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Abstract. Human motion prediction, forecasting human motion in a
few milliseconds conditioning on a historical 3D skeleton sequence, is a
long-standing problem in computer vision and robotic vision. Existing
forecasting algorithms rely on extensive annotated motion capture data
and are brittle to novel actions. This paper addresses the problem of
few-shot human motion prediction, in the spirit of the recent progress
on few-shot learning and meta-learning. More precisely, our approach is
based on the insight that having a good generalization from few examples
relies on both a generic initial model and an effective strategy for adapt-
ing this model to novel tasks. To accomplish this, we propose proactive
and adaptive meta-learning (PAML) that introduces a novel combina-
tion of model-agnostic meta-learning and model regression networks and
unifies them into an integrated, end-to-end framework. By doing so, our
meta-learner produces a generic initial model through aggregating con-
textual information from a variety of prediction tasks, while effectively
adapting this model for use as a task-specific one by leveraging learning-
to-learn knowledge about how to transform few-shot model parameters
to many-shot model parameters. The resulting PAML predictor model
significantly improves the prediction performance on the heavily bench-
marked H3.6M dataset in the small-sample size regime.
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1 Introduction

One of the hallmarks of human intelligence is the ability to predict the future
based on past observations. Through perceiving and forecasting how the envi-
ronment evolves and how a fellow human acts, a human learns to interact with
the world [60]. Remarkably, humans acquire such a prediction ability from just
a few experiences, which is yet generalizable across different scenarios [50]. Sim-
ilarly, to allow natural and effective interaction with humans, artificial agents
(e.g., robots) should be able to do the same, i.e., forecasting how a human moves
or acts in the near future conditioning on a series of historical movements [29].
As a more concrete example illustrated in Figure 1, when deployed in natural
environments, robots are supposed to predict unfamiliar actions after seeing only
a few examples [27, 20]. While human motion prediction has attracted increasing



2 Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, José M. F. Moura
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Fig. 1. Illustration of the importance of few-shot human motion prediction as a first
step towards seamless human-robot interaction and collaboration. In real-world sce-
narios, the prediction typically happens in an on-line, streaming manner with limited
training data. Specifically, a robot has acquired a general-purpose prediction ability,
e.g., through learning on several known action classes using our meta-learning approach.
The robot is then deployed in a natural environment. Now a person performs certain
never-before-seen action, e.g., greeting, while the robot is watching (Fig. (a)). The per-
son then stops, and the robot has no sensory inputs, which is illustrated by blinding
its eyes with a sheet of paper (Fig. (b)). The robot adapts the generic initial model for
use as a task-specific predictor model, predicts the future motion of the person, and
performs or demonstrates it in a human-like, realistic way (Figs. (c) and (d)).

attention [16, 26, 32, 9, 19], the existing approaches rely on extensive annotated
motion capture (mocap) data and are brittle to novel actions.

We believe that the significant gap between human and machine prediction
arises from two issues. First, motion dynamics are difficult to model because they
entangle physical constraints with goal-directed behaviors [32]. Beyond some
action classes (e.g., walking) [8, 22], it is challenging to generate sophisticated
physical models for general types of motion [42]. Second, there exists a lack
of large-scale, annotated motion data. Current mocap datasets are constructed
with dedicated sensored environments and so are not scalable. This motivates the
exploration of motion models learned from limited training data. Unfortunately,
a substantial amount of annotated data is required for the state-of-the-art deep
recurrent encoder-decoder network based models [16, 26, 32, 18, 4, 19] to learn
the desired motion dynamics. One stark evidence of this is that a constant pose
predictor [32], as a näıve approach that does not produce interesting motion,
sometimes achieves the best performance. An attractive solution is learning a
“basis” of underlying knowledge that is shared across a wide variety of action
classes, including never-before-seen actions. This can be in principle achieved
by transfer learning [38, 3, 44, 68] in a way that fine-tunes a pre-trained network
from another task which has more labeled data; nevertheless, the benefit of pre-
training decreases as the source task diverges from the target task [70].

Here we make the first attempt towards few-shot human motion prediction.
Inspired by the recent progress on few-shot learning and meta-learning [58, 47, 61,
66, 14], we propose a general meta-learning framework — proactive and adaptive
meta-learning (PAML), which can be applied to human motion prediction. Our
key insight is that having a good generalization from few examples relies on
both a generic initial model and an effective strategy for adapting this model to
novel tasks. We then introduce a novel combination of the state-of-the-art model-
agnostic meta-learning (MAML) [14] and model regression networks (MRN) [66,
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69], and unify them into an integrated, end-to-end framework. MAML enables
the meta-learner to aggregate contextual information from various prediction
tasks and thus produces a generic model initialization, while MRN allows the
meta-learner to adapt a few-shot model and thus improves its generalization.

