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Abstract. Textual information found in scene images provides high
level semantic information about the image and its context and it can
be leveraged for better scene understanding. In this paper we address
the problem of scene text retrieval: given a text query, the system must
return all images containing the queried text. The novelty of the pro-
posed model consists in the usage of a single shot CNN architecture that
predicts at the same time bounding boxes and a compact text represen-
tation of the words in them. In this way, the text based image retrieval
task can be casted as a simple nearest neighbor search of the query
text representation over the outputs of the CNN over the entire image
database. Our experiments demonstrate that the proposed architecture
outperforms previous state-of-the-art while it offers a significant increase
in processing speed.

Keywords: Image retrieval · Scene text · Word spotting · Convolutional
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1 Introduction

The world we have created is full of written information. A large percentage of
everyday scene images contain text, especially in urban scenarios [1, 2]. Text de-
tection, text recognition and word spotting are important research topics which
have witnessed a rapid evolution during the past few years. Despite significant
advances achieved, propelled by the emergence of deep learning techniques [3],
scene text understanding in unconstrained conditions remains an open problem
attracting an increasing interest from the Computer Vision research community.
Apart from the scientific interest, a key motivation comes by the plethora of po-
tential applications enabled by automated scene text understanding, such as im-
proved scene-text based image search, image geo-localization, human-computer
interaction, assisted reading for the visually-impaired, robot navigation and in-
dustrial automation to mention just a few.

The textual content of scene images carries high level semantics in the form of
explicit, non-trivial data, which is typically not possible to obtain from analyzing
the visual information of the image alone. For example, it is very challenging,
even for humans, to automatically label images such as the ones illustrated in
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Fig. 1. The visual appearance of different tea shops’ images can be extremely variable.
It seems impossible to correctly label them without reading the text within them. Our
scene text retrieval method returns all the images shown here within the top-10 ranked
results among more than 10, 000 distractors for the text query “tea”.

Figure 1 as tea shops solely by their visual appearance, without actually reading
the storefront signs. Recent research actually demonstrated that a shop classifier
ends up automatically learning to interpret textual information, as this is the
only way to distinguish between businesses [4]. In recent years, several attempts
to take advantage of text contained in images have been proposed not only to
achieve fine-grained image classification [5, 6] but to facilitate image retrieval.

Mishra et al. [7] introduced the task of scene text retrieval, where, given a
text query, the system must return all images that are likely to contain such
text. Successfully tackling such a task entails fast word-spotting methods, able
to generalize well to out-of-dictionary queries never seen before during training.

A possible approach to implement scene text retrieval is to use an end-to-
end reading system and simply look for the occurrences of the query word within
its outputs. It has been shown [7] that such attempts generally yield low per-
formance for various reasons. First, it is worth noting that end-to-end reading
systems are evaluated on a different task, and optimized on different metrics,
opting for high precision, and more often than not making use of explicit in-
formation about each of the images (for example, short dictionaries given for
each image). In contrary, in a retrieval system, a higher number of detections
can be beneficial. Secondly, end-to-end systems are generally slow in processing
images, which hinders their use in real-time scenarios or for indexing large-scale
collections.

In this paper we propose a real-time, high-performance word spotting method
that detects and recognizes text in a single shot. We demonstrate state of the
art performance in most scene text retrieval benchmarks. Moreover, we show
that our scene text retrieval method yields equally good results for in-dictionary
and out-of-dictionary (never before seen) text queries. Finally, we show that the
resulting method is significantly faster than any state of the art approach for
word spotting in scene images.

The proposed architecture is based on YOLO[8, 9], a well known single shot
object detector which we recast as a PHOC (Pyramidal Histogram Of Char-
acters) [10, 11] predictor, thus being able to effectively perform word detection
and recognition at the same time. The main contribution of this paper is the
demonstration that using PHOC as a word representation instead of a direct
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word classification over a closed dictionary, provides an elegant mechanism to
generalize to any text string, allowing the method to tackle efficiently out-of-
dictionary queries. By learning to predict PHOC representations of words the
proposed model is able to transfer the knowledge acquired from training data to
represent words it has never seen before.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the state of the art in scene text understanding tasks, Section 3
describes the proposed architecture for single shot scene text retrieval. Section 4
reports the experiments and results obtained on different benchmarks for scene
text based image retrieval. Finally, the conclusions and pointers to further re-
search are given in Section 5.

