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Abstract. In the spectrum of vision-based autonomous driving, vanilla end-to-

end models are not interpretable and suboptimal in performance, while medi-

ated perception models require additional intermediate representations such as

segmentation masks or detection bounding boxes, whose annotation can be pro-

hibitively expensive as we move to a larger scale. More critically, all prior works

fail to deal with the notorious domain shift if we were to merge data collected

from different sources, which greatly hinders the model generalization ability. In

this work, we address the above limitations by taking advantage of virtual data

collected from driving simulators, and present DU-drive, an unsupervised real-to-

virtual domain unification framework for end-to-end autonomous driving. It first

transforms real driving data to its less complex counterpart in the virtual domain,

and then predicts vehicle control commands from the generated virtual image.

Our framework has three unique advantages: 1) it maps driving data collected

from a variety of source distributions into a unified domain, effectively eliminat-

ing domain shift; 2) the learned virtual representation is simpler than the input real

image and closer in form to the ”minimum sufficient statistic” for the prediction

task, which relieves the burden of the compression phase while optimizing the

information bottleneck tradeoff and leads to superior prediction performance; 3)

it takes advantage of annotated virtual data which is unlimited and free to obtain.

Extensive experiments on two public driving datasets and two driving simulators

demonstrate the performance superiority and interpretive capability of DU-drive.
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1 Introduction

The development of a vision-based autonomous driving system has been a long-standing

research problem [1–4]. End-to-end models, among many methods, have attracted much

research interest [5–7] as they optimize all intermediate procedures simultaneously and

eliminate the tedious process of feature engineering. [5] trains a convolutional neu-

ral network (CNN) to map raw image pixels from a frontal camera to steering com-

mands, which successfully maneuvered the test car in constrained environments. Many

attempts have since been made to improve the performance of vanilla end-to-end mod-

els by taking advantage of intermediate representations (Figure 1). For example, [6]

uses semantic segmentation as a side task to improve model performance, while [8]
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Fig. 1. Various methods have been proposed for vision-based driving models. While vanilla end-

to-end models (a) are not interpretable and suboptimal in performance, scene parsing (b) or object

detection (c) requires expensively annotated data. Our method (d) unifies real images from dif-

ferent datasets into their simpler counterparts in the virtual domain that contains less superfluous

details, which boosts the performance of vehicle command prediction task.

first trains a detector to detect nearby vehicles before making driving decisions. How-

ever, the collection of driving data and the annotation of intermediate representation can

be prohibitively expensive as we move to a larger scale.

Moreover, raw images of driving scenes are loaded with nuisance details that are

not relevant to the prediction task due to the complexity of the real world. For example,

a typical human driver will not change his or her behavior according to the shadow of

trees on the road, or the view beyond the road boundaries. Such nuisance information

could distract the neural network from what is truly important and negatively impact

prediction performance. [9] visualizes the activation of the neural network and shows

that the model not only learns driving-critical information such as lane markings, but

also unexpected features such as atypical vehicle classes. [7] presents results of the

driving model’s attention map refined by causal filtering, which seems to include rather

random attention blobs.

As pointed out by [10] in the information bottleneck principle, the learning objec-

tive for a deep neural network could be formulated as finding the optimal representa-

tion that maximally compresses the information in the input while preserving as much

information as possible about the output, or in other words, finding an approximate

minimal sufficient statistic of the input with respect to the output. Further work [11]

shows that the Stochastic Gradient Descent (SGD) optimization of the neural network

has two distinct phases, the fitting phase during which the mutual information of the

intermediate layers with the output increases and empirical error drops, and the com-

pression phase during which the mutual information of the intermediate layers with the

input decreases and the representation becomes closer in form to the minimum suffi-

cient statistic of the output. They also show that most of the training effort is spent on
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the compression phase, which is the key to good generalization. It is therefore beneficial

for the optimization of the network to have a representation that contains less irrelevant

complexity, as it could relieve the burden of the compression phase by giving a better

”initialization” of the optimal representation.

