fj

‖fi‖2‖f∗

j ‖2
). (4)

Let It be the tth frame of the selected video, which contains nt objects, Pt =
{p1, p2, · · · , pnt

}. The state at frame t, st = {Pt,P
∗

t } contains the current agents
and the detection results. For the object pi, we first use a prediction network to
generate the position at frame t + 1. Then, we select the nearest neighborhood
pj ∈ Pt − {pi} and the nearest detection result p∗k ∈ P∗

t+1. Subsequently, we
take these three images as the input to the decision network if d(pj , pi) < τ and
d(p∗k, pi) < τ . If d(pj , pi) ≥ τ or d(p∗k, pi) < τ , we replace it with a zero image.

The object has two different status in each frame: visible or invisible. If
the object is visible, we update the agent with the prediction or the detection
result. If the detection result is reliable, we use both the detection result and
the prediction result. If the detection results is not reliable, we only use the
prediction result. If the object is invisible, the object may be blocked by other
objects or disappears. If the object is blocked, we keep the appearance feature
and only use the movement model to predict the location of the object for the
next frame. If the object disappears, we delete the object directly. Hence, for
each agent, the action set is defined as A = {update, ignore, block, delete}.

For the action update, we use both the prediction and detection results to
update the position of pi and the appearance feature,described as below:

fi = (1− ρ)fi + ρf∗

i , (5)

where ρ is the learning rate of appearance features.
We delete the detection results which are used to update agents features.

For remaining detection results in the environment, we initialize an agent for
each remaining result. For a false detection, the agent is also initialized, but the
reward of the action {update, ignore, block} is set to -1 while the reward of the
action delete is set to 1. Then, the agent is deleted in the next iteration.

For the action ignore, the detection result is not reliable or missing, while
the prediction result is more reliable. We use the prediction result to update the
position of pi.

For the action block, we keep the feature of pi as the object has been blocked
by other objects, and the location is updated according to the prediction result.

For the action delete, the object disappears, and we delete the object pi
directly.

Therefore, the rewards r∗i,t of each action contains two terms: ri,t and rj,t+1,
where ri,t describes its own state in the next frame, and rj,t+1 refers to its nearest
neighborhood state in the next frame. The final rewards can be computed as
follows:

r∗i,t = ri,t + βrj,t+1, (6)

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 7

where β ≥ 0 is the balance parameter.
The ri,t of actions {update, ignore, block} is defined by the IoU of the pre-

diction location with the ground truth in the next frame. If the value of IoU is
too small or the object disappears, ri,t is set to −1.

ri,t =

1 if IoU ≥ 0.7
0 if 0.5 ≤ IoU ≤ 0.7
−1 else

. (7)

The ri,t of the action delete is defined by the states of objects. If the object
disappears in the next frame, ri,t is 1, and otherwise -1.

rdelete =

{

1 if object disappeared
−1 else

. (8)

We compute the Q value of {si,t, ai,t} as follows:

Q(si,t, ai,t) = r∗i,t + γr∗i,t+1 + γ2r∗i,t+2 + · · · , (9)

where γ is the decaying parameter.
The optimization problem of the decision network is formulated as follows:

argmax
θ

L(θ) = Es,a log(π(a|s, θ))Q(s, a), (10)

where θ is the parameter set of the decision network, and the policy gradient
can be computed as follows:

∆θL(θ) =Es,a∆θ log(π(a|s, θ))Q(s, a)

=Es,a

Q(s, a)

π(a|s, θ)
∆θπ(a|s, θ).

(11)

The gradient shows that we can increase the probability of actions which have
positive Q values, and decrease the probability of actions which have negative Q
values. However, in some easy scenes, the Q values of most actions are positive,
while the Q values of all actions are negative in some challenging cases or at the
beginning of the training stage. Hence, the policy gradient network is difficult
to converge. Therefore, we use the advantage value of actions to replace the Q
value, where we first compute the value of the state s as follows:

V (s) =

∑

a p(a|s)Q(s, a)
∑

a p(a|s)
. (12)

Then, the advantage value is computed as follows:

A(s, a) = Q(s, a)− V (s). (13)

The final formulation of the policy gradient is defined as:

L(θ) = Es,a log(π(a|s, θ))A(s, a). (14)

8 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

Algorithm 1 : Learning the Decision Network

Input: Training set: V = {Vi}, and convergence error ǫ1 maximal iterations number
M .