2 Related work

The first attempts at recognizing text in scene images divided the problem in
two distinguished steps, text detection and text recognition. For instance, in the
work of Jaderberg et al. [12] scene text segmentation was performed by a text
proposals mechanism that was later refined by a CNN that regressed the cor-
rect position of bounding boxes. Afterwards, those bounding boxes were inputed
to a CNN that classified them in terms of a predefined vocabulary. Gupta et

al. [13] followed a similar strategy by first using a Fully Convolutional Regres-
sion Network for detection and the same classification network than Jaderberg
for recognition. Liao et al. [14, 15] used a modified version of the SSD [16] object
detection architecture adapted to text and then a CRNN [17] for text recogni-
tion. However, breaking the problem into two separate and independent steps
presented an important drawback since detection errors might significantly hin-
der the further recognition step. Recently, end-to-end systems that approach
the problem as a whole have gained the attention of the community. Since the
segmentation and recognition tasks are highly correlated from an end to end per-
spective, in the sense that learned features can be used to solve both problems,
researchers started to jointly train their models. Buvsta et al. [18] proposed to
use a Fully Convolutional Neural Network for text detection and another module
that employed a CTC (Connectionist Temporal Classification) for text recogni-
tion. Both modules were first trained independently and further joined together
in order to make an end-to-end trainable architecture. Li et al. [19] proposed
a pipeline that included a CNN to obtain text region proposals followed by a
region feature encoding module that is the input to an LSTM to detect text.
The detected regions are the input to another LSTM which outputs features to
be decoded by a LSTM with attention to recognize the words. In that sense, we
strongly believe that single shot object detection paradigms such as YOLO [9]
can bring many benefits to the field of scene text recognition by having a unique
architecture that is able to locate and recognize the desired text in an unique
step.

However, the scene text retrieval problem slightly differs from classical scene
text recognition applications. In a retrieval scenario the user should be able to
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cast whatever textual query he wants to retrieve, whereas most of recognition
approaches are based on using a predefined vocabulary of the words one might
find within scene images. For instance, both Mishra et al. [7], who introduced
the scene text retrieval task, and Jaderberg et al. [12], use a fixed vocabulary
to create an inverted index which contains the presence of a word in the image.
Such approach obviously limits the user that does not have the freedom to cast
out of vocabulary queries. In order to tackle such problem, text string descriptors
based on n-gram frequencies, like the PHOC descriptor, have been successfully
used for word spotting applications [20, 10, 21]. By using a vectorial codification
of text strings, users can cast whatever query at processing time without being
restricted to specific word sets.

3 Single shot word spotting architecture

The proposed architecture, illustrated in Figure 2, consists in a single shot CNN
model that predicts at the same time bounding boxes and a compact text repre-
sentation of the words within them. To accomplish this we adapt the YOLOv2
object detection model [8, 9] and recast it as a PHOC [10] predictor. Although
the proposed method can be implemented on top of other object detection frame-
works we opted for YOLOv2 because it can be up to 10× faster than two-stage
frameworks like Faster R-CNN [22], and processing time is critical for us since
we aim at processing images at high resolution to correctly deal with small text.

The YOLOv2 architecture is composed of 21 convolutional layers with a
leaky ReLU activation and batch normalization [7] and 5 max pooling layers.
It uses 3× 3 filters and double the number of channels after every pooling step
as in VGG models [17], but also uses 1 × 1 filters interspersed between 3 × 3
convolutions to compress the feature maps as in [9]. The backbone includes a
pass-through layer from the second convolution layer and is followed by a final
1 × 1 convolutional layer with a linear activation with the number of filters
matching the desired output tensor size for object detection. For example, in
the PASCAL VOC challenge dataset (20 object classes) it needs 125 filters to
predict 5 boxes with 4 coordinates each, 1 objectness value, and 20 classes per
box ((4 + 1 + 20) × 5 = 125). The resulting model achieves state of the art
in object detection, has a smaller number of parameters than other single shot
models, and features real time object detection.

A straightforward application of the YOLOv2 architecture to the word spot-
ting task would be to treat each possible word as an object class. This way the
one hot classification vectors in the output tensor would encode the word class
probability distribution among a predefined list of possible words (the dictio-
nary) for each bounding box prediction. The downside of such an approach is
that we are limited in the number of words the model can detect. For a dictio-
nary of 20 words the model would theoretically perform as well as for the 20
object classes of the PASCAL dataset, but training for a larger dictionary (e.g.
the list of 100, 000 most frequent words from the English vocabulary [12]) would
require a final layer with 500, 000 filters, and a tremendous amount of training
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Fig. 2. Our Convolutional Neural Network predicts at the same time bounding box
coordinates x, y, w, h, an objectness score c, and a pyramidal histogram of characters
(PHOC) of the word in each bounding box.

data if we want to have enough samples for each of the 100, 000 classes. Even if
we could manage to train such a model, it would still be limited to the dictionary
size and not able to detect any word not present on it.