More critically, all existing work focuses on a single source of data and does not ex-

plicitly deal with generalization to an unseen dataset. As noted by [12], datasets could

have strong built-in biases, and a well-functioning model trained on one dataset will

very likely not work so well on another dataset that is collected differently. This phe-

nomenon is known as domain shift, which characterizes the distance in the distribution

of inputs and outputs from different domains. While the existing model could be tuned

to gradually fit the new domain with the injection of more and more supervised data

from the new environment, this could be extremely data inefficient and prohibitively

expensive for tasks with diverse application scenarios like autonomous driving.

We propose to tackle the above challenges by taking advantage of virtual data col-

lected from simulators. Our DU-drive system maps real driving images collected under

variant conditions into a unified virtual domain, and then predict vehicle command from

the generated fake virtual image. Since all real datasets are mapped to the same domain,

we could easily extend our model to unseen datasets while taking full advantage of the

knowledge learned from existing ones. Moreover, virtual images are ”cleaner” as they

are less complex and contain less noise, and are thus closer to the ”minimal sufficient

statistic” of vehicle command prediction task, which is the target representation that the

neural network should learn under the information bottleneck framework. Last but not

least, our model could take full use of unlimited virtual data and the simulation environ-

ment, and a model learned in the virtual environment could be directly applied to a new

dataset after unifying it to the virtual domain. Experimental results on two public driv-

ing datasets and two driving simulators under supervised and semi-supervised setting,

together with analysis on the efficiency of the learned virtual representation compared

to raw image input under the information bottleneck framework clearly demonstrate the

performance superiority of our method.

2 Related Work

2.1 Vision-based autonomous driving

Vision-based solutions are believed to be a promising direction for solving autonomous

driving due to their low sensor cost and recent developments in computer vision. Since

the first successful demonstration in the 1980s [1, 3, 4], various methods have been in-

vestigated in the spectrum of vision-based driving models, from end-to-end methods

to full pipeline methods [13]. The ALVINN system [2], first introduced in 1989, is the

pioneering work in end-to-end learning for autonomous driving. It shows that an end-to-

end model can indeed learn to steer on simple road conditions. The network architecture

has since evolved from the small fully-connected network of ALVINN into convolu-

tional networks used by DAVE system [14] and then deep models used by DAVE-2

system [5]. Intermediate representations such as semantic segmentation masks and at-

tention maps are shown to be helpful to improving the performance [6, 7].



4 L. Yang, X. Liang, T. Wang and E. Xing

Pipeline methods separate the parsing of the scene and the control of the vehicle. [8]

first trains a vehicle detector to determine the location of adjacent cars and outputs vehi-

cle commands according to a simple control logic. [15] shows that convolutional neural

networks can be used to do real-time lane and vehicle detection. While such methods

are more interpretable and controllable, the annotation of intermediate representations

can be very expensive.

Our method takes advantage of an intermediate representation obtained from unsu-

pervised training and therefore improves the performance of vanilla end-to-end driving

models without introducing any annotation cost.

2.2 Domain Adaption for Visual Data

Ideally, a model trained for a specific task should be able to generalize to new datasets

collected for the same task, yet research has shown that model performance could seri-

ously degrade when the input distribution changes due to the inherent bias introduced in

the data collection process [12]. This phenomenon is known as domain shift or dataset

bias. In the world of autonomous driving, it is even more critical to have a model that

can generalize well to unseen scenarios.

Domain adaption methods attempt to battle domain shift by bridging the gap be-

tween the distribution of source data and target data [16, 17]. Recently, generative ad-

versarial network (GAN) based domain adaption, also known as adversarial adaption,

has achieved remarkable results in the field of visual domain adaption. [18] introduces

a framework that subsumes several approaches as special cases [19–21]. It frames ad-

versarial adaption as training an encoder (generator) that transforms data in the target

domain to the source domain at a certain feature level trying to fool the adversarial

discriminator, which in turn tries to distinguish the generated data from those sampled

from the source domain. The line of work on style transfer [22–24] could also be po-

tentially applied to domain adaption at the pixel level.

One subarea especially to our interest is the adaption of virtual data to real data. As

the collection of real-world data can be excessively expensive in certain cases, virtual

data rendered with computer graphics technologies can come to remedy if we could

adapt knowledge learned in the virtual domain to the real domain. [25] proposed a

GAN-based model that transforms data from virtual domain to the real domain in the

pixel space in an unsupervised manner by utilizing a content-similarity loss to retain an-

notation. [26] uses adversarial training to improve the realism of synthetic images with

the help a self-regularization term, a local adversarial loss and a buffer of training im-

ages for the discriminator. [27] randomizes the texture of objects in the robot simulator

and trains a visuomotor policy without using any real-world data. [28] trains a driving

policy with reinforcement learning in a simulator by transforming virtual images to real

images, retaining the scene structure with an adversarial loss on the segmentation mask.

