
Efficient Sliding Window Computation for

NN-Based Template Matching

Lior Talker1, Yael Moses2, Ilan Shimshoni1

1 The University of Haifa, Israel
ltalke01@campus.haifa.ac.il, ishimshoni@mis.haifa.ac.il

2 The Interdisciplinary Center, Israel
yael@idc.ac.il

Abstract. Template matching is a fundamental problem in computer
vision, with many applications. Existing methods use sliding window
computation for choosing an image-window that best matches the tem-
plate. For classic algorithms based on sum of square differences, sum of
absolute differences and normalized cross-correlation, efficient algorithms
have been developed allowing them to run in real-time. Current state of
the art algorithms are based on nearest neighbor (NN) matching of small
patches within the template to patches in the image. These algorithms
yield state-of-the-art results since they can deal better with changes in
appearance, viewpoint, illumination, non-rigid transformations, and oc-
clusion. However, NN-based algorithms are relatively slow not only due
to NN computation for each image patch, but also since their sliding
window computation is inefficient. We therefore propose in this paper
an efficient NN-based algorithm. Its accuracy is similar (in some cases
slightly better) than the existing algorithms and its running time is 43-
200 times faster depending on the sizes of the images and templates used.
The main contribution of our method is an algorithm for incrementally
computing the score of each image window based on the score computed
for the previous window. This is in contrast to computing the score for
each image window independently, as in previous NN-based methods.
The complexity of our method is therefore O(|I|) instead of O(|I||T |),
where |I| and |T | are the sizes of the image and the template respectively.

1 Introduction

Template matching is a fundamental problem in computer vision, with applica-
tions such as object tracking, object detection and image stitching. The template
is a small image and the goal is to detect it in a target image. The challenge is to
do so, despite template-image variations caused by changes in the appearance,
occlusions, rigid and non-rigid transformations.

Given a template we would like to find an image window that contains the
same object as the template. Ideally, we would like to find a correct dense cor-
respondence between the image window and the template, where correct cor-
respondence reflects two views of the same world point. In practice, due to
template-image variations this may be difficult to obtain and computationally

2 Lior Talker, Yael Moses, Ilan Shimshoni

expensive. To overcome these challenges, Bradski et al. [9] proposed to collect
evidence based on nearest neighbors (NNs) that a given image window contains
the same object as the template. In this paper, we follow the same paradigm.

The state-of-the-art algorithms [9,13] compute a matching score for each win-
dow of the template size, using a näıve sliding window procedure. The location
with the highest score is the result. This is computationally expensive, since the
score is computed independently for each window in the image. For an image of
size |I| and a template of size |T |, the running time complexity is O(|I||T |). For a
small image of size 480×320 and a 50×50 template, the running time (in C++)
of the current state-of-the-art algorithm [13] is about one second and for larger
images of size 1280×720 and a 200×300 template, it takes ∼ 78 seconds. Thus,
even though these NN-based algorithms produce state of the art results, their
efficiency should be improved in order for them to be used in practice. The main
challenge addressed in this paper is to develop an efficient algorithm for running
NN-based methods that consider also geometric deformations.

Our matching score between a template, T , and an image window, τ , is
inspired by the one suggested in [13]. However, our algorithm requires only O(|I|)
operations, which is a fraction of the running time of [13]. It also marginally
improves the accuracy of [13]. Consider, for example, a typical image I of size
1000× 1000, a template T of size 100× 100, and a SSD score. In this example,
O(|I||T |) ≈ 1010 operations are required, while in our method it is in the order
of O(|I|) ≈ 106.

Our score function, called the Deformable Image Weighted Unpopularity
(DIWU), is inspired by the Deformable Diversity Similarity (DDIS) score intro-
duced in [13]. Both scores are based on nearest neighbor (NN) patch-matching
between each patch in the image window and the template’s patches. The score
of an image window is a simple sum of the scores of its pixels. A pixel score
consists of the unpopularity measure of its NN, as well as the relative location
of the patch in the candidate image window with respect to location of the NN
patch in the template. The unpopularity for a pixel in DIWU is defined by the
number of (other) pixels in the entire image that choose the same NN as the
pixel, while in DDIS only pixels in τ are considered. Moreover, the deformation
measure in DIWU is based on the L1 distance while in DDIS it is based on
the L2 distance. These modifications of DDIS allow us to develop our efficient
iterative sliding window algorithm for computing the DIWU score, which also
marginally improve the DDIS results.