Output: θ

1: Initialize θ;
2: for all l = 1, 2, . . . ,M do

3: Randomly select a video (V);
4: Initialize agents set P using the detection results in 1-st frame
5: for all t = 2, 3, . . . , It do

6: for all p ∈ P do

7: Take actions according to the output of decision networks;
8: Update or delete p according to actions;
9: end for

10: Add p∗i ∈ P∗

11: end for

12: Calculate Lt according to (10);
13: Calculate advantage value A(s, a) for each agent;
14: Update policy network θ according to (15) ;
15: if l > 1 and |Lt − Lt−1| < ǫ1 then

16: Go to return

17: end if

18: end for

19: return θ

The parameter θ can be updated as follows:

θ = θ + ρ
L(θ)

∂θ

= θ + ρEs,a

A(s, a)

π(a|s, θ)

∂π(a|s, θ)

∂θ
. (15)

Algorithm 1 summarizes the detailed learning procedure of our decision
network.

4 Experiments

4.1 Datasets

MOT15: It contains 11 training sequences and 11 testing sequences. For each
testing sequence, we have a training set of similar conditions so that we can learn
our model parameters accordingly. The most challenging sequence in MOT15 is
the AVG-TownCentre in the testing sequences because its frame rate is very low,
and there is no corresponding training sequence.
MOT16: It contains 7 training sequences and 7 testing sequences. Generally,
MOT16 is more challenging than MOT15 because the ground truth annotations
are more accurate (some hard examples are taken into account), the background

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 9

settings are more complex (e.g. with moving cars or captured with a fast moving
camera), and the pedestrians are more crowded so that the occlusion possibility
is increased. The camera motion, camera angle and the imaging conditions vary
largely among different sequences in both datasets.

4.2 Evaluation Metrics

We adopted the widely used CLEAR MOT metrics [4] including multiple ob-
ject tracking precision (MOTP) and multiple object tracking accuracy (MO-
TA) which combine false positives (FP), false negatives (FN) and the identity
switches (ID Sw) to evaluate the effectiveness of different MOT methods. We
also used the metrics defined in [24] which contains the percentage of mostly
tracked targets (MT, the ratio of ground-truth trajectories that is covered by a
track hypothesis for at least 80% of their respective life span), the percentage of
mostly lost targets (ML, the ratio of ground-truth trajectories that are covered
by a track hypothesis for at most 20% of their respective life span), and the time
of a trajectory is fragmented (Frag, interrupted during tracking).

4.3 Implementation Details

Decision Network: Our decision network consists of a feature extraction part
and a decision-making part. We used the part of MDNet [31] which was pre-
trained on ImageNet [9] to extract the feature of each object. The input size
of the network is 3×107×107. It consists of three consecutive convolution layer
(7×7×96, 5×5×256, 3×3×512) and max pooling layer combos (including batch
normalization layers), and finally a fully connected layer to flatten the feature to
a column vector D of size 512×1. We then calculate the position feature P (of
size 4×1) and concatenate D and P to a mixed feature vector W. Having predict-
ed agent1 with feature W1, the agent which is closest to agent1 in the predicted
model is called agent2 with feature W2, and the counterpart agentdet1 with fea-
ture W det

1 for agent1 in the detection of the next frame, and finally agent1 in the
previous frame with feature D

pre
1 . Having concatenated all features, we obtain

the input to the decision-making network (input size: 2060×1). The structure of
the network is relatively simple, we just utilized 3 fully connected layers (with
dropout when training) to reduce the dimension to 4×1, which is corresponding
to these four strategies.