While existing work aims at transforming virtual images to realistic looking images,

we argue that doing it the other way around could be more advantageous for learning

a driving policy. The transformation from real to virtual is an easier task as it is more

manageable to go from complex to simple, and all real datasets could be unified into

their simpler counterparts in the virtual domain.
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Fig. 2. Model architecture for DU-Drive. The generator network G transforms input real image

to fake virtual image, from which vehicle command is predicted by the predictor network P . The

discriminator network D tries to distinguish the fake virtual images from true virtual images. Both

the adversarial objective and the prediction objective drive the generator G to generate the virtual

representation that yields the best prediction performance. For simplicity, instance normalization

and activation layers after each convolutional/fully connected layer are omitted. (Abbr: n: number

of filters, k: kernel size, s: stride size)

3 Unsupervised Domain Unification

3.1 Network Design and Learning Objective

Learning Objective for DU-Drive Given a dataset of driving images labeled with ve-

hicle command in the real domain and a similar dataset in the virtual domain, our goal

is to transform a real image into the virtual domain and then run prediction algorithm

on the transformed fake virtual image. The overall architecture is shown in Fig. 2. Our

model is closely related to conditional GAN [29], where the generator and discrimi-

nator both take a conditional factor as input, yet different in two subtle aspects. One

is that in our model, the discriminator does not depend on the conditional factor. The

other is that our generator does not take any noise vector as input. Unlike the mapping

from a plain virtual image to a rich real image, where there could be multiple feasible

solutions, the mapping from a real image to its less complex virtual counterpart should

be more constrained and close to unique. Therefore, we could remove the noise term in

conventional GANs and use a deterministic generative network as our generator.

More formally, let Xr = {xr
i ,y

r
i }

Nr

i=1 be a labeled dataset with Nr samples in the

real domain, and let Xv = {xv
i ,y

v
i }

Nv

i=1 be a labeled dataset with Nv samples in the vir-

tual domain, where x is the frontal image of a driving scene and y is the corresponding

vehicle command. Our DU-drive model consists of a deterministic conditional gener-

ator G(xr; θG) → xf , parametrized by θG, that maps an image xr ∈ Xr in the real

domain to a fake virtual image xf , a virtual discriminator D(xv; θD) that discriminates

whether a image is sampled from true virtual images or from fake virtual images, and a

predictor P (xv; θP ) → yv , that maps a virtual image to a vehicle control command.
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The learning objective of DU-drive is:

min
θG,θP

max
θD

Ld(D,G) + λLt(P,G), (1)

where Ld(D,G) is the domain loss, which the generator tries to minimize and the

discriminator tries to maximize in the minimax game of GAN. Ld(D,G) is defined as:

Ld(D,G) =Ex
v [logD(xv; θD)]+ (2)

Ex
r [log(1−D(G(xr; θG); θD))], (3)

Lt(P,G) is the task specific objective for predictor and generator, which in this work

is the mean square loss between the predicted control command and the ground truth

control command, defined as:

Lt(P,G) = Ex
r [‖P (G(xr; θG), θP )− yr‖22] (4)

λ is a hyperparameter that controls the weight of task-specific loss and the domain loss.

Network Design For the GAN part of the model, we mostly adopt the network architec-

ture in [24], which has achieved impressive results in style transfer task. The generator

network consists of two convolutional layers with 3x3 kernel and stride size 2, fol-

lowed by 6 residual blocks. Two deconvolutional layers with stride 1/2 then transform

the feature to the same size as the input image. We use instance normalization for all

the layers. For the discriminator network, we use a fully convolutional network with

convolutional layers of filter size 64, 128, 256 and 1 respectively. Each convolutional

layer is followed by instance normalization and Leaky ReLU nonlinearity. We do not

use PatchGAN as employed in [23] because driving command prediction needs global

structure information.