More concretely, a beneficial common initialization would serve as a good
point to start training for a novel action being considered. This can be accom-
plished by explicitly learning the initial parameters of a predictor model in a way
that the model has maximal performance on a new task after the parameters
have been updated with a few training examples from that new task. Hence, we
make use of MAML [14], which initializes the weights of a network such that
standard stochastic gradient descent (SGD) can make rapid progress on a new
task. We learn this initialization through a meta-learning procedure that learns
from a large set of motion prediction tasks with small amounts of data. After
obtaining the pre-trained model, MAML uses one or few SGD updates to adapt
it to a novel task. Although the initial model is somewhat generic, plain SGD up-
dates can only slightly modify its parameters [68] especially in the small-sample
size regime; otherwise, it would lead to severe over-fitting to the new data [23].
This is still far from satisfactory, because the obtained task-specific model is
different from the one that would be learned from a large set of samples.

To address this limitation, we consider meta-learning approaches that learn
an update function or learning rule. Specifically, we leverage MRN [66, 69] as the
adaptation strategy, which describes a method for learning from small datasets
through estimating a generic model transformation. That is, MRN learns a meta-
level network that operates on the space of model parameters, which is trained
to regress many-shot model parameters (trained on large datasets) from few-
shot model parameters (trained on small datasets). While MRN was developed
in the context of convolutional neural networks, we extend it to recurrent neural
networks. By unifying MAML with MRN, our resulting PAML model is not
only directly initialized to produce the desired parameters that are useful for
later adaptation, but it can also be effectively adapted to novel actions through
exploiting the structure of model parameters shared across action classes.

Our contributions are three-fold. (1) To the best of our knowledge, this
is the first time the few-shot learning problem for human motion prediction has
been explored. We show how meta-learning can be operationalized for such a
task. (2) We present a novel meta-learning approach, combining MAML with
MRN, that jointly learns a generic model initialization and an effective model
adaptation strategy. Our approach is general and can be applied to different
tasks. (3) We show how our approach significantly facilitates the prediction of
novel actions from few examples on the challenging mocap H3.6M dataset [25].

2 Related Work

Human motion prediction has great application potential in computer vision and
robotic vision, including human-robot interaction and collaboration [29], motion
generation for computer graphics [30], action anticipation [28, 24], and proactive
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decision-making in autonomous driving systems [37]. It is typically addressed by
state-space equations and latent-variable models. Traditional approaches focus
on hidden Markov models [7], linear dynamic models [41], Gaussian process
latent variable models [62, 59], bilinear spatio-temporal basis models [1], and
restricted Boltzmann machines [54, 53, 52, 55]. In the deep learning era, recurrent
neural networks (RNNs) based approaches have attracted more attention and
significantly pushed the state of the art [16, 26, 18, 32, 19].

Flagship techniques include LSTM-3LR and ERD [16], SRNNs [26], and
residual sup. [32]. LSTM-3LR (3-layer long short-term memory network) learns
pose representation and temporal dynamics simultaneously via curriculum learn-
ing [16]. In additional to the concatenated LSTM units as in LSTM-3LR, ERD
(encoder-recurrent-decoder) further introduces non-linear space encoders for data
pre-processing [16]. SRNNs (structural RNNs) model human activity with a
hand-designed spatio-temporal graph and introduce the encoded semantic knowl-
edge into recurrent networks [26]. These approaches fail to consider the shared
knowledge across action classes and they thus learn action-specific models and
restrict the training process on the corresponding subsets of the mocap dataset.
Residual sup. is a simple sequence-to-sequence architecture with a residual con-
nection, which incorporates the action class information via one-hot vectors [32].
Despite their promise, these existing methods directly learn on the target task
with large amounts of training data and cannot generalize well from a few ex-
amples or to novel action classes. There has been little work on few-shot motion
prediction as ours, which is crucial for robot learning in practice. Our task is also
significantly different from few-shot imitation learning: while this line of work
aims to learn and mimic human motion from demonstration [39, 15, 11, 71], our
goal is to predict unseen future motion based on historical observations.

Few-shot or low-shot learning has long stood as one of the unsolved funda-
mental problems and been addressed from different perspectives [56, 13, 63, 45,
64, 66, 21, 65, 61, 14, 17, 67]. Our approach falls more into a classic yet recently
renovated class of approaches, termed as meta-learning that frames few-shot
learning itself as a “learning-to-learn” problem [57, 58, 47]. The idea is to use
the common knowledge captured among a set of few-shot learning tasks during
meta-training for a novel few-shot learning problem, in a way that (1) accu-
mulates statistics over the training set using RNNs [61], memory-augmented
networks [45], or multilayer perceptrons [12], (2) produces a generic network ini-
tialization [14, 36, 65], (3) embeds examples into a universal feature space [51],
(4) estimates the model parameters that would be learned from a large dataset
using a few novel class examples [6] or from a small dataset model [66, 69], (5)
modifies the weights of one network using another [48, 46, 49], and (6) learns to
optimize through a learned update rule instead of hand-designed SGD [2, 31, 43].