Instead of the fixed vocabulary approach we would like to have a model
that is able to generalize to words that were not seen at training time. This
is the rationale behind casting the network as a PHOC predictor. PHOC [10]
is a compact representation of text strings that encodes if a specific character
appears in a particular spatial region of the string (see Figure 3). Intuitively
a model that effectively learns to predict PHOC representations will implicitly
learn to identify the presence of a particular character in a particular region
of the bounding box by learning character attributes independently. This way
the knowledge acquired from training data can be transfered at test time for
words never observed during training, because the presence of a character at a
particular location of the word translates to the same information in the PHOC
representation independently of the other characters in the word. Moreover, the
PHOC representation offers unlimited expressiveness (it can represent any word)
with a fixed length low dimensional binary vector (604 dimensions in the version
we use).

In order to adapt the YOLOv2 network for PHOC prediction we need to
address some particularities of this descriptor. First, since the PHOC represen-
tation is not a one hot vector we need to get rid of the softmax function used
by YOLOv2 in the classification output. Second, since the PHOC is a binary
representation it makes sense to squash the network output corresponding to
the PHOC vector to the range 0...1. To accomplish this, a sigmoid activation
function was used in the last layer. Third, we propose to modify the original
YOLOv2 loss function in order to help the model through the learning process.
The original YOLOv2 model optimizes the following multi-part loss function:

L(b, C, c, b̂, Ĉ, ĉ) = λboxLbox(b, b̂) + Lobj(C, Ĉ, λobj , λnoobj) + λclsLcls(c, ĉ) (1)
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Fig. 3. Pyramidal histogram of characters (PHOC) [10] of the word “beyond” at lev-
els 1, 2, and 3. The final PHOC representation is the concatenation of these partial
histograms.

where b is a vector with coordinates’ offsets to an anchor bounding box, C is the
probability of that bounding box containing an object, c is the one hot classifica-
tion vector, and the three terms Lbox, Lobj , and Lcls are respectively independent
losses for bounding box regression, objectness estimation, and classification. All
the aforementioned losses are essentially the sum-squared errors of ground truth
(b, C, c) and predicted (b̂, Ĉ, ĉ) values. In the case of PHOC prediction, with c
and ĉ being binary vectors but with an unrestricted number of 1 values we opt
for using a cross-entropy loss function in Lcls as in a multi-label classification
task:

Lcls(c, ĉ) =
−1

N

N∑

n=1

[cn log(ĉn) + (1− cn) log(1− ĉn)] (2)

where N is the dimensionality of the PHOC descriptor.
Similarly as in [8] the combination of the sum-squared errors Lbox and Lobj

with the cross-entropy loss Lcls is controlled by the scaling parameters λbox,
λobj , λnoobj , and λcls.

Apart of the modifications made so far on top of the original YOLOv2 ar-
chitecture we also changed the number, the scales, and the aspect ratios of the
pre-defined anchor boxes used by the network to predict bounding boxes. Sim-
ilarly as in [8] we have found the ideal set of anchor boxes B for our training
dataset by requiring that for each bounding box annotation there exists at least
one anchor box in B with an intersection over union of at least 0.6. Figure 4
illustrates the 13 bounding boxes found to be better suited for our training data
and their difference with the ones used in object detection models.

At test time, our model provides a total of W/32×H/32× 13 bounding box
proposals, with W and H being the image input size, each one of them with an
objectness score (Ĉ) and a PHOC prediction (ĉ). The original YOLOv2 model
filters the bounding box candidates with a detection threshold τ considering that
a bounding box is a valid detection if Ĉmax(ĉ) ≥ τ . If the threshold condition
is met, a non-maximal suppression (NMS) strategy is applied in order to get rid
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a) b) c)

Fig. 4. Anchor boxes used in the original YOLOv2 model for object detection in COCO
(a) and PASCAL (b) datasets. (c) Our set of anchor boxes for text detection.

of overlapping detections of the same object. In our case the threshold is applied
only on the objectness score (Ĉ) but with a much smaller value (τ = 0.0025)
than in the original model (τ ≈ 0.2), and we do not apply NMS. The reason
is that any evidence of the presence of a word, even if it is small, it may be
beneficial in terms of retrieval if its PHOC representation has a small distance
to the PHOC of the queried word. With this threshold we generate an average
of 60 descriptors for every image in the dataset and all of them conform our
retrieval database.