In order to show that our network can learn to make decisions under various
scenarios, we trained the decision network on all training sequences (both from
MOT15 and MOT16) and then evaluate it on all the testing sequences without
further processing. Here we trained the decision network on the training sequence
of MOT15 and MOT16 for 10 epochs (1 epoch loops through all training sets
including both MOT15 and MOT16). We optimized the network with stochastic
gradient descent with weight decay at the rate of 0.0005 and momentum at the
rate of 0.9. We set the learning rate 0.0002 at first 5 epochs and changed it
into 0.0001 for the next 5 epochs. We applied a dynamic batch size strategy,
which means that we obtain each frame and feed all objects in this frame to the

10 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

network as a batch. This process best mimics the real tracking process thus is
good for our network to be utilized to real tracking scenarios.

As for the reinforcement learning hyper-parameters, we firstly set balance
parameter β and discount rate parameter γ to zero to simplify the training phase
and let the decision network converge to a certain reward. Here the reward is
0.637. We then did grid search based on fine tuning the network. As shown in
Fig. 4 that when γ = 0.8 and β = 0.4, we get maximized normalized reward (we
normalize it to [0, 1]), so we set the hyper-parameters as above.

Prediction Network: We extracted all positive examples from the all train-
ing sequences from the datasets. In order to simulate noisy situations, we merged
the information of detections and ground truth annotations, and computed the
IoU of the detection bounding boxes and ground truth bounding boxes. If
IoU > 0.5, the detection is valid and we put the detection into our dataset;
otherwise, we treated the detection as a false positive and discard it. Therefore,
we combined the detection and ground truth information when training the shift
network. Our prediction network shares the same feature extraction part with
the C-DRL network. Having obtained the feature vector D, we concatenated it
with H10(x, y, h, w), which is the trajectory of the past 10 frames of the target.
We trained the network for 20 epochs with a batch size of 20. We selected s-
tochastic gradient descend with a learning rate of 0.002 and weight decay at the
rate of 0.0005 and the momentum at the rate of 0.95. We halved the learning
rate every 5 epochs. Our tracking system was implemented under the MATLAB
2015b platform with the MatConvNet [43] toolbox.

1
0.8

0.6

Beta

0.4
0.2

00

0.2

0.4

Gamma

0.6

0.8

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

1

N
or

m
al

iz
ed

 R
ew

ar
d

Fig. 4: The average normalized re-
wards versus different β and γ on
the MOT15 training dataset

THRESH Rcll FP FN IDs MOTA MOTAL

1 83.1 81.7 6598 481 63 64

2 83.0 83.3 6673 440 65 66

3 82.8 83.9 6742 411 65 66

4 82.5 84.6 6837 380 66 67

5 82.3 85.2 6929 359 67 68

6 82.1 85.6 7003 348 67 68

7 81.8 86.1 7142 329 67 68

8 81.4 86.4 7292 307 67 68

9 81.0 86.7 7448 293 67 68

Table 1: Performance of our method un-
der different inter-frame relation thresh-
olds

4.4 Ablation Studies

We conducted ablation studies on MOT the SubCNN detection of MOT15 train-
ing set which was provided in [47].

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 11

Table 2: Ablation studies of different settings
Method Rcll Prcn GT MT ML FP FN IDs MOTA MOTP MOTAL

OB 81.4 86.4 458 293 66 4995 7292 307 67.8 85.2 68.6

DN → HA 83.2 78.3 458 317 31 9042 6562 2048 54.9 84.4 60.1

PN → VM 83.1 81.7 458 317 31 7296 6620 453 63.3 84.7 64.4

MD → HIST 81.8 84.7 458 304 35 5772 7121 463 65.9 85.2 67.1

Influences of the Inter-frame Relation: We changed the consecutive
frame information in our network to investigate how it affects the performance.
Our method automatically wipes out the agents of relatively short continuous
appearing time, which has been utilized in the training stage of our C-DRL
network (e.g. when an agent is lost for a certain number of frames, our method
gives the command to pop it out and renews the weights in that direction). We
set the threshold from 1 to 9. From Table 1, we see that when more inter-frame
information is utilized, more constraints to our agents can be included, so that
the noisy detection results can be well eliminated in our model. We also notice
that as our FP goes up, our FN falls as well, which is a trade-off between the
precision and recall. Since MOTA seems to be saturated after THRESH ≥ 8,
setting THRESH to be 8 is a good choice for optimizing MOTA.