Often, these prior approaches are developed with image classification in mind,
and cannot be easily re-purposed to handle different model architectures or read-
ily applicable to other domains such as human motion prediction. Moreover, they
aim to either obtain a better model initialization [14, 36, 65] or learn an update
function or learning rule [48, 5, 2, 43, 66], but not both. By contrast, we present a
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unified view by taking these two aspects into consideration and show how they
complement each other in an end-to-end meta-learning framework. Our approach
is also general and can be applied to other tasks as well.

3 Proactive and Adaptive Meta-Learning

We now present our meta-learning framework for few-shot human motion pre-
diction. The predictor (i.e., learner) is a recurrent encoder-decoder network,
which frames motion prediction as a sequence-to-sequence problem. To enable
the predictor to rapidly produce satisfactory prediction from just a few train-
ing sequences for a novel task (i.e., action class), we introduce proactive and
adaptive meta-learning (PAML). Through meta-learning from a large collection
of few-shot prediction tasks on known action classes, PAML jointly learns a
generic model initialization and an effective model adaptation strategy.

3.1 Meta-Learning Setup for Human Motion Prediction

Human motion is typically represented as sequential data. Given a historical
motion sequence, we predict possible motion in the short-term or long-term
future. In few-shot motion prediction, we aim to train a predictor model that
can quickly adapt to a new task using only a few training sequences. To achieve
this, we introduce a meta-learning mechanism that treats entire prediction tasks
as training examples. During meta-learning, the predictor is trained on a set
of prediction tasks guided by a high-level meta-learner, such that the trained
predictor can accomplish the desired few-shot adaptation ability.

The predictor (i.e., learner), represented by a parametrized function Pθ with
parameters θ, maps an input historical sequence X to an output future sequence
Ŷ. We denote the input motion sequence of length n as X =

{
x1,x2, . . . ,xn

}
,

where xi ∈ R
d, i = 1, . . . , n is a mocap vector consisting of a set of 3D body

joint angles [35], and d is the number of joint angles. The learner predicts the
future sequence Ŷ =

{
x̂n+1, x̂n+2, . . . , x̂n+m

}
in the next m timesteps, where x̂j ∈

R
d, j = n+ 1, . . . , n+m is the predicted mocap vector at the j-th timestep. The

groundtruth of the future sequence is denoted as Ygt =
{
xn+1,xn+2, . . . ,xn+m

}
.

During meta-learning, we are interested in training a learning procedure (i.e.,
the meta-learner) that enables the predictor model to adapt to a large number of
prediction tasks. For the k-shot prediction task, each task T = {L,Dtrain,Dtest}

aims to predict a certain action from a few (k) examples. It consists of a loss
function L, a small training set Dtrain =

{(
Xu,Y

gt
u

)}
, u = 1, . . . , k with k action-

specific past and future sequence pairs, and a test set Dtest that has a set number
of past and future sequence pairs for evaluation. A frame-wise Euclidean distance
is commonly used as the loss function L for motion prediction. For each task,
the meta-learner takes Dtrain as input and produces a predictor (i.e., learner)
that achieves high average prediction performance on its corresponding Dtest.

More precisely, we consider a distribution p (T ) over prediction tasks that we
want our predictor to be able to adapt to. Meta-learning algorithms have two
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phases: meta-training and meta-test. During meta-training, a prediction task Ti
is sampled from p (T ), and the predictor P is trained on its corresponding small
training set Dtrain with the loss LTi

from Ti. The predictor is then improved
by considering how the test error on the corresponding test set Dtest changes
with respect to the parameters. This test error serves as the training error of
the meta-learning process. During meta-test, a held-out set of prediction tasks
drawn from p (T ) (i.e., novel action classes), each with its own small training set
Dtrain and test set Dtest, is used to evaluate the performance of the predictor.

3.2 Learner: Encoder-Decoder Architecture

We use the state-of-the-art recurrent encoder-decoder network based motion
predictor in [32] as our learner P. The encoder and decoder consist of GRU
(gated recurrent unit) [10] cells as building blocks. The input sequence is passed
through the encoder to infer a latent representation. This latent representation
and a seed motion frame are then fed into the decoder to output the first timestep
prediction. The decoder takes its own output as the next timestep input and
generates further prediction sequentially. Different from [32], to deal with novel
action classes, we do not use one-hot vectors to indicate the action class.

3.3 Proactive Meta-Learner: Generic Model Initialization

Intuitively, if we have a universal predictor that is broadly applicable to a variety
of tasks in p (T ) instead of a specific task, it would serve as a good point to start
training for a novel target task. We explicitly learn such a general-purpose initial
model by using model-agnostic meta-learning (MAML) [14]. MAML is developed
for gradient-based learning rules (e.g., SGD) and aims to learn a model in a way
that a few SGD updates can make rapid progress on a new task.