The main technical contribution of our method3 is the efficient computation
of the DIWU on all possible candidate windows of size |T | of I. The DIWU on a
single window τ , can be obtained by a sum of scores that are computed separately
for each row and each column of τ . This reduces the problem of computing the
score of a 2D window to the problem of computing a set of 1D scores. The score of
the window is then obtained using efficient 1D rolling summation. We propose
an iterative algorithm for computing the 1D scores of successive windows in

3 A C++ code (and a Matlab wrapper) for our method is publicly available at http:
//liortalker.wixsite.com/liortalker/code.

http://liortalker.wixsite.com/liortalker/code
http://liortalker.wixsite.com/liortalker/code

Efficient Sliding Window Computation for NN-Based Template Matching 3

only O(1) steps. The algorithm requires an O(|I|) initialization. As a result, we
obtain the desired overall complexity of O(|I|) instead of the original complexity
of O(|I||T |). We tested our method on two large and challenging datasets and
obtained respective runtime speedups of about 43× and 200×.

The rest of the paper is organized as follows. After reviewing related work,
we present the DDIS score and our new DIWU score in Sec. 3. Then the efficient
algorithm for computing DIWU is presented in Sec. 4, and the experiments in
Sec. 5. We conclude and propose possible extensions in Sec. 6.

2 Related Work

Since the literature on template matching is vast and the term “template match-
ing” is used for several different problems, we limit our review to template match-
ing where both the template and the image are 2D RGB images. We are inter-
ested in “same instance” template matching, where the object instance that
appears in the template also appears in the image. A comprehensive review of
template matching is given in [10].

The most common approaches to template matching are the Sum of Squared
Differences (SSD), the Sum of Absolute Differences (SAD), and the Normalized
Cross-Correlation (NCC), which are very sensitive to deformations or extreme
rigid transformations. Other approaches aim to model the transformation be-
tween the template and the same object in the image, e.g., using an affine trans-
formation [19,5,14]. In many cases these methods perform well, but they often
fail in the presence of occlusions, clutter, and complex non-rigid transformations.

Although deep convolutional neural networks (deep CNNs) have revolution-
ized the computer vision field (as well as other fields), we are not aware of any
work that has used them for template matching (as defined in this paper) de-
spite their success in similar problems. For example, the authors of [6] proposed
a window ranking algorithm based on deep CNNs and used it to assist a simple
classic template matching algorithm. Similarly, the authors of [11] proposed to
use deep CNNs to rule out parts of the image that probably do not match the
template. While deep CNN based patch matching algorithms [17,18] might be
used for template matching, their goal is to match similar patches (as in stereo
matching); hence, they are trained on simple, small changes in patch appear-
ance. In contrast, we consider templates of any size that may undergo extreme
changes in appearance, e.g., deformations. Finally, deep CNN based methods for
visual object tracking [1,4] do match a template, however, usually for specific
object classes known a priori. More importantly, they use video as input, which
provides temporal information we do not assume to be available.

Object localization methods such as Deformable Parts Models (DPM) [3] are
based on efficient template matching of object parts using the generalized dis-
tance transform. However, the root part (e.g., torso in people) still needs to be
exhaustively matched as a template, after which the other parts are efficiently
aligned with it. An efficient sliding window object detection method proposed
in [15] bears some resemblance to our method. The spatial coherency between

4 Lior Talker, Yael Moses, Ilan Shimshoni

windows is exploited to incrementally update local histograms. Since the win-
dow score is computed using the local histogram, a pixel is assigned with the
same score in different windows. This is in contrast to our method, where the
deformation score for a pixel is different in different windows.

The works most closely related to ours are [9,13], the latter of which obtains
state-of-the-art results and inspired our method. We discuss these methods and
the diffrences from our approach in the next sections.

3 Basic Method

The input to our method is an n×m image I and a w×h template T . Our goal is
to detect a w×h image window τ that is most similar to the template object. A
score S(τi) for each candidate image window τi that reflects the quality of this
match is defined. A sliding window procedure is used to consider all possible
image windows, and the one with the highest score is our output.

As in [9,13], the score S(τ) is defined based on a nearest neighbor compu-
tation performed once for each pixel in I. We denote the nearest neighbor of a
pixel p ∈ I by Nr(p), where the patch around the pixel Nr(p) ∈ T is the most
similar to the patch around p ∈ I. In our implementation we used the FLANN
library [8] for efficient approximate nearest neighbor computation. It was used
on two different descriptors: 3× 3 patches of RGB, and deep features computed
using the VGG net [12].

A score cτ (p) ideally reflects the confidence that Nr(p) ∈ T is the correct
match of p ∈ τ . (We use cτ since the score of p may be window dependent.) The
score S(τ) of the entire window is the sum of cτ (p) values over all p ∈ τ :

S(τ) =
∑

p∈τ

cτ (p). (1)

The challenge is therefore to define the confidence score cτ (p) for p ∈ τ , such
that S(τ) not only reflects the quality of the match between τ and T but can
also be computed efficiently for all candidate windows τ ∈ I.