In this way, the scene text retrieval of a given query word is performed with
a simple nearest neighbor search of the query PHOC representation over the
outputs of the CNN in the entire image database. While the distance between
PHOCs is usually computed using the cosine similarity, we did not find any
noticeable downside on using an Euclidean distance for the nearest neighbor
search.

3.1 Implementation details

We have trained our model in a modified version of the synthetic dataset of
Gupta et al. [13]. First the dataset generator has been evenly modified to use
a custom dictionary with the 90K most frequent English words, as proposed by
Jaderberg et al. [12], instead of the Newsgroup20 dataset [23] dictionary origi-
nally used by Gupta et al. The rationale was that in the original dataset there
was no control about word occurrences, and the distribution of word instances
had a large bias towards stop-words found in newsgroups’ emails. Moreover, the
text corpus of the Newsgroup20 dataset contains words with special characters
and non ASCII strings that we do not contemplate in our PHOC representations.
Finally, since the PHOC representation of a word with a strong rotation does
not make sense under the pyramidal scheme employed, the dataset generator
was modified to allow rotated text up to 15 degrees. This way we generated a
dataset of 1 million images for training purposes. Figure 5 shows a set of samples
of our training data.
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Fig. 5. Synthetic training data generated with a modified version of the method of
Gupta et al. [13]. We make use of a custom dictionary with the 90K most frequent
English words, and restrict the range of random rotation to 15 degrees.

The model was trained for 30 epochs of the dataset using SGD with a batch
size of 64, an initial learning rate of 0.001, a momentum of 0.9, and a decay
of 0.0005. We initialize the weights of our model with the YOLOv2 backbone
pre-trained on Imagenet. During the firsts 10 epochs we train the model only
for word detection, without backpropagating the loss of the PHOC prediction
and using a fixed input size of 448 × 448. On the following 10 epochs we start
learning the PHOC prediction output with the λcls parameter set to 1.0. After
that, we continue learning for 10 more epochs with a learning rate of 0.0001
and setting the parameters λbox and λcls to 5.0 and 0.015 respectively. At his
point we also adopted a multi-resolution training, by randomly resizing the input
images among 14 possible sizes in the range from 352×352 to 800×800, and we
added new samples in our training data. In particular, the added samples were
the 1, 233 training images of the ICDAR2013 [24] and ICDAR2015 [25] datasets.
During the whole training process we used the same basic data augmentation as
in [8].

4 Experiments and results

In this section we present the experiments and results obtained on different stan-
dard benchmarks for text based image retrieval. First we describe the datasets
used throughout our experiments, after that we present our results and compare
them with the published state-of-the-art. Finally we discuss the scalability of
the proposed retrieval method.

4.1 Datasets

The IIIT Scene Text Retrieval (STR) [7] dataset is a scene text image
retrieval dataset composed of 10, 000 images collected from the Google image
search engine and Flickr. The dataset has 50 predefined query words and for
each of them a list of 10 − 50 relevant images (that contain the query word) is
provided. It is a challenging dataset where relevant text appears in many different
fonts and styles, and from different view points, among many distractors (images
without any text).
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The IIIT Sports-10k dataset [7] is another scene text retrieval dataset com-
posed of 10, 000 images extracted from sports video clips. It has 10 predefined
query words with their corresponding relevant images’ lists. Scene text retrieval
in this dataset is specially challenging because images are low resolution and
often noisy or blurred, with small text generally located on advertisements sign-
boards.

The Street View Text (SVT) dataset [26] is comprised of images harvested
from Google Street View where text from business signs and names appear. It
contains more than 900 words annotated in 350 different images. In our exper-
iments we use the official partition that splits the images in a train set of 100
images and a test set of 249 images. This dataset also provides a lexicon of 50
words per image for recognition purposes, but we do not make use of it. For the
image retrieval task we consider as queries the 427 unique words annotated on
the test set.

4.2 Scene text retrieval

In the scene text retrieval task, the goal is to retrieve all images that contain
instances of the query words in a dataset partition. Given a query, the database
elements are sorted with respect to the probability of containing the queried
word. We use the mean average precision as the accuracy measure, which is the
standard measure of performance for retrieval tasks and is essentially equivalent
to the area below the precision-recall curve. Notice that, since the system always
returns a ranked list with all the images in the dataset, the recall is always 100%.
An alternative performance measure consist in considering only the top-n ranked
images and calculating the precision at this specific cut-off point (P@n).