For the predictor network, we adopt the network architecture used in DAVE-2 sys-

tem[5], also known as PilotNet, as it has achieved decent results in end-to-end driv-

ing [24, 9, 5]. The network contains 5 convolutional layers and 4 fully connected layers.

The first three convolutional layers have kernel size 5x5 and stride size 3, while the last

two layers have kernel size 3x3 and stride size 1. No padding is used. The last convo-

lutional layer is flattened and immediately followed by four fully connected layers with

output size 100, 50, 10 and 1 respectively. All layers use ReLU activation.

3.2 Learning

Our goal is to learn a conditional generator that maps a real image into the virtual

domain. However, a naive implementation of conditional GAN is insufficient for two

reasons. First, the adversarial loss only provides supervision at the level of image dis-

tribution and does not guarantee the retention of the label after transformation. Second,

conventional GANs are vulnerable to mode collapse, a common pitfall during the opti-

mization of the GAN objective where the distribution of transformed images degener-

ates. Previous work on adapting virtual image to real image alleviates those problems by

introducing a task-specific loss to add additional constraints to the image generated. For
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example, [25] uses a content similarity loss to enforce that the foreground of the gen-

erated image matches with that of the input image. [26] employs a self-regularization

term that minimizes the image difference between the synthetic and refined images.

Unfortunately, we cannot take advantage of similar techniques as the ”foreground”,

or the information critical to retaining the label is not obvious for autonomous driving.

Instead, we introduce a joint training scheme, where the conditional generator and the

predictor are trained simultaneously, so that the supervision from the prediction task

gradually drives the generator to convert the input images from the real domain to its

corresponding representation in the virtual domain that retains necessary semantics and

yields the best prediction performance. More formally, our objective in Eq. 1 can be

decomposed into three parts with respect to the three networks G,P and D:

min
θG

Ld(D,G) + λLt(P,G), (5)

min
θP

Lt(P,G), (6)

max
θD

Ld(D,G) (7)

We omit the weight term λ in Equation 6, as it is easy to see that only θG is influenced

by both the domain loss and the prediction loss, and we can train θD, θG and θP with

respect to the three objectives above independently. We denote αP as the learning rate

for updating θP , and αGAN as the learning rate for updating θD and θG.

During training, we update θD, θG and θP sequentially by alternately optimizing

the above three objectives, so that the generation quality and prediction performance

improves hand in hand.

3.3 Domain Unification

Consider the case when we have multiple real datasets {xr1 ,yr1},...,{xrn ,yrn}. Due to

different data distribution depicted by road appearance, lighting conditions or driving

scenes, each dataset belongs to a unique domain which we denote as Dr1 ,...,Drn re-

spectively. Prior works on end-to-end driving tend to deal with only one domain rather

than a more general reasoning system. DU-drive, however, unifies data from different

real domains into a single virtual domain and eliminates the notorious domain shift

problem.

For each real domain Dri , we use our DU-drive model to train a generator that

transforms images xri into their counterparts xfi in a unified virtual domain Dv (Figure

3). A global predictor Pv could then be trained to do vehicle command prediction from

the transformed virtual images. We fix the generator for each real domain and train the

global predictor with labeled data from multiple real domains simultaneously. Same as

our training setup for a single domain, we also use PilotNet pretrained on virtual data

as our initialization for the global predictor.

3.4 Connection with Information Bottleneck Principle

Given a raw image input, what could be a good intermediate representation that could

help boost the performance of the prediction task? We try to answer this questions under

the information bottleneck framework.
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Fig. 3. Domain unification by DU-drive. For each real domain, a generator is trained indepen-

dently to transform real images to fake virtual images in a unified virtual domain. A single virtual

image to vehicle command predictor is trained to do prediction across multiple real domains.

