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Abstract. This work introduces double-mapping Gated Recurrent Units
(dGRU), an extension of standard GRUs where the input is considered
as a recurrent state. An extra set of logic gates is added to update the in-
put given the output. Stacking multiple such layers results in a recurrent
auto-encoder: the operators updating the outputs comprise the encoder,
while the ones updating the inputs form the decoder. Since the states
are shared between corresponding encoder and decoder layers, the rep-
resentation is stratified during learning: some information is not passed
to the next layers. We test our model on future video prediction. Main
challenges for this task include high variability in videos, temporal prop-
agation of errors, and non-specificity of future frames. We show how only
the encoder or decoder needs to be applied for encoding or prediction.
This reduces the computational cost and avoids re-encoding predictions
when generating multiple frames, mitigating error propagation. Further-
more, it is possible to remove layers from a trained model, giving an
insight to the role of each layer. Our approach improves state of the art
results on MMNIST and UCF101, being competitive on KTH with 2 and
3 times less memory usage and computational cost than the best scored
approach.

Keywords: Future video prediction · unsupervised learning · recurrent
neural networks

1 Introduction

Future video prediction is a challenging task that recently received much at-
tention due to its capabilities for learning in an unsupervised manner, making
it possible to leverage large volumes of unlabelled data for video-related tasks
such as action and gesture recognition [22, 11, 10], task planning [14, 4], weather
prediction [20], optical flow estimation [15] and new view synthesis [10].
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One of the main problems in this task is the need of expensive models, both
in terms of memory and computational power, in order to capture the variability
present in video data. Another problem is the propagation of errors in recurrent
models, which is tied to the inherent uncertainty of video prediction: given a
series of previous frames, there are multiple feasible futures. Left unchecked,
this results in blurry predictions averaging the space of possible futures. When
predicting subsequent frames, the blur is propagated back into the network,
accumulating errors over time.

In this work we propose a new type of recurrent auto-encoder (AE) with state
sharing between encoder and decoder. We show how the exposed state in Gated
Recurrent Units (GRU) can be used to create a bidirectional mapping between
the input and output of each layer. To do so, the input is treated as a recurrent
state, adding another set of logic gates to update it based on the output. Cre-
ating a stack of these layers allows for a bidirectional flow of information: The
forward gates encode inputs and the backward ones generate predictions, obtain-
ing a structure similar to an AE4, but with many inherent advantages. Only the
encoder or decoder is executed for input encoding or prediction, reducing mem-
ory and computational costs. Furthermore, the representation is stratified: low
level information not necessary to capture higher level dynamics is not passed to
the next layer. Also, it naturally provides a noisy identity mapping of the input,
facilitating the initial stages of training. While the approach does not solve the
problem of blur, it prevents its magnification by mitigating the propagation of
errors. Moreover, a trained network can be deconstructed to analyse the role of
each layer in the final predictions, making the model more explainable. Since the
states are shared, the architecture can be thought of as a recurrent AE folded in
half, with encoder and decoder layers overlapping. We call our method Folded
Recurrent Neural Network (fRNN).

Our main contributions are: 1) A new shared-state recurrent AE with lower
memory and computational costs. 2) Mitigation of error propagation through
time. 3) It naturally provides an identity function during training. 4) Model
explainability and optimisation through layer removal. 5) Demonstration of rep-
resentation stratification.

2 Related work

Video prediction is usually approached using deep recurrent models. While initial
proposals focused on predicting small patches [17, 13], it is now common to
generate the whole frame based on the previous ones.

Building Blocks. Due to the characteristics of the problem, an AE setting
has been widely used [22, 14, 5, 24, 3]: the encoder extracts information from the
input and the decoder produces new frames. Usually, encoder and decoder are
CNNs that tackle the spatial dimension. LSTMs are commonly used to handle
the temporal dynamics and project the representations into the future. Some