3.1 Previous Scores

In [9] the confidence that p ∈ τ found a correct match Nr(p) ∈ T is defined
to be high if p is also the NN of Nr(p) in τ (dubbed “best-buddies”). In [13]
this confidence is defined by the window-popularity of q = Nr(p) as a nearest
neighbor of other pixels p′ ∈ τ . Formally, the window-popularity of q ∈ T is
defined by:

ατ (q) = |{p | p ∈ τ & Nr(p) = q}|, (2)

and the confidence score of a pixel p ∈ τ is given by:

cτ
DIS

(p) = e−ατ (Nr(p)). (3)

Thus, a pixel match is more reliable if its popularity is lower.

Efficient Sliding Window Computation for NN-Based Template Matching 5

To improve robustness, the spatial configuration of the matched pixels is
incorporated into the score. The modified score, cτ

DDIS
(p), reflects the alignment

of p’s location in τ and q’s location in T (q = Nr(p)). Formally, the spatial
location of p ∈ τ is defined by pτ = p − oτ , where oτ is the upper left pixel
of τ in I. The misalignment of pτ and q = Nr(p) is defined in [13] using the L2

distance:

aτ
L2
(p) =

1

1 + ||pτ − q||2
. (4)

The confidence of a pixel p is then given by

cτ
DDIS

(p) = aτ
L2
(p)cτ

DIS
(p). (5)

Efficiency: While the NNs are computed only once for each pixel in the image,
the values aτ

L2
(p) and cτ

DIS
(p) are window dependent. Thus, the computation of

SDIS(τ) and SDDIS(τ) for each window τ requires O(|T |) operations. Computing
the score independently for all windows in I requires O(|I||T |) operations.

3.2 Image Based Unpopularity: The IWU Score

We focus on improving the efficiency of [13], while preserving its accuracy. We
do so by modifying the cτ

DIS
and cτ

DDIS
to obtain new scores cIWU and cτ

DIWU
.

The window score, computed using these scores, can be efficiently computed for
all the windows in I (Sec. 4).

The window-based popularity of q ∈ T (Eq. 2), is modified to an image-
based popularity measure. That is, we consider the set of pixels from the entire
image (rather than only pixels in τ) for which q is their NN. The image-based
popularity is given by:

α(q) = |{p | p ∈ I & Nr(p) = q}|. (6)

If α(Nr(p)) is high, it is unlikely that the correspondence between p and Nr(p)
is correct. Thus, the confidence score of a pixel p is defined by:

cIWU(p) = e−α(Nr(p)). (7)

One can argue whether α(q) or ατ (q) best defines the popularity that should
be used for the matching confidence. Our initial motivation was computational
efficiency, as we describe below. However, experiments demonstrate that IWU is
also slightly more accurate than the DIS while much more efficient to compute
(Sec. 5).

There is a subtle difference between IWU and DIS in their response to a
template that contains an object that is repeated many times in the image, e.g.,
windows. Since IWU weights each patch in the context of the entire image, its
score is lower than DIS’s, which considers only the window context. We argue
that it is theoretically beneficial to suppress the score of repeated structures. In
practice, however, this difference is rarely reflected in the final output (see Fig. 1
in the supplemental material.)

6 Lior Talker, Yael Moses, Ilan Shimshoni

Efficiency: The values α(q) and cIWU(p) (Eq. 6 & 7) are independent of the
window τ , and therefore computed only once for each pixel in I. The results is
the CIWU matrix. To obtain the final score of a single window, we need to sum
all its elements in CIWU . Computing the scores for all the windows is done in two
steps. For each row in the image we compute the sum of 1D windows using the
following rolling summation method. Given the sum of a previous 1D window,
one element is subtracted (i.e., the one that is not in the current window) and
one element is added (i.e., the one that is not in the previous window). On the
result of this step a 1D rolling summation is applied on the columns yielding the
final result. The complexity of both steps is O(|I|).

3.3 Deformation: The DIWU Score

We follow [13] and improve the robustness of the cIWU by using a misalignment
score. For the sake of efficiency, we use the misalignment in the x and the y
components separately, as in the L1 distance, instead of the L2 distance used
in Eq. 3. Our alignment scores for q = Nr(p) are defined by:

aτx(p) = e−|qx−pτ
x|, aτy(p) = e−|qy−pτ

y |. (8)

Let the confidence cτ
D
(p) be given by cτ

D
(p) = aτx(p)+aτy(p). The outcome of this

definition is that the score S(τ) that uses cτ (p) = cτD(p) can be separated into
two scores, Sx

D(τ) and Sy
D(τ), as follows:

SD(τ) =
∑

pτ∈τ

(aτx(p) + aτy(p)) =
∑

pτ∈τ

aτx(p) +
∑

pτ∈τ

aτy(p) = Sx
D(τ) + Sy

D(τ). (9)