Influences of decision network: We set inter-frame threshold to 8 from
the conclusion of previous part. Our original baseline (OB) is our full pipeline
without modification. We replaced our decision network with vanilla Hungarian
algorithm and fixed all other parameters (DN → HA). We find that the overall
performance of the whole system falls drastically according to 2. Especially, the
FP almost doubles and the IDs increases by an order of magnitude. Our deci-
sion network effectively wipes out false positives and id switches by conducting
appropriate actions.

Influences of prediction network: We replaced our prediction network
with velocity model method (PN → VM). We predict the position of each agent
by using the trace of them. In other words, we model the instant velocity of agents
by using their previous movement. According to our experiment result showed
in Table 2, the performance gets worse as well. As the movement of pedestrians
in MOT15 training set is relatively smooth and slow, there are rarely edge cases
like turning or running. As a result, the performance is not bad. However, our
original pipeline is still able to give more precise position prediction.

Influences of MDNet feature: We replaced the MDNet part of our de-
cision and the prediction networks with simple color histogram feature (PN →
VM) and then feed them to the fully-connected layers. This time, the perfor-
mance downgrade is slight, which means our reinforcement learning method is
robust to different feature representations. However, more delicate and informa-
tive feature is a boost.

We could easily see the advantage of our decision network and the effective-
ness of prediction network. As our decision network apparently enhances the
performance by a large margin, thats the core part of our whole system.

12 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

Fig. 5: Some tracking results on the MOT15 and MOT16 public detections, where
the trajectory of each object has been painted from the first frame in the same
color as its bounding box

Table 3: The performance of different methods on MOT15
Mode Method MOTA↑ MOTP↑ FAF↓ MT(%)↑ ML(%)↓ FP↓ FN↓

Offline

LINF1 [10] 24.5 71.3 1.0 5.5 64.6 5864 40207
LP SSVM [44] 25.2 71.7 1.4 5.8 53.0 8369 36932
MHT DAM [18] 32.4 71.8 1.6 16.0 43.8 9064 32060

NMOT [7] 33.7 71.9 1.3 12.2 44.0 7762 32547
QuadMOT [38] 33.8 73.4 1.4 12.9 36.9 7898 32061
JointMC [17] 35.6 71.9 1.8 23.2 39.3 10580 28508

Online

SCEA [14] 29.1 71.1 1.0 8.9 47.3 6060 36912
MDP [47] 30.3 71.3 1.7 13.0 38.4 9717 32422

CDA DDALpb [2] 32.8 70.7 0.9 9.7 42.2 4983 35690
AMIR15 [34] 37.6 71.7 1.4 15.8 26.8 7933 29397

Ours 37.1 71.0 1.2 14.0 31.3 7036 30440

4.5 Evaluations on MOT15

Comparison with State-of-the-arts: For a fair comparison, we used the
public detection results on MOT15 and MOT16. Sampled results are showed
in Fig. 5. As shown in Table 3, our method outperforms most state-of-the-art
trackers on MOT15 under the MOTA metric, which is one of the most important
and persuasive metrics in multi-object tracking. Our method is also comparable
with AMIR15 [34]. Moreover, we obtained the best FN among all online meth-
ods, which indicates that our method is able to recover detections effectively.
We noticed that some methods such as LINF1 [10] can obtain relatively high
performance on FP and ID Sw. However, it sacrifices lots of hard examples,
which leads to a bad FN performance. Our method also outperforms all offline
methods (e.g. they have access to all frames regardless of the time order so that
they get far more information than an online one), which indicates that our net-
work can well learn contextual information via the deep reinforcement learning
framework.