Concretely, when adapting to a new task Ti, the initial parameters θ of the
predictor become θ′i. In MAML, this is computed using one or more SGD updates
on Dtrain of task Ti. For the sake of simplicity and without loss of generality, we
consider one SGD update:

θ′i = θ − α∇θLTi
(Pθ) , (1)

where α is the learning rate hyper-parameter. We optimize θ such that the
updated θ′i will produce maximal performance on Dtest of task Ti. When averaged
across the tasks sampled from p (T ), we have the meta-objective function:

min
θ

∑

Ti∼p(T )

LTi

(
Pθ′

i

)
= min

θ

∑

Ti∼p(T )

LTi

(
Pθ−α∇θLTi

(Pθ)

)
. (2)

Note that the meta-optimization is performed over the predictor parameters
θ, whereas the objective is computed using the updated parameters θ′. This
meta-optimization across tasks is performed via SGD in the form of

θ ← θ − β∇θ

∑

Ti∼p(T )

LTi

(
Pθ′

i

)
, (3)
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where β is the meta-learning rate hyper-parameter. During each iteration, we
sample task mini-batch from p (T ) and perform the corresponding learner update
in Eqn. (1) and meta-learner update in Eqn. (3).

3.4 Adaptive Meta-Learner: Model Adaptation Strategy

In MAML, the model parameters θ′i of a new task Ti are obtained by performing
a few plain SGD updates on top of the initial θ using its small training set Dtrain.
After meta-training, θ tend to be generic. However, with limited training data
from Dtrain, SGD updates can only modify θ slightly, which is still far from the
desired θ∗i that would be learned from a large set of target samples. Higher-level
knowledge is thus necessary to guide the model adaptation to novel tasks.

In fact, during meta-training, for each of the known action classes, we have
a large training set of annotated sequences, and we sample from this original
large set to generate few-shot training sequences. Note that for the novel classes
during meta-test, there are no large annotated training sets. Such a setup —
meta-learners are trained by sampling small training sets from a large universe of
annotated examples — is common in few-shot image classification through meta-
learning [61, 66, 14, 21]. While the previous approaches (e.g., MAML) only use
this original large set for sampling few-shot training sets, we explicitly leverage it
and learn the corresponding many-shot model θ∗i for Ti. During sampling, if some
tasks are sampled from the same action class, while they have their own few-shot
training sequences, these tasks correspond to the same θ∗i of that action class. We
then use model regression networks (MRN) [66, 69] as the adaptation strategy.
MRN is developed in image classification scenarios and obtains learning-to-learn
knowledge about a generic transformation from few-shot to many-shot models.

Let θ0i denote the model parameters learned from Dtrain by using SGD (i.e.,
θ′i in Eqn. (1)). Let θ∗i denote the underlying model parameters learned from a
large set of annotated samples. We aim to make the updated θ′i as close as to the
desired θ∗i . MRN assumes that there exists a generic non-linear transformation,
represented by a regression function Hφ parameterized by φ in the model pa-
rameter space, such that θ∗i ≈ Hφ

(
θ0i
)
for a broad range of tasks Ti. The square

of the Euclidean distance is used as the regression loss. We then estimate Hφ

based on a large set of known tasks Ti drawn from p (T ) during meta-training:

min
φ

∑

Ti∼p(T )

∥∥Hφ

(
θ0i
)
− θ∗i

∥∥2
2
. (4)

Consistent with [66], we use multilayer feed-forward networks as H.

3.5 An Integrated Framework

We introduce the adaptation strategy in both the meta-training and meta-test
phases. For task Ti, after performing a few SGD updates on small training set
Dtrain, we then apply the transformation H to obtain θ′i. Eqn. (1) is modified as

θ′i = Hφ (θ − α∇θLTi
(Pθ)) . (5)
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Algorithm 1: PAML Meta-Training for k-Shot Human Motion Prediction

Require: Learner: motion predictor model Pθ with parameters θ;
MRN adaptation meta-network: Hφ with parameters φ

Require: p(T ): distribution over prediction tasks
Require: α, β, γ: learning or meta-learning rate hyper-parameters;

λ: trade-off hyper-parameter
1 Randomly initialize θ and φ

2 while not done do

3 Sample batch of tasks Ti ∼ p (T )
4 for all Ti do
5 Learn (or retrieve) θ∗i from the original large set of annotated past and

future sequence pairs of the corresponding action class
6 Sample k action-specific past and future sequence pairs

Dtrain =
{(

Xu,Y
gt
u

)}
, u = 1, . . . , k from Ti

7 Evaluate LTi
(Pθ) on Dtrain

8 Compute adapted parameters using Eqn. (5), i.e., performing SGD
updates then applying adaptation H: θ′i = Hφ (θ − α∇θLTi