Formally, let X be the raw image input and Y be the vehicle control command

that is to be predicted. The information bottleneck objective of learning for a neural

network is to find the optimal representation of X w.r.t. Y , which is the minimal suffi-

cient statistic T (x), the simplest sufficient statistic that captures all information about

Y in X . However, closed form representation for the minimum sufficient statistic does

not exist in general, and according to [11] this objective could be written as a tradeoff

between compression of X and prediction of Y formulated in the following form:

L[p(t|x)] = I(X;T )− βI(T ;Y ) (8)

where I(X;T ) denotes the mutual information between the learned representation and

input, and I(T ;Y ) denotes the mutual information between the learned representation

and output. This objective is optimized successively for each layer. At the beginning of

training, the objective at input layer where T = X could be written as

L{T=X} =I(X;X)− βI(X;Y ) (9)

=H(X)− β(H(Y )−H(Y |X)) (10)

=H(X)− βH(Y ) (11)

where Eq. 11 follows from the fact that X is a sufficient statistic for Y . Now, con-

sider the case when we have an intermediate representation G(X) of X . We assume

that G(X) is also a sufficient statistic of Y , which is reasonable for any meaningful

intermediate representation. Then the objective when T = G(X) is

L{T=G(X)} =I(X;G(X))− βI(G(X);Y ) (12)

=(H(G(X))−H(G(X)|X))− β(H(Y )−H(Y |X)) (13)

=H(G(X))− βH(Y ) (14)

Subtract Eq. 12 from Eq. 9 yields:

L{T=X} − L{T=G(X)} = H(X)−H(G(X)) (15)
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This essentially tells us that an intermediate representation with lower entropy could

give a better initialization to the information bottleneck objective, which motivates us

to transform real images into their simpler virtual counterparts.

4 Experiments

4.1 Data

We use TORCS [30], an open-source car racing simulator, and Carla [31], a recent

realistic urban driving simulator as our platform for virtual data collection. Fig. 4 shows

samples from both datasets. For TORCS, we construct a virtual dataset by setting up

a robot car that follows a simple driving policy as defined in [8] and marking down

its frontal camera images and steering commands. We also included twelve traffic cars

that follow a simple control logic as defined in [8], with random noise added to the

control commands to encourage varied behaviors. We captured our data on six game

tracks with different shapes. To account for the imbalance of right turns and left turns

in the virtual data, which could introduce bias in the domain transformation process, we

augment our data by flipping the image and negate the steering command. For Carla,

we use the training dataset provided by [32].

We use two large-scale real-world datasets released by Comma.ai[33] and Udac-

ity[34] respectively (Table 1). Both datasets are composed of several episodes of driving

videos. For Comma.ai dataset, we follow the data reader provided by [33] and filter out

data points where the steering wheel angle is greater than 200. For Udacity dataset, we

use the official release of training/testing data for challenge II at [34]. Large variance

could be observed in lighting/road conditions and roadside views.

4.2 Preprocessing

We first crop the input image to 160 x 320 by removing the extra upper part, which is

usually background sky that does not change driving behavior. We then resize the image

to 80 x 160 and normalize the pixel values to [-1, 1].

Instead of predicting the steering angle command directly, we predict the inverse

of the radius as it is more stable and invariant to the geometry of the data capturing

car [7, 5]. The relationship between the inverse turning radius ut and steering angle θt
is characterized by the Ackermann steering geometry:

θt = utdwKs(1 +Kslipv
2
t ) (16)

where θt is the steering command in radius, ut(1/m) is the inverse of the turning radius,

vt(m/s) is the vehicle speed at time t. dw(m) stands for the wheelbase, which is the

distance between the front and the rear wheel. Kslip is the slippery coefficient. Ks

is the steering ratio between the turn of the steer and the turn of the wheels. We get

dw and Ks from car specifics released by the respective car manufacturer of the data

capturing vehicle, and use the Kslip provided by Comma.ai [33], which is estimated

from real data. After predicting ut, we transform it back to θt according to equation 16

and measure the mean absolute error of steering angle prediction.
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Fig. 4. Sample data used by our work. From top to down: Carla(virtual), TORCS(virtual),

Comma.ai(Real), Udacity(real)

Dataset train/test frames Lighting size

Commai.ai 345887/32018 Day/Night 160 x 320

Udacity 33808/5279 Day 240 x 320

Carla 657600/74600 Day/Dawn 88 x 200

TORCS 30183/3354 Day 240 x 320

Table 1. Dataset details.