4 Code available at https://github.com/moliusimon/frnn
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works compute the temporal dynamics at the deep representation bridging the
encoder and decoder [14, 15, 2, 3]. Others jointly handle space and time by using
Convolutional LSTMs [5, 11, 15, 8, 9] (or GRUs, as in our case), which use con-
volutional kernels at their gates. For instance, Lotter et al. [11] use a recurrent
residual network with ConvLSTMs where each layer minimises the discrepancies
from previous block predictions. Common variations also include a conditional
term to guide the temporal transform, such as a time differential [25] or prior
knowledge of scene events, reducing the space of possible futures. Oh et al. [14]
predict future frames on Atari games conditioning on the player action. Some
works propose such action conditioned models foreseeing an application for au-
tonomous agents learning in an unsupervised fashion [5, 8]. Finn et al. [5] condi-
tion their predictions for a physical system on the actions taken by a robotic arm
interacting with the scene. The method was recently applied to task planning
[4] and adapted to stochastic future video prediction [1].

Bridge connections. Introducing bridge connections (connections between
equivalent layers of the encoder and decoder) is also common [5, 10, 2, 24]. This
allows for a stratified representation of the input sequence, reducing the capacity
needs of subsequent layers. Video Ladder Networks (VLN) [2] use a conv. AE
where pairs of convolutions are grouped into residual blocks. Bridge connections
are added between corresponding blocks, both directly and by using a recurrent
bridge layer. This topology was further extended with Recurrent Ladder Net-
works (RLN) [16], where the recurrent bridge connections were removed, and
the residual blocks replaced by recurrent layers. We propose an alternative to
bridge connections by completely sharing the state between encoder and decoder.

Prediction atom. Most of the proposed architectures for future frame pre-
diction work at the pixel level. However, some models have been designed to
predict motion and use it to project the last frame into the future. These may
generate optical flow maps [10, 15] or conv. kernels [7, 27]. Other methods pro-
pose mapping the input sequence onto predefined feature spaces, such as affine
transforms [23] or human pose vectors [26]. These systems use sequences of such
features to generate the next frame at the pixel level.

Loss and GANs. Commonly used loss functions such as L2 or MSE tend
to average the space of possible futures. For this reason, some works [12, 24,
26, 9] propose using Generative Adversarial Networks (GAN) [6] to aid in the
generation of realistic looking frames and coherent sequences. Mathieu et al. [12]
use a plain multi-scale CNN in an adversarial setting and propose the Gradient
Difference Loss to sharpen the predictions.

Disentangled Motion/Content. Some authors encode content and motion
separately. Villegas et al. [24] use an AE architecture with a two-stream encoder:
for motion, a CNN + LSTM encodes difference images; for appearance, a CNN
encodes the last input frame. In a similar fashion, Denton et al. [3] use two sepa-
rate encoders and an adversarial setting to obtain a disentangled representation
of content and motion. Alternatively, some works predict motion and content in
parallel to benefit from the combined strengths of both tasks. While Sedaghat
et al. [19] propose using a single representation with a dual objective (optical
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flow and future frame prediction), Liang et al. [9] use a dual GAN setting and
use predicted motion to refine the future frame prediction.

Feedback Predictions. Finally, most recurrent models are based on the use
of feedback predictions: they input previous predictions to generate subsequent
frames. If not handled properly, this may cause errors to accumulate and magnify
over time. Our model mitigates this by enabling encoder and decoder to be
executed any number of times independently. This is similar to the proposal
by Srivastava et al. [22], which uses a recurrent AE approach where an input
sequence is encoded and its state copied into the decoder. The decoder is then
applied to generate a given number of frames. However, it is limited to a single
recurrent layer at each part.

Here, stochastic video prediction is not considered. Such models learn and
sample from a space of possible futures to generate the following frames. This
reduces prediction blur by preventing the averaging of possible futures. fRNN
could be extended to perform stochastic sampling by adding an inference model
similar to that in [1] during training. Samples drawn from the predicted dis-
tribution would be placed into the deepest state of the dGRU stack. However,
this would make it difficult to analyse the contribution of dGRU layers to the
mitigation and recovery from blur propagation.