4.6 Evaluations on MOT16

Comparison with State-of-the-arts:As shown in Table 4, our method achieved
the best MOTA result among all online MOT methods and is comparable to the

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 13

Table 4: The performance of different methods on MOT16
Mode Method MOTA↑ MOTP↑ FAF↓ MT(%)↑ ML(%)↓ FP↓ FN↓

Offline

TBD [11] 33.7 76.5 1.0 7.2 54.2 5804 112587
LTTSC-CRF [21] 37.6 75.9 2.0 9.6 55.2 11969 101343

LINF1 [10] 41.0 74.8 1.3 11.6 51.3 7896 99224
MHT DAM 16 [18] 45.8 76.3 1.1 16.2 43.2 6412 91758

NOMT [7] 46.4 76.7 1.6 18.3 41.4 9753 87565
NLLMPa [23] 47.6 78.5 1.0 17.0 40.4 5844 89093
LMP [41] 48.8 79.0 1.1 18.2 40.1 6654 86245

Online
OVBT [3] 38.4 75.4 1.9 7.5 47.3 11517 99463

EAMTT pub [35] 38.8 75.1 1.4 7.9 49.1 8114 102452
CDA DDALv2 [2] 43.9 74.7 1.1 10.7 44.4 6450 95175

AMIR [34] 47.2 75.8 0.5 14.0 41.6 2681 92856
Ours 47.3 74.6 1.1 17.4 39.9 6375 88543

best offline methods such as LMP [41] and FWT [13]. In terms of MT and ML,
our method also achieves the best performance among all online methods, which
indicates that our method can keep track of relatively more objects than other
methods under complex environments. Since the detection results of MOT16 are
more accurate, our decision network and prediction network can learn more right
behaviors and decrease the possibility of losing objects. Another observation is
that our method obtains the best FN performance among all online methods,
which is because our method recovers some missing objects that were missed in
the detector via the decision network. Since the public detector does not cov-
er all positive samples in MOT16, the rates of FN are naturally high for all
methods. However, our method addresses this decently. We see that our method
outperforms these offline methods by a large margin, which shows that the ef-
fectiveness of the decision network where collaborative interaction maximizing
the utilization of contextual information is effectively exploited to enhance the
generalization ability of our network. Also, our FP gets the second place among
both online and offline methods, which means our method has strong ability to
eliminate false positives exist in the detection results. In Fig. 6 (a) the top image
shows the provided public detection results which contain multiple detections of
same people. However, in the tracking result below, our method successfully
eliminate those redundant detections.

Failure Cases: Fig. 6 (b) shows some failure examples of our method . For
the first row, we could see that when people walk by each other, it is easy for
them to switch their ids. For example the woman in white is initially in blue
box, however the blue box moves to the man in blue in the next frames. For the
second row, we could see that when occlusion lasts for long time, the reappeared
person would be assigned with a new id (i.e. A bounding box with a new color
in our picture). For instance, the man in white is initially in yellow box and he
is hidden by another one in the second frame. When he reappears in the third
frame, he is in a newly assigned yellow box. Our method has a relatively high
ID switch and Frag (actually these two metrics are closely correlated) on both

14 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

(a) (b)

Fig. 6: (a) False positives eliminating (b) ID switch problems

the MOT15 and MOT16 datasets, which indicates that our decision network is
sometimes over-cautious when there are some changes on conditions. In such
scenarios, our method will assign the object a new ID label. For the memory
optimization, we keep the object in our model for several frames (where we
set 2 in our experiments) if it got lost at a certain frame. For some videos of
high sampling rates, the object lost for relatively more frames due to occlusion
and this also caused ID switch as well. However, this can be relieved by saving
the feature of possibly disappeared objects in our model for longer frames and
training the network with more similar sequences so that the network can better
utilize dynamic information. Another reason is that when two or more objects
move to each other, both their position and appearance feature are extremely
similar, which poses large challenges for MOT trackers.

5 Conclusion

In this paper, we have proposed a collaborative deep reinforcement learning
method for multi-object tracking. Specifically, we have employed a prediction-
network to estimate the location of objects in the next frame, and used deep
reinforcement learning to combine the prediction results and detection results
and make decisions of state updates to overcome the occlusion and the missed
or false detection. Experimental results on both the challenging MOT15 and
MOT16 benchmarks are presented to show the effectiveness of our approach.
How to apply our method to camera-network multi-object tracking seems to be
an interesting future work.

Acknowledgement

This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2017YFA0700802, in part by the National
Natural Science Foundation of China under Grant 61672306, Grant U1713214,
Grant 61572271, and in part by supported by NSFC under Grant No.61429201,
in part to Dr. Qi Tian by ARO grant W911NF-15-1-0290 and Faculty Research
Gift Awards by NEC Laboratories of America and Blippar.