The spatial alignment score can be combined with the confidence IWU score
(Sec. 3.2) to reflect both the popularity and the spatial configuration. Hence,

cτ
DIWU

(p) = aτx(p)cIWU(p) + aτy(p)cIWU(p) = cτ,x
DIWU

(p) + cτ,y
DIWU

(p). (10)

Here again the final score can be separated into the sum of two scores:

SDU (τ) =
∑

pτ∈τ

cτ
DIWU

(p) = Sx
DU (τ) + Sy

DU (τ). (11)

The DIWU score is similar to the DDIS score and a similar accuracy is obtained.
We next present an algorithm for computing the DIWU score efficiently.

4 Efficient Algorithm

In this section we propose our main technical contribution – an algorithm for
efficient computation of SDU (τi) for all candidate windows in I. A näıve sliding
window computation requires O(|I||T |) operations, as for computing the DDIS
score in [13]. We cannot use a näıve rolling sum algorithm as in Sec. 3.2, since
the confidence cτ

IWU
(p) is window dependent. Our algorithm iteratively computes

Efficient Sliding Window Computation for NN-Based Template Matching 7

Fig. 1. Illustration of γi(p) in the 1D case. T and I are the template and the image,
respectively. The lines between their pixels represents the NN. Two successive image
windows, τ5 and τ6, are marked on the image, and the γi(p) for each of their pixels are
presented on the right.

SDU (τi) for each τ in only O(|I|). The NN is computed once for each pixel in I.
In addition to CIWU , we store two 2D matrices of size n×m, Qx and Qy. The
matrices Qx and Qy consist of the coordinates of the NN. That is, for q = Nr(p),
Qx(p) = qx and Qy(p) = qy. The CIWU (p) consists of the unpopularity of
q = Nr(p). For ease of exposition, we first consider the 1D case and then we
extend it to the 2D case.

4.1 1D Case

Let T be a 1×w template and I be a 1×n image. In this case a pixel p and Nr(j)
have a single index, 1 ≤ p ≤ n and 1 ≤ Nr(j) ≤ w. The image windows
are given by {τi}

n−w
i=1 , where τi = (i, . . . , i + w − 1). We first compute Sx

D(τi)
and then extend it to Sx

DU (τi), defined in Eq. 9 and Eq. 11. That is, we use
cτDIWU (p) = aτx(p) and then we use cτDIWU (p) = aτx(p)cIWU(p).

Our goal is to iteratively compute Sx
D(τi+1) given Sx

D(τi), after initially com-
puting Sx

D(τ1). This should be done using a fixed small number of operations
that are independent of w.

The alignment score in the 1D case is given by aτix (j) = e−|γi(j)|, where
γi(j) = Nr(j) − (j − i) is the displacement between j and Nr(j) with respect
to τi (see Fig. 1). The score of τi is then given by:

S(τi) =
∑

j∈τi

e−|γi(j)| =
∑

j∈τi
γi(j)≥0

e−|γi(j)|+
∑

j∈τi
γi(j)<0

e−|γi(j)| = A+
x (τi)+A−

x (τi), (12)

where A+
x (τi) and A−

x (τi) are the sums of the alignments for non-negative and
negative values of γi, respectively. It is therefore sufficient to show how to iter-
atively update A+

x (τi) and A−
x (τi).

Let us first consider the alignment score of a pixel in the intersection of two
successive windows, j ∈ τi ∩ τi+1. The score depends on the considered window.
Since the image window τi+1 is a one-pixel shift relative to τi, it follows that

8 Lior Talker, Yael Moses, Ilan Shimshoni

γi+1(j) = Nr(j)− (j − (i+ 1)) = γi(j) + 1. In particular it follows that:

e−|γi+1(j)| =

{

e−1e−|γi(j)| γi(j) ≥ 0

e · e−|γi(j)| γi(j) < 0
. (13)

We next present an iterative algorithm to update A+
x (τi+1) and A−

x (τi+1)
efficiently given A+

x (τi) and A−
x (τi). The following five steps are performed to

obtain the updated A+
x (τi+1) and A−

x (τi+1).

1. Set A−
x (τi+1) = A−

x (τi) and A+
x (τi+1) = A+

x (τi).
2. The pixel i is in τi but not in τi+1. Moreover, we have γi(i) ≥ 0. Hence,

e−|γi(i)| should be subtracted from A+
x (τi+1).

3. Let k be the number of pixels such that j ∈ τi∩τi+1 and γi(j) = −1. Because
of the above mentioned shift (Eq. 13), the value of these pixels, k · e−|−1|,
should be subtracted from A−

x (τi+1) and added to A+
x (τi+1).