3 Proposed method

We propose an architecture based on recurrent conv. AEs to deal with the net-
work capacity and error propagation problems for future video prediction. It
is built by stacking multiple double-mapping GRU layers, which allow for a
bidirectional flow of information between input and output: they consider the
input as a recurrent state and update it using an extra set of gates. These are
then stacked, forming an encoder and decoder using, respectively, the forward
and backward gates (Fig.1). We call this architecture Folded Recurrent Neural
Network (fRNN). Because of the state sharing between encoder and decoder,
the topology allows for: stratification of the representation, lower memory and
computational requirements compared to regular recurrent AEs, mitigated prop-
agation of errors, and increased explainability through layer removal.

3.1 Double-mapping Gated Recurrent Units

GRUs have their state fully exposed as output. This allows us to define a bidi-
rectional mapping between input and output by replicating the logic gates of the
GRU layer. To do so, we consider the input as a state. Lets define the output of
a GRU at layer l and time step t as hl

t = f l
f (h

l−1

t , hl
t−1

) given an input hl−1

t and

its state at the previous time step hl
t−1

. A second set of weights can be used to

define an inverse mapping hl−1

t = f l
b(h

l
t, h

l−1

t−1
) using the output of the forward

function at the current time step to update its input, which is treated as the
hidden state of the inverse function. This is illustrated in Fig. 1. We will refer
to this bidirectional mapping as a double-mapping GRU (dGRU).
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Fig. 1. Left: Scheme of a dGRU. Shadowed areas illustrate additional dGRU layers.
Right: fRNN topology. State cells are shared between encoder and decoder, creat-
ing a bidirectional state mapping. Shadowed areas represent unnecessary circuitry:
re-encoding of the predictions is avoided due to the decoder updating all the states.

3.2 Folded Recurrent Neural Network

By stacking multiple dGRUs, a recurrent AE is obtained. Given n dGRUs, the
encoder is defined by the set of forward functions E = {f1

f , ..., fn
f } and the de-

coder by the set of backward functions D = {fn
b , ..., f1

b }. This is illustrated in
Fig. 1, and is equivalent to a recurrent AE, but with shared states, having 3 main
advantages: 1) It is not necessary to feed the predictions back into the network
in order to generate the following predictions. Because of state sharing, the de-
coder already updates all the states except for the bridge state between encoder
and decoder, which is updated by applying the last layer of the encoder before
decoding. The shadowed area in Fig. 1 shows the section of the computational
graph that is not required when performing multiple sequential predictions. For
the same reason, when considering multiple sequential elements before predic-
tion, only the encoder is required. 2) Since the network updates its states from
the higher level representations to the lowest ones during prediction, errors intro-
duced at a given layer are not propagated into deeper layers, leaving higher-level
dynamics unaffected. 3) The model implicitly provides a noisy identity function
during training: the input state of the first dGRU layer is either the input image
itself, when preceeded by conv. layers, or an over-complete representation of the
same. A noise signal is then introduced to the representation by the backward
function of the untrained first dGRU layer. This is exemplified in Fig. 7, when
all dGRU layers are removed. As shown in Section 4.3, this helps the model to
converge on MMNIST: when the same background is shared across instances, it
prevents the model from killing the gradients by adjusting the biases to match
the background and setting the weights to zero.

This approach shares some similarities with VLN [2] and RLN [16]. As with
them, part of the information can be passed directly between corresponding
layers of the encoder and decoder, not having to encode a full representation
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of the input into the deepest layer. However, our model implicitly passes the
information through the shared recurrent states, making bridge connections un-
necessary. When compared against an equivalent recurrent AE with bridge con-
nections, this results in lower computational and memory costs. More specifically,
the number of weights in a pair of forward and backward functions is equal to

3(hl−1
2

+ hl
2

+ 2hl−1 hl) in the case of dGRU, where hl corresponds to the
state size of layer l. When using bridge connections, that value is increased to

3(hl−1
2

+hl
2

+4hl−1 hl). This corresponds to an overhead of 44% in the number
of parameters when one state has double the size of the other, and of 50% when
they have the same size. Furthermore, both the encoder and decoder must be
applied at each time step. Thus, memory usage is doubled and computational
cost is increased by a factor of between 2.88 and 3.