4.3 Training details

All the models are implemented in Tensorflow [35] and trained on an NVIDIA Titan-X

GPU. We train all networks with Adam optimizer [36] and set β1 = 0.5. We follow the

techniques used in [22] to stabilize the training. First, we use LSGAN [37], where the

conventional GAN objective is replaced by a least-square loss. Thus the loss function

becomes

Ld(D,G) =Ex
v [D(xv; θD)2]+ (17)

Ex
r [(1−D(G(xr; θG); θD))2], (18)

Second, we train the discriminator using a buffer of generated images to alleviate model

oscillation [26]. We use a buffer size of 50.

In order to take advantage of the labeled data collected from simulators, we ini-

tialize the predictor network with a model that is pretrained on virtual images. During

pretraining, we set batch size to 2000 and learning rate to 0.01.

At each step, we sequentially update θG, θP and θD with respect to the objective

functions in 5, 6 and 7. We use a batch size of 60. We set αP = 0.0002, αGAN =
0.00002, and λ = 0.5 to 1. We train the model for a total of 7 epochs.

After obtaining a real-to-virtual generator for each real domain, we could fix the

generator and train a global predictor with all real datasets. We initialize the global

predictor with PilotNet pretrained on virtual data, and use a learning rate of 0.001 and

a batch size of 2000 for training.
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4.4 Metrics and baselines

We evaluate the effectiveness of our model in terms of the quality of generated images in

the virtual domain and the mean absolute error of steering angle prediction. We compare

the performance of DU-drive with the following baselines. To ensure fairness, we use

the same architecture for the predictor network as described in section 3.1.

– Vanilla end-to-end model (PilotNet) proposed by [5] maps a real driving image

directly to the steering command.

– Finetune from virtual data We first train a predictor with virtual data only, then

finetune it with the real dataset.

– Conditional GAN A naive implementation of conditional GAN (cGAN) [29] uses

a generator G to transform an image x from the real domain to an image G(x)
in the virtual domain. A discriminative network D is set up to discriminate G(x)
from y sampled from the virtual domain while G tries to fool the discriminator.

No additional supervision is provided other than the adversarial objective. We also

train a PilotNet to predict steering angle from the fake virtual image generated by

cGAN.

– PilotNet joint training We also directly train a PilotNet with two labeled real

datasets simultaneously.

4.5 Quantitative Results and Comparisons

We compare the performance of steering command prediction for a single real do-

main of our DU-drive(single) model with the plain end-to-end model (PilotNet), fine-

tuning from virtual data and conditional GAN without joint training (Table 2). Both

DU-drive(single) and finetuning from virtual data performs better than the plain end-

to-end model, which verifies the effectiveness of leveraging annotated virtual data.

DU-drive(single) outperforms finetuning by 12%/20% using TORCS virtual data and

11%/41% using Carla virtual data for Comma.ai/Udacity dataset respectively, despite

using the same training data and prediction network. This verifies the superiority of

transforming complex real images into their simpler counterparts in the virtual domain

for driving command prediction task. Conditional GAN without joint training does not

perform well as adversarial objective itself is not enough to ensure the preservation of

label. DU-drive runs at 89.2 fps when tested on a Titan-X GPU.

4.6 Information Bottleneck Analysis of Virtual Representation

As shown in Table 2, transforming real images to the virtual domain using our DU-

drive model gives superior performance even with the same training data and predictor

network. We attribute this to the fact that virtual images are more homogeneous and

contains less complexity that is not related to the prediction task. As shown in Figure 7,

superfluous details including views beyond the road and changeable lighting conditions

are unified into a clean, homogenious background, while cues critical for steering angle

prediction like lane markings are preserved. In the languange of information bottle-

neck theory, this corresponds to a representation that is closer to the optimal minimum

sufficient statistic than the raw image with respect to the prediction task.
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Simulator TORCS Carla

Dataset Model MAE SD MAE SD

Udacity

PilotNet[5] 6.018 7.613 6.018 7.613

Finetune TORCS 5.808 7.721 6.053 8.041

cGAN [29] 5.921 6.896 4.925 7.100

PilotNet joint training 15.040 27.636 15.040 27.636

DU-Drive(single) 4.558 5.356 3.571 4.958

DU-Drive(unified) 4.521 5.558 3.808 4.650

Comma.ai

PilotNet[5] 1.208 1.472 1.208 1.472

Finetune TORCS 1.203 1.500 1.196 1.473

cGAN [29] 1.215 1.405 1.206 1.404

PilotNet joint training 5.988 11.670 5.988 11.670

DU-Drive(single) 1.061 1.319 1.068 1.337

DU-Drive(unified) 1.079 1.270 1.174 1.460

Table 2. Mean absolute error (MAE) and standard deviation (SD) for steering angle prediction

task. DU-drive clearly outperforms all baseline methods.