4. Due to the shift (Eq. 13), A+
x (τi+1) and A−

x (τi+1) are multiplied by e−1

and e, respectively.
5. Finally, the pixel i + w is in τi+1 but not in τi. Moreover, γi+1(i + w) ≤ 0.

Hence e−|γi+1(i+w)| should be added to either A+
x (τi+1) or A

−
x (τi+1) accord-

ing to whether γi+1(i+ w) = 0 or < 0, respectively.

While all these steps can be performed in constant time, the computation of
k, the number of pixels in τi with displacement −1 (that is, γi(j) = −1), is
somewhat tricky in this regard.

To deal with this we use a histogram histi with bin values −w + 1, . . . ,−1,
where histi(−r) stores the number of pixels s.t. j ∈ τi and γi(j) = −r. Positive
differences do not have to be maintained in the histogram. The histogram can
be iteratively updated by histi+1(r) = histi(r+1) for −w+1 < r < −1. Hence,
histi+1 can be computed by a right-shift of histi where the value of histi(−1)
(defined as k in (3) above) is removed from the histogram. In practice, we store
all histi in a single 1 × (w − 1) circular-array hist and a single index b, where
the index of the first element of histi in hist is given by b(i) = (i mod (w− 1)).
Hence a right-shift corresponds to an increase of one for b. Putting it all together:

A+
x (τi+1) = (A+

x (τi)− e−|γi(i)|)e−1 + histi(−1)e0 + ηe−|γi+1(i+w)|

A−
x (τi+1) = A−

x (τi)e− histi(−1)e0 + (1− η)e−|γi+1(i+w)|,
(14)

where η = 1 if γi+1(i+ w) = 0 and zero otherwise. Finally, the histogram histi
also has to be updated:

histi(−1) = 0,
b(i+ 1) = ((i+ 1) mod (w − 1)).

(15)

It is now clear that the number of steps required to iteratively update Sx
D(τi+1)

given Sx
D(τi) is independent of |T |. The extension of this algorithm for computing

Efficient Sliding Window Computation for NN-Based Template Matching 9

Algorithm 1 A procedure to compute S1DU

1: function Compute1D(Qx, CIWU)
2: Initialize for i = 1: hist, b← 1, A+

x , A
−
x

3: for i:=2...(m-w) do
4: Define γi(j) := Qx(j)− (j − i)
5: A+

x ← A+
x − CIWU(i)e

−|γi(i)|

6: A+
x ← A+

x e
−1 + hist(−1)e0

7: A−
x ← A−

x e− hist(−1)e0

8: hist(−1)← 0
9: b← ((b+ 1) mod (w − 1))
10: if γi+1(i+ w) = 0 then
11: A+

x ← A+
x + CIWU(i+ w)e−|γi+1(i+w)|

12: else
13: A−

x ← A−
x + CIWU(i+ w)e−|γi+1(i+w)|

14: hist(γ(i+ w))← hist(γi+1(i+ w)) + CIWU(i+ w)

15: S1DU (i) = A+
x +A−

x

16: return S1DU

Sx
DU (τi+1) given Sx

DU (τi) is straightforward. It is done by adding and subtract-
ing the value of cτDIWU (i) = e−|γi(j)|cIWU(j) into h, A+

x , and A−
x instead of only

the alignment score, e−|γi(j)| (see Alg. 1).
Implementation Details: Due to floating point inaccuracies, each iteration of
A−

x and A+
x computation is slightly erroneous. In Eq. 14, the previous, slightly

erroneous, values of A−
x and A+

x are used, and are multiplied by e and e−1,
respectively. The case for A+

x is stable since the error is iteratively reduced
(e−1 < 1). However, the case for A−

x is numerically unstable, and after tens of
iterations the accuracy is reduced considerably. To remedy this, we compute A−

x

as described above, but reversed, starting from τn−w towards τ1. This changes
the term that multiplies A−

x from e to e−1. All other details are symmetrical and
can be easily deduced. Most importantly the complexity does not change.

4.2 2D Case

Here we consider a 2D image and a 2D template. Since SDU is computed sepa-
rately for the x and y component, we consider first the x component, Sx

DU .
The value of Sx

DU (τ) (see Eq. 11) is given by the sum of cτ,xDIWU(p) (defined
Eq. 10) for all the pixels in τ . We can compute this sum by first summing the
cτ,xDIWU(p) of all pixels in each row, and then computing the summation over all
the rows. Formally, let Sx

1DU (τr=ℓ) be the sum of row ℓ of τ . Then

Sx
DU (τ) =

i+h−1
∑

ℓ=i

Sx
1DU (τr=ℓ). (16)

Our efficient 1D algorithm (Sec. 4.1) can be applied on each image row sep-
arately, where the template is 2D and we consider a single row of τ as a 1D
window of I. The result of this algorithm is a matrix Sx

1DU , where Sx
1DU (i, j)

10 Lior Talker, Yael Moses, Ilan Shimshoni

consists of the sum of cDIWU(p) in row i from j up to j + w − 1. The following
observations justify this computation:

1. The value ax(p
τ) is independent of qy, the y component of q = Nr(p).

2. The value ax(p
τ) is independent of oτy , where oτ is upper-left pixel of τ .

The final result Sx
DU (τ) for all windows in I is obtained by summing all

image window rows, using a simple 1D rolling summation on this matrix (see
pseudo code in the supplementary material). In the same manner Sy

DU (τ) can
be computed, where the 1D case is first computed for each column.