Table 1 compares the proposed method to previous state of the art for text
based image retrieval on the IIIT-STR, Sports-10K, and SVT datasets. We show
the mean average precision (mAP) and processing speed for the same trained
model using two different input sizes (576 × 576 and 608 × 608), and a multi-
resolution version that combines the outputs of the model at three resolutions
(544, 576 and 608). Processing time has been calculated using a Titan X (Pas-
cal) GPU with a batch size of 1. We appreciate that our method outperforms
previously published methods in two of the benchmarks while it shows a compet-
itive performance on the SVT dataset. In order to compare with state-of-the-art
end-to-end text recognition methods, we also provide a comparison with pre-
trained released versions of the models of Bušta et al. [18] and He et al. [27]. For
recognition-based results the look-up is performed by a direct matching between
the query and the text detected by each model. Even when making use of a pre-
defined word dictionary to filter results, our method, which is dictionary-free,
yields superior results. Last, we compared against a variant of He et al. [27] but
this time both queries and the model’s results are first transformed to PHOC de-
scriptors and the look-up is based on similarity on PHOC space. It can be seen
that the PHOC space does not offer any advantage to end-to-end recognition
methods.
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Table 1. Comparison to previous state of the art for text based image retrieval: mean
average precision (mAP) for IIIT-STR, and Sports-10K, and SVT datasets. (*) Results
reported by Mishra et al. in [7], not by the original authors. (†) Results computed with
publicly available code from the original authors.

Method STR
(mAP)

Sports
(mAP)

SVT
(mAP)

fps

SWT [28]+ Mishra et al. [29] - - 19.25
Wang et al. [26] - - 21.25*
TextSpotter [30] - - 23.32* 1.0
Mishra et al. [7] 42.7 - 56.24 0.1
Ghosh et al. [31] - - 60.91
Mishra [32] 44.5 - 62.15 0.1
Almazán et al. [10] - - 79.65

TextProposals [33] + DictNet [34] 64.9† 67.5† 85.90† 0.4
Jaderberg et al. [12] 66.5 66.1 86.30 0.3

Bušta et al. [18] 62.94† 59.62† 69.37† 44.21

He et al. [27] 50.16† 50.74† 72.82† 1.25

He et al. [27] (with dictionary) 66.95† 74.27† 80.54† 2.35

He et al. [27] (PHOC) 46.34† 52.04† 57.61† 2.35

Proposed (576× 576) 68.13 72.99 82.02 53.0

Proposed (608× 608) 69.83 73.75 83.74 43.5
Proposed (multi-res.) 71.37 74.67 85.18 16.1

Table 2 further compares the proposed method to previous state of the art
by the precisions at 10 (P@10) and 20 (P@20) on the Sports-10K dataset.

Table 2. Comparison to previous state of the art for text based image retrieval: pre-
cision at n (P@n) for Sports-10K dataset.

Method Sports-10K (P@10) Sports-10K (P@20)

Mishra et al. [7] 44.82 43.42
Mishra [32] 47.20 46.25
Jaderberg et al. [12] 91.00 92.50

Proposed (576× 576) 91.00 90.50
Proposed (multi-res.) 92.00 90.00

In Table 3 we show per-query mean average precision and precisions at 10
and 20 for the Sports-10K dataset. The low performance for the query “castrol”
in comparison with the rest may initially be attributed to the fact that it is the
only query word not seen by our model at training time. However, by visualizing
the top-10 ranked images for this query, shown in Figure 6 we can see that
the dataset has many unannotated instances of “castrol”. The real P@10 of
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our model is in fact 90% and not 50%. It appears that the annotators did not
consider occluded words, while our model is able to retrieve images with partial
occlusions in a consistent manner. Actually, the only retrieved image among the
top-10 without the “castrol” word contains an instance of “castel”. By manual
inspection we have computed P@10 and P@20 to be 95.0 and 93.5 respectively.

Table 3. Sports-10K per-query average precision (AP), P@10, and P@20 scores.
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AP 94 16 74 61 77 75 92 70 89 89
P@10 100 50 100 90 100 80 100 90 100 90
P@20 100 55 100 85 100 85 100 95 100 90

Fig. 6. Top 10 ranked images for the query “castrol”. Our model has not seen this
word at training time.