(Pθ))
9 Sample Dtest =

{(
Xv,Y

gt
v

)}
from Ti for the meta-update

10 Evaluate L̃Ti

(
Pθ′

i

)
= LTi

(
Pθ′

i

)
+ 1

2
λ ‖θ′i − θ∗i ‖

2
2 on Dtest using Eqn. (6)

11 end for

12 Update θ and φ by performing SGD:

13 θ ← θ − β∇θ

∑
Ti∼p(T ) L̃Ti

(
Pθ′

i

)
, φ← φ− γ∇φ

∑
Ti∼p(T ) L̃Ti

(
Pθ′

i

)

14 end while

During meta-training, for task Ti, we also have the underlying parameters
θ∗i , which are obtained by performing SGD updates on the corresponding large
sample set. Now, the meta-objective in Eqn. (2) becomes

min
θ,φ

∑

Ti∼p(T )

L̃Ti

(
Pθ′

i

)
= min

θ,φ

∑

Ti∼p(T )

LTi

(
Pθ′

i

)
+

1

2
λ ‖θ′i − θ∗i ‖

2
2 , (6)

where λ is the trade-off hyper-parameter. This is a joint optimization with re-
spect to both θ and φ, and we perform the meta-optimization across tasks using
SGD, as shown in Algorithm 1. Hence, we integrate both model initialization and
adaptation into an end-to-end meta-learning framework. The model is initialized
to produce the parameters that are optimal for its adaptation; meanwhile, the
model is adapted by leveraging “learning-to-learn” knowledge about the rela-
tionship between few-shot and many-shot models. During meta-test, for a novel
prediction task, with the learned generic model initialization θ and model adap-
tation Hφ, we use Eqn. (5) to obtain the task-specific predictor model.

4 Experimental Evaluation

In this section, we explore the use of our proactive and adaptive meta-learning
(PAML). PAML is general and can be in principle applied to a broad range
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Table 1. Performance sanity check of our approach by comparing with some state-of-
the-art meta-learning approaches to few-shot image classification on the widely used
mini-ImageNet dataset. Our PAML outperforms these baselines, showing its general
effectiveness for few-shot learning

Method
5-Way Accuracy

1-shot 5-shot

Matching Networks [61] 43.56%± 0.84% 55.31%± 0.73%
MAML [14] 48.70%± 1.84% 63.11%± 0.92%

Meta-Learner LSTM [43] 43.44%± 0.77% 60.60%± 0.71%
Prototypical Networks [51] 46.61%± 0.78% 65.77%± 0.70%

Meta Networks [34] 49.21%± 0.96% −−

PAML (Ours) 53.26%± 0.52% 68.19%± 0.61%

of few-shot learning tasks. For performance calibration, we begin with a sanity
check of our approach on a standard few-shot image classification task and com-
pare with existing meta-learning approaches. We then focus on our main task of
human motion prediction. Through comparing with the state-of-the-art motion
prediction approaches, we show that PAML significantly improves the prediction
performance in the small-sample size regime.

4.1 Sanity Check on Few-Shot Image Classification

The majority of the existing few-shot learning and meta-learning approaches are
developed in the scenario of classification tasks. As a sanity check, the first ques-
tion is how our meta-learning approach compares with these prior techniques.
For a fair comparison, we evaluate on the standard few-shot image classification
task. The most common setup is an N -way, k-shot classification that aims to
classify data into N classes when we only have a small number (k) of labeled in-
stances per class for training. The loss function is the cross-entropy error between
the predicted and true labels. Following [61, 43, 51, 14, 34, 33], we evaluate on the
most widely used mini-ImageNet benchmark. It consists of 64 meta-training and
24 meta-test classes, with 600 images of size 84× 84 per class.

During meta-training, each task is sampled as an N -way, k-shot classification
problem: we first randomly sample N classes from the meta-training classes; for
each class, we randomly sample k and 1 examples to form the training and
test set, respectively. During meta-test, we report performance on the unseen
classes from the meta-test classes. We use the convolutional network in [14]
as the classifier (i.e., learner). Our model adaptation meta-network is a 2-layer
fully-connected network with Leaky ReLU nonlinearity.

Table 1 summarizes the performance comparisons in the standard 5-way,
1-/5-shot setting. Our PAML consistently outperforms all the baselines. In par-
ticular, there is a notable 5% performance improvement compared with MAML,
showing the complementary benefits of our model adaptation strategy. This san-
ity check verifies the effectiveness of our meta-learning framework. Moreover,
some of these existing methods, such as matching networks [61] and prototypi-



10 Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, José M. F. Moura

cal networks [51], are designed with few-shot classification in mind, and are not
readily applicable to other domains such as human motion prediction.