We can now summarize the complexity of our algorithm for computing SDU (τ)
for all candidate τ in I. Recall that the sizes of I and T are n ×m and h × w,
respectively.

– The initialization of the 1D case for each row and each column is given by
O(nw +mh) steps.

– Computing the 1D case for each row and each column takes O(2nm) steps.
– 1D rolling summation over the image, once on the columns and once on the

rows, takes O(2nm+ hn+ wh) steps.
– Summing SDU (τ) = Sx

DU (τ) + Sy
DU (τ) and finding the max takes O(nm)

steps.

Hence, the number of steps required for the computation is O(nm + nh +
mw) = O(nm), which is linear in |I| and depends on T only in the initialization
step of each row and column.

The algorithm naturally lends itself to parallel implementation. This is dis-
cussed in the supplementary material.

5 Experiments

We implemented our algorithms in C++ using OpenCV [2] and tested them on
an Intel i7 7600U CPU with 16 GB of RAM. We compare IWU and DIWU to
the DIS and DDIS [13] since they are currently the state of the art. Following
[13,9] we used two types of descriptors to calculate the NNs between I and T :
3 × 3 overlapping patches of RGB and deep features computed using the VGG
net [12].
Datasets: We tested IWU and DIWU on two challenging datasets. The first
is BBS [9], which was collected from an object tracking dataset introduced by
[16] (Sec. 5.1). This dataset was used by previous methods (including [13]) for
evaluation. Since the BBS dataset is composed of only small images (480× 320
or smaller), we compiled an additional dataset (TinyTLP) which is based on
the shortened version of Track Long and Prosper [7] (Sec. 5.2). This dataset has
substantially larger images and templates.

Examples of the results of the four algorithms are shown in Fig. 2. Qualita-
tively it can be seen that the heat maps for IWU and DIWU are less noisy than
the heat maps for DIS and DDIS, respectively.

Efficient Sliding Window Computation for NN-Based Template Matching 11

Method BBS25 BBS50 BBS100 Total Time

SR MIoU SR MIoU SR MIoU SR MIoU

DIS (C) 0.652 0.564 0.559 0.497 0.484 0.441 0.565 0.501 0.020

IWU (C) 0.711 0.571 0.593 0.501 0.567 0.479 0.624 0.517 0.009

DDIS (C) 0.767 0.649 0.7 0.594 0.623 0.539 0.697 0.594 1.030

DIWU (C) 0.804 0.663 0.693 0.581 0.627 0.531 0.708 0.592 0.024

DIS (D) 0.755 0.634 0.618 0.536 0.611 0.533 0.661 0.568 0.019

IWU (D) 0.748 0.610 0.622 0.532 0.615 0.531 0.662 0.558 0.008

DDIS (D) 0.833 0.682 0.696 0.592 0.643 0.558 0.724 0.610 0.99

DIWU (D) 0.815 0.664 0.674 0.57 0.675 0.584 0.721 0.606 0.022

Table 1. Results for the BBS datasets. (C) is for RGB features and (D) is for deep
VGG net features [12]. All SR and MIoU results are given as normalized percentages
and the runtime is given in seconds. The best results in each column are written in bold.

Method (C) Method (D)

DIS IWU DDIS DIWU DIS IWU DDIS DIWU

SR 0.538 0.553 0.629 0.681 0.592 0.610 0.651 0.691

MIoU 0.459 0.466 0.527 0.555 0.503 0.519 0.562 0.590

Time 0.391 0.059 42.3 0.209 0.412 0.060 39.7 0.222

Table 2. Results for the TinyTLP dataset. All SR and MIoU results are given as
normalized percentages and the runtime is given in seconds. (C) is for RGB features
and (D) is for deep VGG net features [12]. The best results between each pair of
competitors are in bold.

Quantitative Evaluation: The basic accuracy measure used in our evaluation
was the Intersection over Union (IoU) between the estimated window, τx, of
algorithm x, and the GT window, τGT . It is given by

IoU(τx, τGT) =
τx ∩ τGT

τx ∪ τGT

.