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 15

References

1. Ammar, H.B., Eaton, E., Ruvolo, P., Taylor, M.: Online multi-task learning for
policy gradient methods. In: ICML. pp. 1206–1214 (2014)

2. Bae, S.H., Yoon, K.J.: Confidence-based data association and discriminative deep
appearance learning for robust online multi-object tracking. TPAMI (2017)

3. Ban, Y., Ba, S., Alameda-Pineda, X., Horaud, R.: Tracking multiple persons based
on a variational bayesian model. In: ECCV. pp. 52–67 (2016)

4. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance:
the clear mot metrics. EURASIP 2008(1), 246309 (2008)

5. Butt, A.A., Collins, R.T.: Multi-target tracking by lagrangian relaxation to min-
cost network flow. In: CVPR. pp. 1846–1853 (2013)

6. Cao, Q., Lin, L., Shi, Y., Liang, X., Li, G.: Attention-aware face hallucination via
deep reinforcement learning. In: CVPR. pp. 690–698 (2017)

7. Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor.
In: ICCV. pp. 3029–3037 (2015)

8. Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., Yu, N.: Online multi-object track-
ing using cnn-based single object tracker with spatial-temporal attention mecha-
nism. In: ICCV. pp. 4836–4845 (2017)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255 (2009)

10. Fagot-Bouquet, L., Audigier, R., Dhome, Y., Lerasle, F.: Improving multi-frame
data association with sparse representations for robust near-online multi-object
tracking. In: ECCV. pp. 774–790 (2016)

11. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3d traffic scene under-
standing from movable platforms. TPAMI 36(5), 1012–1025 (2014)

12. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with
model-based acceleration. In: ICML. pp. 2829–2838 (2016)

13. Henschel, R., Leal-Taixé, L., Cremers, D., Rosenhahn, B.: Improvements to frank-
wolfe optimization for multi-detector multi-object tracking. arXiv preprint arX-
iv:1705.08314 (2017)

14. Hong Yoon, J., Lee, C.R., Yang, M.H., Yoon, K.J.: Online multi-object tracking
via structural constraint event aggregation. In: CVPR. pp. 1392–1400 (2016)

15. Huang, C., Lucey, S., Ramanan, D.: Learning policies for adaptive tracking with
deep feature cascades. In: ICCV. pp. 105–114 (2017)

16. Kamalapurkar, R., Andrews, L., Walters, P., Dixon, W.E.: Model-based reinforce-
ment learning for infinite-horizon approximate optimal tracking. TNNLS 28(3),
753–758 (2017)

17. Keuper, M., Tang, S., Zhongjie, Y., Andres, B., Brox, T., Schiele, B.: A multi-cut
formulation for joint segmentation and tracking of multiple objects. arXiv preprint
arXiv:1607.06317 (2016)

18. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited.
In: ICCV. pp. 4696–4704 (2015)

19. Kim, D.Y., Jeon, M.: Data fusion of radar and image measurements for multi-
object tracking via kalman filtering. Information Sciences 278, 641–652 (2014)

20. Kong, X., Xin, B., Wang, Y., Hua, G.: Collaborative deep reinforcement learning
for joint object search. In: CVPR. pp. 1695–1704 (2017)

21. Le, N., Heili, A., Odobez, J.M.: Long-term time-sensitive costs for crf-based track-
ing by detection. In: ECCV. pp. 43–51 (2016)

16 Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian,Jie Zhou

22. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: Motchallenge 2015:
Towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942
(2015)

23. Levinkov, E., Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother,
C., Brox, T., Schiele, B., Andres, B.: Joint graph decomposition & node labeling:
Problem, algorithms, applications. In: CVPR. pp. 6012–6020 (2017)

24. Li, Y., Huang, C., Nevatia, R.: Learning to associate: Hybridboosted multi-target
tracker for crowded scene. In: CVPR. pp. 2953–2960 (2009)

25. Liang, X., Lee, L., Xing, E.P.: Deep variation-structured reinforcement learning
for visual relationship and attribute detection. arXiv preprint arXiv:1703.03054
(2017)

26. Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Optimization of image
description metrics using policy gradient methods. arXiv preprint arXiv:1612.00370
(2016)

27. Maksai, A., Wang, X., Fleuret, F., Fua, P.: Non-markovian globally consistent
multi-object tracking. In: ICCV. pp. 2544–2554 (2017)

28. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: A benchmark
for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

29. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

30. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

31. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. In: CVPR. pp. 4293–4302 (2016)

32. Okuma, K., Taleghani, A., De Freitas, N., Little, J.J., Lowe, D.G.: A boosted
particle filter: Multitarget detection and tracking. In: ECCV. pp. 28–39 (2004)

33. Rao, Y., Lu, J., Zhou, J.: Attention-aware deep reinforcement learning for video
face recognition. In: ICCV. pp. 3931–3940 (2017)

34. Sadeghian, A., Alahi, A., Savarese, S.: Tracking the untrackable: Learning to track
multiple cues with long-term dependencies. arXiv preprint arXiv:1701.01909 (2017)

35. Sanchez-Matilla, R., Poiesi, F., Cavallaro, A.: Multi-target tracking with strong
and weak detections. In: ECCVW. vol. 5, p. 18 (2016)

36. Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person
tracking with partial occlusion handling. In: CVPR. pp. 1815–1821 (2012)

37. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deter-
ministic policy gradient algorithms. In: ICML. pp. 387–395 (2014)

38. Son, J., Baek, M., Cho, M., Han, B.: Multi-object tracking with quadruplet con-
volutional neural networks. In: ICCV. pp. 5620–5629 (2017)

39. Supancic, III, J., Ramanan, D.: Tracking as online decision-making: Learning a
policy from streaming videos with reinforcement learning. In: ICCV. pp. 322–331
(2017)

40. Tang, S., Andres, B., Andriluka, M., Schiele, B.: Multi-person tracking by multicut
and deep matching. In: ECCV. pp. 100–111 (2016)

41. Tang, S., Andriluka, M., Andres, B., Schiele, B.: Multiple people tracking by lifted
multicut and person reidentification. In: ICCV. pp. 3539–3548 (2017)

42. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: AAAI. pp. 2094–2100 (2016)

43. Vedaldi, A., Lenc, K.: Matconvnet: Convolutional neural networks for matlab. In:
ACMMM. pp. 689–692 (2015)

Collaborative Deep Reinforcement Learning for Multi-Object Tracking 17

44. Wang, S., Fowlkes, C.C.: Learning optimal parameters for multi-target tracking
with contextual interactions. IJCV 122(3), 484–501 (2017)

45. Wen, L., Lei, Z., Lyu, S., Li, S.Z., Yang, M.H.: Exploiting hierarchical dense struc-
tures on hypergraphs for multi-object tracking. TPAMI 38(10), 1983–1996 (2016)

46. Wu, Z., Thangali, A., Sclaroff, S., Betke, M.: Coupling detection and data associ-
ation for multiple object tracking. In: CVPR. pp. 1948–1955 (2012)

47. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking
by decision making. In: ICCV. pp. 4705–4713 (2015)

48. Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion
patterns and robust appearance models. In: CVPR. pp. 1918–1925 (2012)

49. Yang, B., Nevatia, R.: An online learned crf model for multi-target tracking. In:
CVPR. pp. 2034–2041 (2012)

50. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: Sequence generative adversarial nets
with policy gradient. In: AAAI. pp. 2852–2858 (2017)

51. Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J.: Action-decision networks for
visual tracking with deep reinforcement learning. In: CVPR. pp. 2711–2720 (2017)

52. Zamir, A.R., Dehghan, A., Shah, M.: Gmcp-tracker: Global multi-object tracking
using generalized minimum clique graphs. In: ECCV, pp. 343–356 (2012)

53. Zhang, D., Maei, H., Wang, X., Wang, Y.F.: Deep reinforcement learning for visual
object tracking in videos. arXiv preprint arXiv:1701.08936 (2017)

54. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking
using network flows. In: CVPR. pp. 1–8 (2008)