3.3 Training Folded RNNs

We propose a training approach for fRNNs that exploits their ability to skip the
encoder or decoder at a given time step. First g ground truth frames are passed
to the encoder. The decoder is then applied p times, producing p predictions.
This uses up only half the memory: either encoder or decoder is applied at each
step, never both. This has the same advantage as the approach by Srivastava
[22], where recurrently applying the decoder without further ground truth inputs
encourages the network to learn video dynamics. This also prevents the network
from learning an identity model, i.e. copying the last input to the output.

4 Experiments

In this section, we first discuss the data, evaluation protocol, and methods.
We then provide quantitative and qualitative evaluations. We finish with a brief
analysis on the stratification of the sequence representation among dGRU layers.

4.1 Data and evaluation protocol

Three datasets of different complexity are considered: Moving MNIST (MM-
NIST)[22], KTH [18], and UCF101 [21]. MMNIST consists of 64× 64 grayscale
sequences of length 20 displaying pairs of digits moving around the image. We
generated a million training samples by randomly sampling pairs of digits and
trajectories. The test set is fixed and contains 10000 sequences. KTH consists of
600 videos of 15-20 seconds with 25 subjects performing 6 actions in 4 different
settings. The videos are grayscale, at a resolution of 120× 160 pixels and 25 fps.
The dataset has been split into subjects 1 to 16 for training, and 17 to 25 for
testing, resulting in 383 and 216 sequences, respectively. Frame size is reduced
to 64×80 by removing 5 pixels from the left and right borders and using bilinear
interpolation. UCF101 displays 101 actions, such as playing instruments, weight
lifting or sports. It is the most challenging dataset considered, with a high intra-
class variability. It contains 9950 training and 3361 test sequences. These are
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Conv 1 Conv 2 Pool 1 dGRU 1 dGRU 2 Pool 2 dGRU 3 dGRU 4 Pool 3 dGRU 5 dGRU 6 Pool 4 dGRU 7 dGRU 8
Num. Units 32 64 - 128 128 - 256 256 - 512 512 - 256 256
Kernel size 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 5× 5 5× 5 2× 2 3× 3 3× 3 2× 2 3× 3 3× 3

Stride 1 1 2 1 1 2 1 1 2 1 1 2 1 1
Activation tanh tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh - sigmoid & tanh

Table 1. Parameters of the topology used for the experiments. The decoder applies
the same topology in reverse, using nearest neighbours interpolation and transposed
convolutions to revert the pooling and convolutional layers.

RGB at a resolution of 320× 240 pixels and 25 fps. The frame size is reduced to
64× 85 and the frame rate halved to magnify frame differences.

All methods are tested using 10 input frames to generate the following 10
frames. We use 3 common metrics for video prediction analysis: Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Dissimilarity
(DSSIM). MSE and PSNR are objective measurements of reconstruction quality.
DSSIM is a measure of the perceived quality. For DSSIM we use a Gaussian
sliding window of size 11× 11 and σ = 1.5.

4.2 Methods

The proposed method was trained using RMSProp with a learning rate of 0.0001
and a batch size of 12, sampling a random sub-sequence at each epoch. Weights
were orthogonally initialised and biases set to 0. For testing, all sub-sequences of
length 20 were considered. Our network topology consists of two convolutional
layers followed by 8 convolutional dGRU layers, applying a 2 × 2 max pooling
every 2 layers. Topology details are shown in Table 1. The convolutional and
max pooling layers are reversed by using transposed convolutions and nearest
neighbours interpolation, respectively. We train with an L1 loss.

For evaluation, we include a stub baseline model predicting the last input
frame, and a second baseline (RLadder) to evaluate the advantages of using state
sharing. RLadder has the same topology as the fRNN model, but uses bridge
connections instead of state sharing. Note that to keep the same state size on
ConvGRU layers, using bridge connections doubles the memory size and almost
triples the computational cost (Sec.3.2). This is similar to how RLN [16] works,
but using regular ConvGRU layers in the decoder. We also compare against Sri-
vastava [22] and Mathieu [12]. The former handles only the temporal dimension
with LSTMs, while the latter uses a 3D-CNN, not providing memory manage-
ment mechanisms. Next, we compare against Villegas [24], which, contrary to
our proposal, uses feedback predictions. Finally, we compare against Lotter et
al. [11] which is based on residual error reduction. All of them were adapted to
train using 10 frames as input and predicting the next 10, using the topologies
and parameters defined by the authors.