We use IoU to define two measures of accuracy on an entire dataset: (i) the
Success Rate (SR) is the ratio between the number of (I, T) pairs with IoU > 0.5,
and the total number of pairs; (ii) the mean IoU (MIoU) over the entire dataset.
We measured the runtime of the methods in seconds. The reported runtime
excludes the approximate NN computation (using FLANN [8]), which is the
same for all methods and is reported separately.

We also evaluated the accuracy and the runtime of the algorithms as a func-
tion of the size of I. This was done by upscaling and downscaling I and T
synthetically (Sec. 5.3).

12 Lior Talker, Yael Moses, Ilan Shimshoni

Fig. 2. Results from BBS (first two) and the TinyTLP (last two) datasets. The left im-
ages correspond to the image from which the template was taken (the green rectangle).
The middle images are the target. The green, blue, red, black and magenta rectangles
correspond to the GT, IWU, DIS, DIWU and DDIS, respectively. The right images
correspond to the heat maps, where the top left, top right, bottom left and bottom
right correspond to DIS, IWU, DDIS and DIWU, respectively.

5.1 BBS Dataset

The BBS dataset is composed of three sub-datasets, which we refer to as BBS25,
BBS50 and BBS100, with 270, 270, 252 image-template pairs, respectively. The
size of the images is 320×480 or 320×240 (relatively small!). The variable X in
BBSX indicates that T and I were taken from two images of the same tracking
video with X frames apart. Generally, a larger X indicates a harder dataset.

The results are presented in Tab. 1. The runtime in seconds of IWU (0.009)
is 2.2 times faster than DIS (0.02). However, the significant improvement is ob-
tained for the DIWU (0.024) which runs 43 times faster than DDIS (1.030).
Similar improvements are obtained for the deep features. Note that these run-
times do not include the runtime of the NN computation which is common to all
algorithms. The NN computations takes about 0.219 sec. for color features and
4.1 sec. (!) for the deep features (due to their high dimensionality) on average.

Efficient Sliding Window Computation for NN-Based Template Matching 13

As for the accuracy, as expected the results are improved when the deforma-
tion scores are used (DDIS and DIWU v.s. DIS and IWU). In general, when com-
paring DIS to IWU or DDIS to DIWU, the difference in the results is marginal.
For some cases our algorithm perform better and vice versa. It follows that the
speedup was achieved without reduction in accuracy.

5.2 TinyTLP Dataset

The TinyTLP dataset is composed of 50 shortened video clips with 600 frames
each of size 1280 × 720. (The full version contains the same video clips with
thousands of frames each.) The dataset is very challenging with many non-rigid
deformations, occlusions, drastic pose changes, etc. To avoid redundant tests,
we sample only 50 frames, 1, 11, . . . , 491, from which we take the template T
from, and the image I is taken from 100 frames ahead, i.e., if x is the frame of
T , x + 100 is the frame for I. Altogether the dataset contains 50 · 50 = 2500
image-template pairs.

We present our results in Tab. 2. The runtime in seconds of IWU (0.059)
is 6.6 times faster than DIS (0.391). However, the significant improvement is
obtained for the DIWU (0.209) which runs 202 times faster than DDIS (42.3).
Similar improvements are obtained for the deep features. Note that these running
times do not include the runtime of the NN computation which is common to all
algorithms. The NN computations for the color and deep features takes about
1.37 and 30.56 (!) seconds, respectively.

As for the accuracy, the same behavior as in Sec. 5.1 is obtained where
the deformation score improves the results, and the difference of the DIS and
IWU’s accuracy is marginal. However, our DIWU algorithm not only significantly
improves the speed of DDIS, but also its accuracy.

5.3 Accuracy & Runtime as a Function of the Resolution

Our theoretical analysis and the experiments discussed above show that the
runtime improvements depend mainly on template size. We test the improvement
in runtime as a function of the image and template size. For each image in
the BBS25 dataset we resized I and T with the same factors. The factors we
considered are the in the range of [1/6, 2.5]. Also, we tested whether the results
are impaired when the images are downsampled to obtain faster running time.

The results for the accuracy analysis are presented in Fig. 3(a). The x-axis
corresponds to the resize factors defined above. It is evident for all algorithms
that the accuracy degrades quickly as I and T are downsampled. For example,
when the image is 1/2 its original size the accuracy is about 10% worse than for
the original size. When the image is 1/4 its original size the accuracy is about
20% worse. When I and T are upsampled the accuracy remains similar to the
original resolution.