4.2 Few-Shot Human Motion Prediction

We now focus on using our meta-learning approach for human motion prediction.
To the best of our knowledge, we are the first ones that explore the few-shot
learning problem for human motion prediction. Due to the lack of published
protocols, we propose our evaluation protocol for this task.

Dataset.We evaluate on Human 3.6M (H3.6M) [25], a heavily benchmarked,
large-scale mocap dataset that has been widely used in human motion analy-
sis. H3.6M contains seven actors performing 15 varied actions. Following the
standard experimental setup in [16, 26, 32], we down-sample the dataset by two,
train on six subjects, and test on subject five. Each action contains hours of
video from these actors performing such activity. Sequence clips are randomly
taken from the training and test videos to construct the corresponding training
and test sequences [26]. Given the past 50 mocap frames (2 seconds in total), we
forecast the future 10 frames (400ms in total) in short-term prediction and the
future 25 frames (1 second in total) in long-term prediction.

Few-shot learning task and meta-learning setup. We use 11 action
classes for meta-training: directions, greeting, phoning, posing, purchases, sit-
ting, sitting down, taking photo, waiting, walking dog, and walking together.
And we use the remaining 4 action classes for meta-test: walking, eating, smok-
ing, and discussion. These four actions are commonly used to evaluate motion
prediction algorithms [16, 26, 32]. The k-shot motion prediction task which we
address is: for a certain action, given a small collection of k action-specific past
and future sequence pairs, we aim to learn a predictor model so that it is able
to predict the possible future motion for a new past sequence from that action.
Accordingly, the setup of k-shot prediction tasks in meta-learning is as follows.
During meta-training, for each task, we randomly select one action out of 11,
and we sample k action-specific sequence pairs as Dtrain. During meta-test, for
each of the 4 novel actions, we sample k sequence pairs from its training set to
produce the small set Dtrain. We then adapt our meta-learned predictor for use
as the target action-specific predictor. We evaluate it on the corresponding test
set. We run five trials for each action and report the average performance.

Implementation details. In our experiments, the predictor is residual sup.,
the state-of-the-art encoder-decoder network for motion prediction [32]. For the
encoder and decoder, we use a single GRU cell [10] with hidden size 1,024,
respectively. Following [32], we use tied weights between the encoder and decoder.
We use fully-connected networks with Leaky ReLU nonlinearity as our model
adaptation meta-networks. In most cases, k is set as 5 and we also evaluate how
performance changes when k varies. By cross-validation, the trade-off hyper-
parameter λ is set as 0.1, the learning rate α is set as 0.05, and the meta-
learning rates β and γ are set as 0.0005. For the predictor, we clip the gradient
to a maximum ℓ2-norm of 5. We run 10, 000 iterations during meta-training. We
use PyTorch [40] to train our model.
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Table 2.Mean angle error comparisons between our PAML and variants of the state-of-
the-art residual sup. [32] on the 4 novel actions of H3.6M for k = 5-shot human motion
prediction. Our PAML consistently and significantly outperforms all the baselines. In
particular, it is superior to the multi-task learning and transfer learning baselines on
all the actions across different time horizons

Walking Eating

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Scratchspec 1.90 1.95 2.16 2.18 1.99 2.00 2.33 2.31 2.30 2.30 2.31 2.34
residual sup. [32] w/ Scratchagn 1.78 1.89 2.20 2.23 2.02 2.05 2.27 2.16 2.18 2.27 2.25 2.31

(Baselines) Transferots 0.60 0.75 0.88 0.93 1.03 1.26 0.57 0.70 0.91 1.04 1.19 1.58
Multi-task 0.57 0.71 0.79 0.85 0.96 1.12 0.59 0.68 0.83 0.93 1.12 1.33
Transferft 0.44 0.55 0.85 0.95 0.74 1.03 0.61 0.65 0.74 0.78 0.86 1.19

Meta-learning (Ours) PAML 0.35 0.47 0.70 0.82 0.80 0.83 0.36 0.52 0.65 0.70 0.71 0.79

Smoking Discussion

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Scratchspec 2.88 2.86 2.85 2.83 2.80 2.99 3.01 3.13 3.12 2.95 2.62 2.99
residual sup. [32] w/ Scratchagn 2.53 2.61 2.67 2.65 2.71 2.73 2.77 2.79 2.82 2.73 2.82 2.76

(Baselines) Transferots 0.70 0.84 1.18 1.23 1.38 2.02 0.58 0.86 1.12 1.18 1.54 2.02
Multi-task 0.71 0.79 1.09 1.20 1.25 1.23 0.53 0.82 1.02 1.17 1.33 1.97
Transferft 0.87 1.02 1.25 1.30 1.45 2.06 0.57 0.82 1.11 1.11 1.37 2.08

Meta-learning (Ours) PAML 0.39 0.66 0.81 1.01 1.03 1.01 0.41 0.71 1.01 1.02 1.09 1.12

Baselines. For a fair comparison, we compare with residual sup. [32], which
is the same predictor as ours but is not meta-learned. In particular, we evaluate
its variants in the small-sample size regime and consider learning both action-
specific and action-agnostic models in the following scenarios.