4.3 Quantitative analysis

The first row of Fig. 2 displays the results for the MMNIST dataset for the
considered methods. Mean scores are shown in Table 2. fRNN performs best on
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Fig. 2. Quantitative results on the considered datasets in terms of the number of time
steps since the last input frame. From top to bottom: MMNIST, KTH, and UCF101.
From left to right: MSE, PSNR, and DSSIM. For MMNIST, RLadder is pre-trained to
learn an initial identity mapping, allowing it to converge.

all time steps and metrics, followed by Srivastava et al. [22]. These two are the
only methods to provide valid predictions on this dataset: Mathieu et al. [12]
progressively blurs the digits, while the other methods predict a black frame. This
is caused by a loss of gradient during the first training stages. On more complex
datasets the methods start by learning an identity function, then refining the
results. This is possible since in many sequences most of the frame remains
unchanged. In the case of MMNIST, where the background is homogeneous, it
is easier for the models to set the weights of the output layer to zero and set the
biases to match the background colour. This truncates the gradient and prevents
further learning. Srivastava et al. [22] use an auxiliary decoder to reconstruct the
input frames, forcing the model to learn an identity function. This, as discussed
at the end of Section 3.2, is implicitly handled in our method, giving an initial
solution to improve on and preventing the models from learning a black image.
In order to verify this effect, we pre-trained RLadder on the KTH dataset and
then fine-tuned it on the MMNIST dataset. While KTH has different dynamics,
the initial step to solve the problem remains: providing an identity function. As
shown in Fig. 2 (dashed lines), this results in the model converging, with an
accuracy comparable to Srivastava et al. [22] for the 3 evaluation metrics.

On the KTH dataset, Table 2 shows the best approach is our RLadder base-
line followed by fRNN and Villegas et al. [24], both having similar results, but
with Villegas et al. having slightly lower MSE and higher PSNR, and fRNN a
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MMNIST
MSE PSNR DSSIM

Baseline 0.06989 11.745 0.20718
RLadder 0.04254 13.857 0.13788

Lotter [11] 0.04161 13.968 0.13825
Srivastava [22] 0.01737 18.183 0.08164
Mathieu [12] 0.02748 15.969 0.29565
Villegas [24] 0.04254 13.857 0.13896

fRNN 0.00947 21.386 0.04376

KTH
MSE PSNR DSSIM

0.00366 29.071 0.07900
0.00139 31.268 0.05945

0.00309 28.424 0.09170
0.00995 21.220 0.19860
0.00180 29.341 0.10410
0.00165 30.946 0.07657
0.00175 29.299 0.07251

UCF101
MSE PSNR DSSIM

0.01294 22.859 0.15043
0.00918 23.558 0.13395
0.01550 19.869 0.21389
0.14866 10.021 0.42555
0.00926 22.781 0.16262
0.00940 23.457 0.14150
0.00908 23.872 0.13055

Table 2. Average results over 10 time steps.

lower DSSIM. While both approaches obtain comparable average results, the er-
ror increases faster over time in the case of Villegas et al. (second row in Fig.2).
Mathieu obtains good scores for MSE and PSNR, but has a much worse DSSIM.

For the UCF101 dataset, Table 2, our fRNN approach is the best performing
for all 3 metrics. At third row of Fig. 5 one can see that Villegas et al. start out
with results similar to fRNN on the first frame, but as in the case of KTH and
MMNIST, the predictions degrade faster. Two methods display low performance
in most cases. Lotter et al. work well for the first predicted frame in the case of
KTH and UCF101, but the error rapidly increases on the following predictions.
This is due to a magnification of prediction artefacts, making the method unable
to predict multiple frames without supervision. In the case of Srivastava et al.
the problem is about capacity: it uses fully connected LSTM layers, making the
number of parameters explode quickly with the state cell size. This severely limits
the representation capacity for complex datasets such as KTH and UCF101.