The runtime analysis is presented in Fig. 3(b)&(c). As for the accuracy, the
x-axis corresponds to the resize factors. The runtime increases as I and T are
upsampled. For DDIS the increase in runtime as the resolution increases is very

14 Lior Talker, Yael Moses, Ilan Shimshoni

(a) Accuracy (b) Runtime (c) Runtime (Zoom)

Fig. 3. The accuracy and the runtime as a function of the resolution. The x-axis cor-
responds to a relative scale factor (relative to an image of size 480 × 320). (a) the
y-axis corresponds to the accuracy of the algorithms (mean IoU). (b) & (c) the y-axis
corresponds to the runtime in seconds. (c) is a zoom-in on the lower part of (b).

rapid (see the magenta curve in Fig. 3(b)). For DIS, IWU and DIWU, the runtime
increase is much slower (Fig. 3(c)), where both IWU and DIWU’s increase more
slowly than that of DIS. It appears that the empirical increase in runtime for
DIWU is quadratic as a function of the scale, while the increase for DDIS is
quartic, as expected.

6 Summary & Future Work

In this paper we presented an efficient template matching algorithm based on
nearest neighbors. The main contribution of this paper is the development of
the efficient framework for this task. In particular our new score and algorithm
allows to reduce the O(|I||T |) of the state-of-the-art complexity to O(|I|). The
improvement in practice depends on the image and template sizes. On the con-
sidered datasets, we improve the running time in a factor of 43 up to 200. This
rise in efficiency can make NN based template matching feasible for real appli-
cations. Given the computed NN, the efficiency of our algorithm may be used
to run it several times with only small increase in the overall computation time.
For example it can be used to consider several different scales or orientations.
However, it is left for future research to determine the best result among the
ones obtained from the different runs.

Finally, our algorithm is based on a 1D method extended to 2D templates.
It is straightforward to extend our algorithm to k-dimensional templates. Here,
the 1D case should be applied to each of the k dimensions and the final score
is the sum of all the dimensions. The complexity is still linear in the size of the
data and is independent of the template size. It is left to future work to explore
this extension.

Acknowledgments: This work was partially supported by the Israel Science
Foundation, grant no. 930/12, and by the Israeli Innovation Authority in the
Ministry of Economy and Industry.

Efficient Sliding Window Computation for NN-Based Template Matching 15

References

1. L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr. Fully-
convolutional siamese networks for object tracking. In European Conference on
Computer Vision, pages 850–865, 2016.

2. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
3. P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recog-

nition. International Journal of Computer Vision, 61(1):55–79, 2005.
4. D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep re-

gression networks. In European Conference on Computer Vision, pages 749–765,
2016.

5. S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-match: Fast affine template
matching. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 2331–2338, 2013.

6. J.-P. Mercier, L. Trottier, P. Giguere, and B. Chaib-draa. Deep object ranking
for template matching. In IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 734–742, 2017.

7. A. Moudgil and V. Gandhi. Long-term visual object tracking benchmark. arXiv
preprint arXiv:1712.01358, 2017.

8. M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimen-
sional data. IEEE Trans. Patt. Anal. Mach. Intell., 36, 2014.

9. S. Oron, T. Dekel, T. Xue, W. T. Freeman, and S. Avidan. Best-buddies similarity-
robust template matching using mutual nearest neighbors. IEEE Trans. Patt. Anal.
Mach. Intell., 2017.

10. W. Ouyang, F. Tombari, S. Mattoccia, L. Di Stefano, and W.-K. Cham. Per-
formance evaluation of full search equivalent pattern matching algorithms. IEEE
Trans. Patt. Anal. Mach. Intell., 34(1):127–143, 2012.

11. A. Penate-Sanchez, L. Porzi, and F. Moreno-Noguer. Matchability prediction for
full-search template matching algorithms. In International Conference on 3D Vi-
sion (3DV), pages 353–361, 2015.

12. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

13. I. Talmi, R. Mechrez, and L. Zelnik-Manor. Template matching with deformable
diversity similarity. In Proc. IEEE Conf. Comp. Vision Patt. Recog., 2017.

14. Y. Tian and S. G. Narasimhan. Globally optimal estimation of nonrigid image
distortion. International Journal of Computer Vision, 98(3):279–302, 2012.

15. Y. Wei and L. Tao. Efficient histogram-based sliding window. In Proc. IEEE Conf.
Comp. Vision Patt. Recog., pages 3003–3010, 2010.

16. Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In Proc.
IEEE Conf. Comp. Vision Patt. Recog., pages 2411–2418, 2013.

17. S. Zagoruyko and N. Komodakis. Learning to compare image patches via convo-
lutional neural networks. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages
4353–4361, 2015.

18. J. Zbontar and Y. LeCun. Stereo matching by training a convolutional neural
network to compare image patches. J. Machine Learning Research, 17(1-32):2,
2016.

19. C. Zhang and T. Akashi. Fast affine template matching over galois field. In British
Machine Vision Conference (BMVC), pages 121–1, 2015.