– Action-specific training from scratch: for each of the 4 target actions,
we learn an action-specific predictor from its k training sequences pairs.

– Action-agnostic training from scratch: we learn a single predictor for
the 4 target actions from all their training sequence pairs.

– Off-the-shelf transfer: we learn a single predictor for the 11 meta-training
actions from their large amounts of training sequence pairs, and directly use
this predictor for the 4 target actions without modification.

– Multi-task learning: we learn a single predictor for all the 15 actions from
large amounts of training sequence pairs of the 11 meta-training actions and
k sequence pairs per action of the 4 target actions.

– Fine-tuning transfer: after learning a single predictor for the 11 meta-
training actions from their large amounts of training sequence pairs, we fine-
tune it to be an action-specific predictor for each of the 4 target actions,
respectively, using its k training sequence pairs.

Evaluation metrics. We evaluate our approach both quantitatively and
qualitatively. For the quantitative evaluation, we use the standard metric —
mean square error between the predicted motion and the groundtruth motion
in the angle space [16, 26, 32]. Following the preprocessing in [54, 32], we exclude
the translation and rotation of the whole body. We also qualitatively visualize
the prediction frame by frame.
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Comparison with the state-of-the-art approaches. Table 2 shows the
quantitative comparisons between our PAML and a variety of variants of resid-
ual sup. While residual sup. has achieved impressive performance with a large
amount of annotated mocap sequences [32], its prediction significantly degrades
in the small-sample size regime. As expected, directly training the predictor
from a few examples leads to poor performance (i.e., with the angle error in
range 2 ∼ 3), due to severe over-fitting. In such scenarios of training from
scratch, learning an action-agnostic model is slightly better than learning an
action-specific one (e.g., decreasing the angle error by 0.1 at 80ms for walking),
since the former allows the predictor to exploit some common motion regu-
larities from multiple actions. By transferring knowledge from relevant actions
with large sets of samples in a more principled manner, the prediction perfor-
mance is slightly improved. This is achieved by multi-task learning, e.g., training
an action-agnostic predictor using both the 11 source and 4 target actions, or
transfer learning, e.g., first training an action-agnostic predictor using the source
actions, and then using it either in an off-the-shelf manner or through fine-tuning.

However, modeling multiple actions is more challenging than modeling each
action separately, due to the significant diversity of different actions. The perfor-
mance improvement of these multi-task learning and transfer learning baselines
is limited and their performance is also comparably low. This thus demonstrates
the general difficulty of our few-shot motion prediction task. By contrast, our
PAML consistently and significantly outperforms all the baselines on all the
actions across different time horizons, showing the effectiveness of our meta-
learning mechanism. There is even a noticeable performance boost for the com-
plicated motion (e.g., decreasing the angle error by 0.3 at 80ms for smoking).
By explicitly learning from a large number of few-shot prediction tasks dur-
ing meta-training, PAML is able to extract and leverage knowledge shared both
across different actions and across multiple few-shot prediction tasks, thus im-
proving the prediction of novel actions from a few examples by a large margin.

Moreover, as mentioned before, most of the current meta-learning approaches,
such as matching networks [61] and prototypical networks [51], are developed for
the simple tasks like image classification with task-specific model architectures
(e.g., learning an embedding space that is useful for nearest neighbor or proto-
type classifiers), which are not readily applicable to our problem. Unlike them,
our approach is general and can be effectively used across a broad range of tasks,
as shown in Table 1 and Table 2. Figure 2 further visualizes our prediction and
compares with one of the top performing baselines. From Figure 2, we can see
that our PAML generates lower-error, more smooth, and realistic prediction.

Ablation studies. In Table 3 and Table 4 we evaluate the contributions of
different factors in our approach to the results.

Model initialization vs. model adaptation. Our meta-learning approach con-
sists of two components: a generic model initialization and an effective model
adaptation meta-network. In Table 3, we can see that each component by itself
is superior to the baselines reported in Table 2 in almost all the scenarios. This
shows that meta-learning, in general, by leveraging shared knowledge across



Few-Shot Human Motion Prediction via Meta-Learning 13

… …

… …

… …

0 1s
Smoking

… …

… …

… …

0
Discussion

1s

Fig. 2. Visualizations for k = 5-shot motion prediction on smoking and discussion.
Top: the input sequence and the groundtruth of the prediction sequence. Middle: multi-
task learning of residual sup. [32], one of the top performing baselines. Bottom: our
prediction results. The groundtruth and the input sequences are shown in black, and
the predictions are shown in color. Our PAML produces more smooth and human-like
prediction. Best viewed in color with zoom.