Overall, the performance exhibited with the “castrol” query is a very impor-
tant result, since it demonstrates that our model is able to generalize the PHOC
prediction for words that has never seen at training time, and even to correctly
retrieve them under partial occlusions. We found further support for this claim
by analyzing the results for the six IIIT-STR query words that our model has
not seen during training. Figure 7 shows the top-5 ranked images for the queries
“apollo”, “bata”, “bawarchi”, “maruti”, “newsagency”, and “vodafone”. In all
of them our model reaches a 100% precision at 5. In terms of mAP the results for
these queries do not show a particular decrease when compared to those obtained
with other words that are part of the training set, in fact in some cases they are
even better. The mean average precision for the six words in question is 74.92,
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Fig. 7. From top to bottom, top-5 ranked images for the queries “apollo”, “bata”,
“bawarchi”, “maruti”, “newsagency”, and “vodafone”. Although our model has not
seen this words at training time it is able to achieve a 100% P@5 for all of them.
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while for the remaining 44 queries is 69.14. To further analyze our model’s ability
for recognizing words it has never seen at training time, we have done an addi-
tional experiment within a multi-lingual setup. For this we manually added some
images with text in different Latin script languages (French, Italian, Catalan,
and Spanish) to the IIIT-STR dataset. We have observed that our model, while
being trained only using English words, was always able to correctly retrieve the
queried text in any of those languages.

In order to analyze the errors made by our model we have manually inspected
the output of our model as well as the ground truth for the five queries with
a lower mAP on the IIIT-STR dataset: “ibm”, “indian”, “institute”, “sale”,
and “technology”. In most of these queries the low accuracy of our model can
be explained in terms of having only very small and blurred instances in the
database. In the case of “ibm”, the characteristic font type in all instances of
this word tends to be ignored by our model, and the same happens for some
computer generated images (i.e.non scene images) that contain the word “sale”.
Figure 8 shows some examples of those instances. All in all, the analysis indicates
that while our model is able to generalize well for text strings not seen at training
time it does not perform properly with text styles, fonts, sizes not seen before.
Our intuition is that this problem can be easily alleviated with a richer training
dataset.

Fig. 8. Error analysis: most of the errors made by our model come from text instances
with a particular style, font type, size, etc. that is not well represented in our training
data.

4.3 Retrieval speed analysis

To analyze the retrieval speed of the proposed system, we have run the retrieval
experiments for the IIIT-STR and Sports-10K datasets with different approxi-
mate nearest neighbor (ANN) algorithms in a standard PC with an i7 CPU and
32Gb of RAM. In Table 4 we appreciate that those ANN methods, with a search
time sublinear in the number of indexed samples, reach retrieval speeds a couple
of orders of magnitude faster than the exact nearest neighbor search based on
ball-trees without incurring in any significant loss of retrieval accuracy.
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Table 4. Mean Average Precision and retrieval time performance (in seconds) of dif-
ferent approximate nearest neighbor algorithms on the IIIT-STR and Sports datasets.

IIIT-STR Sports-10K

Algorithm mAP secs #PHOCs mAP secs #PHOCs

Baseline (Ball tree) 0.6983 0.4321 620K 0.7375 0.6826 1M
Annoy (approx NN) [35] 0.6883 0.0027 620K 0.7284 0.0372 1M
HNSW (approx NN) [36] 0.6922 0.0018 620K 0.7247 0.0223 1M
Falconn LSH (approx NN) [37] 0.6903 0.0151 620K 0.7201 0.0178 1M

5 Conclusion

In this paper we detailed a real-time word spotting method, based on a simple
architecture that allows it to detect and recognise text in a single shot and
real-time speeds.

The proposed method significantly improves state of the art results on scene
text retrieval on the IIIT-STR and Sports-10K datasets, while yielding com-
parable results to state of the art in the SVT dataset. Moreover, it can do so
achieving faster speed compared to other state of the art methods.

Importantly, the proposed method is fully capable to deal with out-of-dictionary
(never before seen) text queries, seeing its performance unaffected compared to
query words previously seen in the training set.

This is due to the use of PHOC as a word representation instead of aiming
for a direct word classification. It can be seen that the network is able to learn
how to extract such representations efficiently, generalizing well to unseen text
strings. Synthesizing training data with different characteristics could boost per-
formance, and is one of the directions we will be exploring in the future along
with investigating the use of word embeddings other than PHOC.

The code, pre-trained models, and data used in this work are made publicly
available at https://github.com/lluisgomez/single-shot-str.
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