Overall, for the considered methods, fRNN is the best performing on MMINST
and UCF101, the latter being the most complex of the 3 datasets. We achieved
these results with a simple topology: apart from the proposed dGRU layers, we
use conventional max pooling with an L1 loss. There are no normalisation or
regularisation mechanisms, specialised activation functions, complex topologies
or image transform operators. In the case of MMNIST, fRNN shows the ability
to find a valid initial representation and converges to good predictions where
most other methods fail. In the case of KTH, fRNN has an overall accuracy
comparable to that of Villegas et al., being more stable over time. It is only
surpassed by the proposed RLadder baseline, a method equivalent to fRNN but
with 2 and 3 times more memory and computational requirements.

4.4 Qualitative analysis

We evaluate our approach qualitatively on some samples from the three consid-
ered datasets. Fig. 3 shows the last 5 input frames from some MMNIST sequences
along with the next 10 ground truth frames and their corresponding fRNN pre-
dictions. As shown, the digits maintain their sharpness across the sequence of
predictions. Also, the bounces at the edges of the image are correctly predicted
and the digits do not distort or deform when crossing each other. This shows
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Fig. 3. fRNN predictions on MMNIST. First row for each sequence shows last 5 inputs
and target frames. Yellow frames are model predictions.

Fig. 4. fRNN predictions on KTH. First row for each sequence shows last 5 inputs and
target frames. Yellow frames are model predictions.

the network internally encodes the appearance of each digit, facilitating their
reconstruction after sharing the same region in the image plane.

Qualitative examples of fRNN predictions on the KTH dataset are shown in
Fig. 4. It shows three actions: hand waving, walking, and boxing. The blur stops
increasing after the first three predictions, generating plausible motions for the
corresponding actions while background artefacts are not introduced. Although
the movement patterns for each type of action have a wide range of variability
on its trajectory, dGRU gives relatively sharp predictions for the limbs. The first
and third examples also show the ability of the model to recover from blur. The
blur slightly increases for the arms while the action is performed, but decreases
again as these reach the final position.

Fig. 5 shows fRNN predictions on the UCF101 dataset. These correspond to
two different physical exercises and a girl playing the piano. Common to all pre-
dictions, the static parts do not lose sharpness over time, and the background is
properly reconstructed after an occlusion. The network correctly predicts actions
with low variability, as shown in rows 1-2, where a repetitive movement is per-
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Fig. 5. fRNN predictions on UCF101. First row for each sequence shows last 5 inputs
and target frames. Yellow frames are model predictions.

formed, and in the last row, where the girl recovers a correct body posture. Blur
is introduced to these dynamic regions due to uncertainty, averaging the possible
futures. The first row also shows an interesting behaviour: while the woman is
standing up the upper body becomes blurry, but the frames sharpen again as
the woman finishes her motion. Since the model does not propagate errors to
deeper layers nor makes use of previous predictions for the following ones, the
introduction of blur does not imply it will be propagated. In this example, while
the middle motion could have multiple predictions depending on the movement
pace and the inclination of the body, the final body pose has lower uncertainty.

In Fig. 6 we compare predictions from the proposed approach against the
RLadder baseline and other state of the art methods. For the MMNIST dataset
we do not consider Villegas et al. and Lotter et al. since these methods fail to
successfully converge and they predict a sequence of black frames. From the rest
of approaches, fRNN obtains the best predictions, with little blur or distortion.
The RLadder baseline is the second best approach. It does not introduce blur,
but heavily deforms the digits after they cross. Srivastava et al. and Mathieu et
al. both accumulate blur over time, but while the former does so to a smaller
degree, the latter makes the digits unrecognisable after five frames.

For KTH, Villegas et al. obtains outstanding qualitative results. It predicts
plausible dynamics and maintains the sharpness of both the individual and back-
ground. Both fRNN and RLadder follow closely, predicting plausible dynam-
ics, but not being as good at maintaining the sharpness of the individual. On
UCF101, our model obtains the best predictions, with little blur or distortion
compared to the other methods. The second best is Villegas et al., successfully
capturing the movement patterns but introducing more blur and important dis-
tortions on the last frame. When looking at the background, fRNN proposes a
plausible initial estimate and progressively completes it as the woman moves.
On the other hand, Villegas et al. modifies already generated regions as more
background is uncovered, producing an unrealistic sequence. Srivastava et al.
and Lotter et al. fail on both KTH and UCF101. Srivastava et al. heavily distort
the frames. As discussed in Section 4.3, this is due to the use of fully connected
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Input 1 Input 5 Input 10 GT 1 GT 5 GT 10

Pred. 1 Pred. 5 Pred. 10 Pred. 1 Pred. 5 Pred. 10 Pred. 1 Pred. 5 Pred. 10
fRNN RLadder Srivastava et al.