Table 3. Ablation on model initialization vs. adaptation. Each component by itself
outperforms the fine-tuning baseline. Our full model achieves the best performance

Walking Eating

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Top baseline Transferft 0.44 0.55 0.85 0.95 0.74 1.03 0.61 0.65 0.74 0.78 0.86 1.19

Meta-learning (Ours)
PAML w/ init 0.40 0.51 0.76 0.86 0.89 0.92 0.49 0.55 0.68 0.74 0.77 0.94
PAML w/ adapt 0.39 0.52 0.73 0.86 0.90 0.93 0.50 0.59 0.73 0.76 0.81 0.92
full PAML 0.35 0.47 0.70 0.82 0.80 0.83 0.36 0.52 0.65 0.70 0.71 0.79

Smoking Discussion

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Top baseline Transferft 0.87 1.02 1.25 1.30 1.45 2.06 0.57 0.82 1.11 1.11 1.37 2.08

Meta-learning (Ours)
PAML w/ init 0.53 0.72 0.95 1.07 1.11 1.18 0.54 0.77 1.02 1.07 1.36 1.55
PAML w/ adapt 0.58 0.79 0.86 1.03 1.09 1.12 0.47 0.79 1.12 1.15 1.16 1.26
full PAML 0.39 0.66 0.81 1.01 1.03 1.01 0.41 0.71 1.01 1.02 1.09 1.12

relevant tasks, enables us to deal with a novel task in a sample-efficient way.
Moreover, our full PAML model consistently outperforms its variants, showing
the complementarity of each component. This verifies the importance of simul-
taneously learning a generic initial model and an effective adaptation strategy.

Structure of H. In Table 4 we compare different implementations of the model
adaptation meta-network H: as a simple affine transformation, or as networks
with 2 ∼ 4 layers. Since Leaky ReLU is used in [66], we try both ReLU and Leaky
ReLU as activation function in the hidden layers. The results show that 3-layer
fully-connected networks with Leaky ReLU achieve the best performance.

Impact of training sample sizes. In the previous experiments, we focused
on a fixed k = 5-shot motion prediction task. To test how our meta-learning
approach benefits from more training sequences, we evaluate the performance
change with respect to the sample size k. Figure 3 summarizes the comparisons
with fine-tuning transfer, one of the top performing baselines reported in Table 2,
when k varies from 1 to 100 at 80ms. As a reference, we also include the oracle
performance, which is the residual sup. baseline trained on the entire training set
of the target action (i.e., with thousands of annotated sequence pairs). Figure 3
shows that our approach consistently outperforms fine-tuning and improves its
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Table 4. Ablation on the structure of H. We vary the number of fully-connected layers
and try ReLU and Leaky ReLU as activation function. The results show that “3-layer,
Leaky ReLU” works best, but in general H is robust to specific implementation choices

Walking

milliseconds 80 160 320 400 560 1000

PAML w/ 1-layer, None 0.39 0.54 0.73 0.86 0.85 0.91
PAML w/ 2-layer, ReLU 0.39 0.51 0.75 0.85 0.86 0.92
PAML w/ 2-layer, Leaky ReLU 0.38 0.48 0.74 0.83 0.88 0.91
PAML w/ 3-layer, ReLU 0.37 0.50 0.71 0.82 0.83 0.88
PAML w/ 3-layer, Leaky ReLU 0.35 0.47 0.70 0.82 0.80 0.83

PAML w/ 4-layer, ReLU 0.37 0.51 0.72 0.86 0.83 0.90
PAML w/ 4-layer, Leaky ReLU 0.36 0.49 0.73 0.83 0.83 0.89
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Fig. 3. Impact of the training sample size k for k-shot motion prediction. We compare
our PAML with fine-tuning transfer of residual sup. [32], one of the top performing
baselines. As a reference, we also include the oracle performance, which is residual
sup. trained from thousands of annotated sequence pairs. X-axis: number of training
sequence pairs k per task. Y-axis: mean angle error. Ours consistently outperforms fine-
tuning and with only 100 sequences, it achieves the performance close to the oracle.

performance with more and more training sequences. Interestingly, through our
meta-learning mechanism, with only 100 sequences, we achieve the performance
that is close to the oracle trained from thousands of sequences.

5 Conclusions

In this work we have formulated a novel problem of few-shot human motion
prediction and proposed a conceptually simple but powerful approach to address
this problem. Our key insight is to jointly learn a generic model initialization
and an effective model adaptation strategy through meta-learning. To do so, we
utilize a novel combination of model-agnostic meta-learning and model regression
networks, two meta-learning approaches that have complementary strengths,
and unify them into an integrated, end-to-end framework. As a sanity check,
we demonstrate that our approach significantly outperforms existing techniques
on the most widely benchmarked few-shot image classification task. We then
present the state-of-the-art results on few-shot human motion prediction.
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