Following the deduction in 3.4, we now show that H(X) > H(Xv), which infers

L{T=X} > L{T=Xv}. While it is unclear how to measure the entropy of an arbitrary set

of images, under the mild assumption of normal distribution, the entropy equals to the

natural logarithm of the determinant of the covariance matrix up to a constant. We there-

fore treat each image as a vector and measure the total variance of 50 randomly sampled

pairs of real and generated virtual data. As shown in Table 3 and Fig 5, virtual repre-

sentation tends to have lower entropy, giving a better initialization to the information

bottleneck objective. The performance gain is positively correlated with the decrease in

input entropy.

Variance
Carla TORCS

Udacity Commaai Udacity Commaai

Real 82745 23902 107666 29656

Virtual 31650 23483 62389 22453

Table 3. Variance of randomly sampled 50 pairs of real and generated virtual images. The gener-

ated virtual images have lower variance, which infers lower entropy for input distribution and thus

less burden during the compression phase when optimizing the information bottleneck tradeoff.

4.7 Effectiveness of Domain Unification

A critical advantage of our model is that data collected from different sources could

be unified to the same virtual domain. As shown in Figure 7, images from Comma.ai

dataset and those from Udacity dataset are transformed into a unified virtual domain,

whose superiority is directly reflected in the performance of steering angle prediction
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Fig. 5. The percentage decrease in prediction MAE (y-axis) is positively correlated with the per-

centage decrease in input entropy (x-axis).

Fig. 6. Mode Collapse happens for naively implemented conditional GAN.

task. As shown in Table 2, directly training a network with data from two real do-

mains together will lead to results much worse than training each one separately due

to domain shift. However, with DU-drive(unified), a single network could process data

from multiple real domains with comparable results with DU-drive(single). Moreover,

DU-drive separates the transformation and prediction process, and a generator could be

independently trained for a new real dataset.

To further study the generalization ability of DU-drive, we conducted semi-supervised

experiments where labels are limited for an unseen dataset. We first train a DU-drive

model with the Comma.ai data, then use 20%/50% of the labeled Udacity data respec-

tively to train the generator with our co-training scheme and report the prediction per-

formance on the test set. We also experimented on joint training with Comma.ai dataset

under our domain unification framework. As shown in Table 4, Domain unification

outperforms baselines by a large margin, especially when labeled data is scarce. This

shows the superiority of domain unification at transferring knowledge across domains

and alleviating domain shift.

% of data used
Carla TORCS

PilotNet Ours(single) Ours(unified) PilotNet Ours(single) Ours(unified)

20% 7.86 7.12 6.02 7.86 6.85 6.34

50% 7.11 6.41 5.15 7.11 5.73 5.42

100% 6.02 3.57 3.81 6.02 4.56 4.52

Table 4. MAE for semi-supervised learning.
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4.8 Prevention of mode collapse

Mode collapse is a common pitfall for generative adversarial networks. Due to the lack

of additional supervision, a naive implementation of conditional GAN easily suffers

from unstable training and mode collapse (Figure 6). With our novel joint training of

steering angle prediction and real-to-virtual transformation, mode collapse for driving

critical information like lane markings is effectively prevented.

Fig. 7. Image generation results of DU-Drive. Information not critical to driving behavior, e.g.

day/night lighting condition and the view beyond road boundary, is unified. Driving critical cues

like lane markings are well preserved.

5 Conclusion

We propose a real to virtual domain unification framework for autonomous driving, or

DU-drive, that employs a conditional generative adversarial network to transform real

driving images to their simpler counterparts in the virtual domain, from which vehi-

cle control commands are predicted. In the case where there are multiple real datasets,

a real-to-virtual generator could be independently trained for each real domain and a

global predictor could be trained with data from multiple sources simultaneously. Qual-

itative and quantitative experiment results show that our model can effectively unify real

images from different sources to more efficient representations in the virtual domain,

eliminate domain shift and boost the performance of control command prediction task.
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