Mathieu et al. Villegas et al. Lotter et al.

Fig. 6. Predictions at 1, 5, and 10 time steps from the last ground truth frame. RLadder
predictions on MMNIST are from the model pre-trained on KTH.

recurrent layers, which constrains the state size and prevents the model from
encoding relevant information on complex scenarios. In the case of Lotter et al.,
it makes good predictions for the first frame, but rapidly accumulates artefacts.

4.5 Representation stratification analysis

Here we analyse the stratification of the sequence representation among dGRU
layers. Because dGRU units allow for a bidirectional mapping between states,
it is possible to remove the deepest layers of a trained model in order to check
how the predictions are affected, providing an insight on the dynamics captured
by each layer. To our knowledge, this is the first topology allowing for a direct
observation of the behaviour encoded on each layer.

In Fig. 7, the same MMNIST sequences are predicted multiple times, re-
moving a layer each time. The analysed model consists of 2 convolutional layers
and 8 dGRU layers. Firstly, removing the last 2 dGRU layers has no signifi-
cant impact on prediction. This shows that, for this dataset, the network has a
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8 dGRU layers

6 dGRU layers

5 dGRU layers

4 dGRU layers

3 dGRU layers

2 dGRU layers

1 dGRU layer

0 dGRU layers

Fig. 7. Moving MNIST predictions with fRNN layer removal. Removing all dGRU
layers (last row) leaves two convolutional layers and their transposed convolutions,
providing an identity mapping.

higher capacity than required. Further removing layers results in a progressive
loss of behaviours, from more complex to simpler ones. This means information
at a given level of abstraction is not encoded into higher level layers. When re-
moving the third deepest dGRU layer, the digits stop bouncing at the edges,
exiting the image. This indicates this layer encodes information on bouncing
dynamics. When removing the next one, digits stop behaving consistently at the
edges: parts of the digit bounce while others keep the previous trajectory. While
this also has to do with bouncing dynamics, the layer seems to be in charge of
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recognising digits as single units following the same movement pattern. When
removed, different segments of the digit are allowed to move as separate ele-
ments. Finally, with only 3-2 dGRU layers the digits are distorted in various
ways. With only two layers left, the general linear dynamics are still captured
by the model. By leaving a single dGRU layer, the linear dynamics are lost.

According to these results, the first two dGRU layers capture pixel-level
movement dynamics. The next two aggregate the dynamics into single-trajectory
components, preventing their distortion, and detect the collision of these compo-
nents with image bounds. The fifth layer aggregates single-motion components
into digits, forcing them to behave equally. This has the effect of preventing
bounces, likely due to only one of the components reaching the edge of the im-
age. The sixth dGRU layer provides coherent bouncing patterns for the digits.

5 Conclusions

We have presented Folded Recurrent Neural Networks, a new recurrent archi-
tecture for video prediction with lower computational and memory costs com-
pared to equivalent recurrent AE models. This is achieved by using the proposed
double-mapping GRUs, which horizontally pass information between the encoder
and decoder. This eliminates the need for using the entire AE at any given step:
only the encoder or decoder is executed for both input encoding and prediction,
respectively. It also facilitates the convergence by naturally providing a noisy
identity function during training. We evaluated our approach on three video
datasets, outperforming state of the art techniques on MMNIST and UCF101,
and obtaining competitive results on KTH with 2 and 3 times less memory us-
age and computational cost than the best scored approach. Qualitatively, the
model can limit and recover from blur by preventing its propagation from low to
high level dynamics. We also demonstrated stratification of the representation,
topology optimisation, and model explainability through layer removal. Layers
have been shown to successively introduce more complex behaviours: removing
a layer eliminates its behaviours but leaves lower-level ones untouched.
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